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Necessary and sufficient conditions for the inclusion
relation between two summability methods

Abstract. In this paper, a general theorem gives necessary and sufficient
conditions for the inclusion relation between ¢ —|A, 3;4|, and ¢ — |B, 3; 9],
methods is proved.

1. Introduction

Let > ay, be an infinite series with its partial sums (s, ). Let A = (an,) be a
normal matrix, i.e. a lower triangular matrix of nonzero diagonal entries. Then A

defines the sequence-to-sequence transformation, mapping the sequence s = (s,,)
to As = (An(s)), where

An(s)zzanvsv; n=20,1,....
v=0

Let (@) be any sequence of positive real numbers. The series Y a,, is said to be
summable ¢ — |A, 3;6|,, k> 1,0 > 0 and f is a real number, if (see [10]),

> @hORRETDIA (5) = An_a(s)]F < 0.
n=1

For f =1 and 6 =0, we get ¢ — |A|; summability method (see [13]).
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Let A = (any) be a normal matrix, then two lower semimatrices A = (@)
and A = () are defined as follows:

anvzzania n,v=0,1,..., (1)

dOO = apg = aoo, dnv = Qpy — a/nfl,vu n= 17 27 v (2)

and

If A is a normal matrix, then A’ = (a/,,) denotes the inverse of A, and A = ()

is a normal matrix and it has two-sided inverse A’ = (a,,) which is also normal
(see [6]).

2. Known Results

There are many papers focused on sufficient or necessary conditions for abso-
lute summability of infinite series, equivalence theorems for summability and the
relative strength of absolute summability methods. In [I], Bor obtained the rela-
tive strength of two absolute summability methods. Bor, Srivastava and Sulaiman
[5] achieved the sufficient conditions for summability of an infinite series by using
generalized power increasing sequences. Ozarslan and Ozgen [I8] proved a theorem
gives necessary conditions for absolute matrix summability. Sezer and Canak [20],
Bor [2] obtained equivalence theorems on summability. Ozgen [19], Ozarslan and
Karakag [14], Ozarslan and Kartal [15], [17], Sonker and Munjal [21], [22], Karakas
[7], Kartal [8], [9], Ozarslan [10],[I1], Bor and Agarwal [3], Bor and Mohapatra [4]
obtained theorems on absolute Riesz, Cesaro and matrix summability of infinite
series. Furthermore, the following theorem on the relative strength of two absolute
matrix summability methods has been proved in [I3].

THEOREM 1
Let k > 1. Let A = (any) and B = (byy) be two positive normal matrices. In order
that

¢ —|Alx = ¢ — Bk (4)

it is necessary that
bpn = O(ann). (5)

If we suppose that
bnfl,v > bny fOT n>v+ 1, (6)
anozla Enozla n20717"'7 (7)
Qyy — Qy+1,0 = O(avvav-i-l,v-‘rl)) (8)

n—1
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m—+1
Z (Wnbnn)k_lgn,wrl = O(W5_1b5;1>7 (10)
n=v+1
m—+1
> (@nbun) A (bao) | = O(gh1BE,), (11)
n=v-+1
Z an|d;r‘ = O(Z;n,r+1)7 (12)
v=r—+2

then is also sufficient.

LemMa 1 ([10)
Let k > 1 and A = (an,) be an infinite matriz. In order that A € (I¥;1¥) it is
necessary that

any = O(1) (all n,v). (13)

3. Main Result

The aim of this paper is to generalize Theorem [I] as in the following form.

THEOREM 2
Letk > 1. Let A = (apny) and B = (byy) be two positive normal matrices. In order
that

¢ — 1A, B; 6], = ¢ — |B,B; 4, (14)
condition is mecessary. If we suppose that @—@, and
m—+1
D R by 1 = OB, (15)
n=v-+1
m—+1
D IR A (bno)| = O(] R0y, (16)
n=v+1

then is also sufficient, where 6 > 0 and —f(0k +k —1)+k > 0.

Proof. Necessity. Let (I,) and (U, ) denote A-transform and B-transform of the
series Y an,, respectively. By , we get

n n
AI,L = Z apoay and AU,L = Z lAJm,av.
v=0 v=0

Then, we write a, = >.0_, a,, Al and AU, = > o e oo al, Al

r=0 “vr
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Since by = bpo — br—1,0 = 0, we have

For 4,,,(Kronecker delta), by using equality > ,_, a, ks = Ony, we get

. . b . a
A~ A~ nv v+1,v
bnvam; + bn,v+1av+11v = 3z + bn,erl ( - f)
Ayy af’uvav-‘rl,v-i-l
_ bnv 8 (C_’fv+1,'u — C_lv'u)
- — Un,v+1
Aoy avvav+1,u+l
o bnv 2 (av+1,v+1 + aerl,v - avv)
- - bn,vJJrl
Qyy AyyQy+1,04+1
Av(bnv) 2 (avv - av-l—l,v)
=—+ bn,'[;-&—li-
Ayy avvav+1,v+1
Therefore, we obtain
n—1 (a a )
_ nn j : v nv j : vv — Wu4lu) R
A == 7AI + AI'U + bn U+17A11)
v—1 QyyAy+1,0+1

+ ZAI Z bm,aw

v=r+2
= Un,l + Un,2 + Un,S + Un,4~

B(Sk+k—1) _
Now, we write down the matrix transforming (cpn k AL, ) into
B(Sk+k—1)

(gpnT AU by . The assertion is equivalent to the assertion that this
matrix € (lk, 12. Hence7 by Lemma in order that ¢ —|A, 5;6|, = ¢—|B, 36/,
the condition (5)) is necessary.
Sufficiency. Let the conditions be satisfied. We will prove that p—|A, 3;6|, =
— |B, 8;0],. For this we need to show

o0
Z @2(’5k+k_1)\Un7r|k < 00 for r = 1,2,3,4.
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First, we have

Z @£(6k+k71)|U Z B(dk+k—1) ann |AI |k

n=1 n=1 nn

Now, by and using the fact that ) a, is summable ¢ — |A, §;0],, we get

m
3 gD, (1) el DIALE =0)  asm o

n=1 n=1

By using Hoélder’s inequality, we have

m+1
Z @2(6k+k_1)|Un,2|k
n=2
m+1 |A | k—1
<3 oo S lbalan i (Siau)
Here ‘ and ‘ ’ 1Hlp1y Z |Av(i)nv)| = Zz;ll (bn—l,v - bnv) < bnn
Then, by | j and . we have
sy B(6k+k—1) k ey 6k+k 1)1k |Av m;)| k
n=2 n=2 v'u

AI k m+l
Z| | C,On(ékJrk l)bk 1|A ( )|

=1 ”” n=v+1

_ 0(1) Z S05(6k+kfl)|AIv‘k

v=1
=0(1) as m — oo.
Now, by , we get
m+1 m—+1 n—1 (a i ) k
S ey o = 57 poreeon] §, e i)
n=2 n=2 =1 avvav+1 v+1
m—+1

n—1 _ k
Z SOff(tschrk 1) (Z bn,v—i—1|AIv|> )
v=1

Then by using Hélder’s inequality, and the conditions (9)), (15]), we obtain

m—+1
Z @5(5k+k_1)|Un,3|k

n=2

m—+1 n—1 k=1
Z B (Ok+E= 1)me+1 |AI |’“(an v+1bw)

v=1



[10]

Bagdagiil Kartal

m+1 n—1
Z @6(6k+k 1)bk 1 Z bn v+1|AI |
n=2 v=1 UU
m m+1
— 0(1) Z bk - IAI |k Z (pB(6k+k 1) bk 1bn ol
v=1 n=v+1

= 0(1) Y @fCH DAL ¢

v=1

=0(1) as m — oo.

Finally, by using , we get

m+1 m—41
Z <pﬁ(ékJrk 1) ‘U Z P B(6k+k— 1)(2 ‘AI |bn r+1)
n=2

=0(1) as m — 0o,

as in Uy, 3. This completes the proof of Theorem @

4,

Conclusion

In this paper, a theorem on the relative strength of two absolute matrix
summability methods is generalized. In case of § = 1 and § = 0, the condi-
tions , reduce to the conditions , respectively and so Theorem
reduces to Theorem [1] Also, in case of 5 = 1, Theorem |2 reduces to the result in

.
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