

FOLIA 385

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 22 (2023)

Larbi Rakhimi, Abdelmajid Khadari and Radouan Daher K-functional related to the Deformed Hankel

Transform

Abstract. The main result of the paper is the proof of the equivalence theorem for a K-functional and a modulus of smoothness for the Deformed Hankel Transform. Before that, we introduce the K-functional associated to the Deformed Hankel Transform.

1. Introduction and Preliminaries

In [2], Belkina and Platonov established the equivalence theorem for a K-functional and a modulus of smoothness for the Dunkl transform in the Hilbert space $\mathbf{L}^2(\mathbb{R},|x|^{2\alpha+1})$, $\alpha \geq \frac{-1}{2}$, using a Dunkl translation operator.

In this paper, we prove the generalization of this theorem for the Deformed Hankel transform \mathcal{F}_{κ} , with a parameter $\kappa > \frac{1}{4}$. For this purpose, we use the deformed Hankel translation operator, this result is analogous of the statement proved in ([1], [2], [8], [10], [11]).

We recapitulate some facts about harmonic analysis related to the deformed Hankel transform, consider the differential operator

$$\mathbb{L}_{\kappa}(.) = |.|\Lambda_{\kappa}(.),$$

where Λ_{κ} is the Dunkl Laplacian defined by $\Lambda_{\kappa} = \frac{d^2}{dx^2} + \frac{2\kappa}{x} \frac{d}{dx} - \frac{\kappa}{x^2} (1 - S)$, where Sf(x) := f(-x).

The deformed Hankel kernel $B_{\kappa}(\lambda x)$ is given, for $\kappa > \frac{1}{4}$, by

$$B_{\kappa}(\lambda x) = j_{2\kappa - 1}(2\sqrt{|\lambda x|}) - \frac{\lambda x}{2\kappa(2\kappa + 1)} j_{2\kappa + 1}(2\sqrt{|\lambda x|}), \tag{1}$$

AMS (2020) Subject Classification: 41A36, 44A20.

Keywords and phrases: Deformed Hankel transform, generalized translation operator, Jackson's direct theorems, K-Functionals, Modulus of smoothness.

where j_{α} denotes the normalized Bessel function of order α , defined by

$$j_{\alpha}(u) = 2^{\alpha} \Gamma(\alpha + 1) u^{-\alpha} J_{\alpha}(u) = \Gamma(\alpha + 1) \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(\alpha + m + 1)} \left(\frac{u}{2}\right)^{2m}.$$
 (2)

It satisfies the following differential-difference equation

$$|x|\Lambda_{\kappa}B_{\kappa}(\lambda x) = -|\lambda|B_{\kappa}(\lambda x).$$

From (1) and (2), one can easily find that B_{κ} has the properties

$$B_{\kappa}(0) = 1$$
 and $|B_{\kappa}(\lambda x)| \leq 1$ for all $\lambda, x \in \mathbb{R}$,

and from [9], we have

$$\lim_{\lambda x \to +\infty} B_{\kappa}(\lambda x) = 0. \tag{3}$$

The deformed Hankel translation operator T_y^{κ} is defined by

$$T_y^{\kappa} f(x) = \int_{\mathbb{R}} f(z) K_{\kappa}(x, y, z) d\mu_{\kappa}(z),$$

where $d\mu_{\kappa}(x) = \frac{1}{2\Gamma(2\kappa)}|x|^{2\kappa-1}dx$ and for all $x,y\in\mathbb{R}^*$, the kernel K_{κ} is given by

$$K_{\kappa}(x,y,z) = 2\Gamma(2\kappa)W_{2\kappa-1}(\sqrt{|x|},\sqrt{|y|},\sqrt{|z|})\nabla_{\kappa}(x,y,z),$$

where W_{α} is the positive Bessel kernel given by

 $W_{\alpha}(u,v,w)$

$$=\frac{\Gamma(\alpha+1)}{2^{2\alpha-1}\Gamma(\alpha+\frac{1}{2})\Gamma(\frac{1}{2})}\frac{\{[(u+v)^2-w^2][w^2-(u-v)^2]\}^{\alpha-\frac{1}{2}}}{(uvw)^{2\alpha}}\chi_{]|u-v|,u+v[}(w),$$

and

$$\begin{split} \nabla_{\kappa}(x,y,z) = & \frac{1}{4} \Big\{ 1 + \frac{\text{sgn}(xy)}{4\kappa - 1} [4\kappa\Delta(|x|,|y|,|z|)^2 - 1] \\ & + \frac{\text{sgn}(xz)}{4\kappa - 1} [4\kappa\Delta(|z|,|x|,|y|)^2 - 1] \\ & + \frac{\text{sgn}(yz)}{4\kappa - 1} [4\kappa\Delta(|z|,|y|,|x|)^2 - 1] \Big\} \end{split}$$

and $\Delta(u, v, w) = \frac{1}{2\sqrt{uv}}(u+v-w)$, $u, v, w \in \mathbb{R}_+^*$. We recall that $L^p(d\mu_\kappa)$, $\kappa > \frac{1}{4}$, is the set of all measurable functions f on \mathbb{R} satisfying

$$||f||_{p,\kappa} = \left(\int_{\mathbb{R}} |f(x)|^p d\mu_{\kappa}(x)\right)^{\frac{1}{p}} < \infty.$$

Let $f \in L^1(d\mu_{\kappa})$, the deformed Hankel transform \mathcal{F}_{κ} is defined by

$$\mathcal{F}_{\kappa}f(\lambda) = \int_{\mathbb{D}} f(x)B_{\kappa}(\lambda x)d\mu_{\kappa}(x), \qquad \lambda \in \mathbb{R}.$$

We have $\mathcal{F}_{\kappa}(f) \in \mathcal{C}_0(\mathbb{R})$. Moreover we have

$$\|\mathcal{F}_{\kappa}f\|_{\infty,\kappa} \leq \|f\|_{1,\kappa}.$$

It is well-known (see [3],[4],[5],[6]) that the deformed Hankel transform \mathcal{F}_{κ} satisfies the following properties.

(a) Its inverse formula is given by

$$f(x) = \int_{\mathbb{R}} \mathcal{F}_{\kappa} f(\lambda) B_{\kappa}(\lambda x) d\mu_{\kappa}(\lambda).$$

(b) The Plancherel formula states

$$\|\mathcal{F}_{\kappa}f\|_{2,\kappa} = \|f\|_{2,\kappa}.$$

(c) From [9], we have

$$\mathcal{F}_{\kappa}(\mathbb{L}_{\kappa}^{r}f)(\lambda) = (-1)^{r}|\lambda|^{r}\mathcal{F}_{\kappa}f(\lambda), \qquad r \in \mathbb{N}, \tag{4}$$

where $\mathbb{L}_{\kappa}^{r} f = \mathbb{L}_{\kappa}(\mathbb{L}_{\kappa}^{r-1} f)$ and $\mathbb{L}_{\kappa}^{0} f = f$.

(d) The generalized translation operator T_y^{κ} , verifies

$$\mathcal{F}_{\kappa}(T_{y}^{\kappa}f)(\lambda) = B_{\kappa}(\lambda y)\mathcal{F}_{\kappa}f(\lambda) \tag{5}$$

and we have $||T_y^{\kappa}f||_{\kappa,p} \leq A_{\kappa}||f||_{\kappa,p}$ for all $1 \leq p \leq \infty$ and $y \in \mathbb{R}$.

Let $\mathcal{W}^m_{2,\kappa}$ be the Sobolev space constructed by the \mathbb{L}_{κ} operator that is

$$W_{2,\kappa}^m := \{ f \in L^2(d\mu_{\kappa}) : \mathbb{L}_{\kappa}^j f \in L^2(d\mu_{\kappa}), \ j = 1, 2, \dots, m \},$$

where $\mathbb{L}^j_{\kappa}f = \mathbb{L}_{\kappa}(\mathbb{L}^{j-1}_{\kappa}f)$ and $\mathbb{L}^0_{\kappa}f = f$. Now we define the finite differences of order $m \in \mathbb{N}$ and step h > 0 by

$$\Delta_h^m f(\lambda) = (T_h^{\kappa} - I)^m f(\lambda),$$

where I denotes the unit operator.

Remark 1

For all $m \in \mathbb{N}$, we have

$$\Delta_h^m f(\lambda) = \sum_{0 \le i \le m} (-1)^{m-i} \binom{m}{i} (T_h^{\kappa})^i f(\lambda).$$

Lemma 2

Let $f \in L^2(d\mu_{\kappa})$, we have

$$\mathcal{F}_{\kappa}(\Delta_h^m f)(\lambda) = (B_{\kappa}(\lambda h) - 1)^m \mathcal{F}_{\kappa}(f)(\lambda). \tag{6}$$

Proof. On the basis of (5), we have

$$\mathcal{F}_{\kappa}\left(T_{y}^{\kappa}f\right)(\lambda) = B_{\kappa}(\lambda y)\mathcal{F}_{\kappa}f(\lambda),$$

then, by recurrence on i, we get

$$\mathcal{F}_{\kappa}((T_{\eta}^{\kappa})^{i}f)(\lambda) = (B_{\kappa}(\lambda y))^{i}\mathcal{F}_{\kappa}f(\lambda),$$

hence

$$\mathcal{F}_{\kappa}(\Delta_{h}^{m}f)(\lambda) = \sum_{0 \leq i \leq m} (-1)^{m-i} \binom{m}{i} (B_{\kappa}(\lambda y))^{i} \mathcal{F}_{\kappa}f(\lambda),$$
$$= \left(\sum_{0 \leq i \leq m} (-1)^{m-i} \binom{m}{i} (B_{\kappa}(\lambda y))^{i}\right) \mathcal{F}_{\kappa}f(\lambda).$$

Using Newton's formula, we obtain (6).

Definition 3

Let $f \in L^2(d\mu_{\kappa})$ and $\delta > 0$. Then

(i) The generalized modulus of smoothness is defined by

$$w_m(f,\delta)_{2,\kappa} = \sup_{0 < h < \delta} \|\Delta_h^m f\|_{2,\kappa}.$$

(ii) The generalized K-functional is defined by

$$K_m(f,\delta)_{2,\kappa} = \inf\{\|f - g\|_{2,\kappa} + \delta \|\mathbb{L}_{\kappa}^m g\|_{2,\kappa} : g \in \mathcal{W}_{2,\kappa}^m\}.$$

The modulus of smoothness $w_m(f,\delta)_{2,\kappa}$ possesses the following properties (see, for example [7],[9]),

- (a) $w_m(f, \delta)_{2,\kappa} \le A_{\kappa} 2^m ||f||_{2.\kappa};$
- (b) if $f \in \mathcal{W}_{2,\kappa}^m$, then $w_m(f,\delta)_{2,\kappa} \leq c(m,\kappa)\delta^m \|\mathbb{L}_{\kappa}^m f\|_{2,\kappa}$, where $c(m,\kappa)$ is a constant.

Throughout this paper, C denote a positive constant which may vary by line.

2. Main result

In order to prove Theorem 8 we need some preliminary results. The behaviour in 0 of the kernel $B_{\kappa}(\lambda x)$ could be deduced from [7] and [9], we get

$$B_{\kappa}(\lambda x) = 1 - \frac{1}{2\kappa} |\lambda x| - \frac{\lambda x}{2\kappa(2\kappa + 1)} + \frac{\operatorname{sgn}(\lambda x)}{2\kappa(2\kappa + 1)(2\kappa + 2)} |\lambda x|^2 + o(|\lambda x|^2).$$
 (7)

Lemma 4

(i) There exist constants C > 0 and v > 0 such that if $|\lambda x| \le v$, then

$$|B_{\kappa}(\lambda x) - 1| \ge C|\lambda x|. \tag{8}$$

(ii) There exist constants C > 0 and v > 0 such that if $|\lambda x| \ge v$, then

$$|B_{\kappa}(\lambda x) - 1| \ge C. \tag{9}$$

Proof. (i). Using the relation (7), we obtain

$$\lim_{|\lambda x| \to 0} \frac{|B_{\kappa}(\lambda x) - 1|}{|\lambda x|} = \frac{1}{2\kappa} + \frac{\operatorname{sgn}(\lambda x)}{2\kappa(2\kappa + 1)}.$$

This allows to get that there exist C > 0 and v > 0 such that

$$|\lambda x| \le v \Longrightarrow |B_{\kappa}(\lambda x) - 1| \ge C|\lambda x|.$$

(ii). From [12], we have the asymptotic formula for the normalized Bessel function j_{α} , when $x \to +\infty$,

$$j_{\alpha}(x) = \frac{\Gamma(\alpha+1)}{\Gamma(\frac{1}{2})} \left(\frac{2}{x}\right)^{\alpha+\frac{1}{2}} \cos\left(x - (2\alpha+1)\frac{\pi}{4}\right) + o\left(\frac{1}{x^{\frac{3}{2}}}\right).$$

Therefore

$$\lim_{\lambda x \to +\infty} B_{\kappa}(\lambda x) = 0.$$

As a consequence there exists v > 0 such that if $|\lambda x| \ge v$ the inequality $|B_{\kappa}(\lambda x)| \le \frac{1}{2}$ is true. We get the inequality

$$|B_{\kappa}(\lambda x) - 1| \ge C$$
, where $C = \frac{1}{2}$.

For any function $f \in L^2(d\mu_{\kappa})$ and any number v > 0 we define the function

$$P_v(f)(x) := \int_{-v}^{v} \mathcal{F}_{\kappa} f(\lambda) B_{\kappa}(\lambda x) d\mu_{\kappa}(\lambda) = \mathcal{F}_{\kappa}^{-1}(\mathcal{F}_{\kappa} f(\lambda) \chi_v(\lambda)),$$

where

$$\chi_v(\lambda) = \begin{cases} 1, & \text{if } |\lambda| \le v, \\ 0, & \text{if } |\lambda| > v. \end{cases}$$

 $\mathcal{F}_{\kappa}^{-1}$ is the inverse deformed Hankel transform. One can easily prove that the function $P_v(f)$ is infinitely differentiable and belongs to all classes $\mathcal{W}_{2,\kappa}^m$, $m \in \mathbb{N}$.

Lemma 5

If $f \in L^2(d\mu_{\kappa})$, then

$$||f - P_v(f)||_{2,\kappa} \le Cw_m(f,\delta)_{2,\kappa}, \qquad m \in \mathbb{N},$$

where v > 0 and $\delta > 0$.

Proof. Using the Plancherel identity, we have

$$||f - P_v(f)||_{2,\kappa}^2 = \int_{\mathbb{R}} |1 - \chi_v(\lambda)|^2 |\mathcal{F}_{\kappa} f(\lambda)|^2 d\mu_{\kappa}(\lambda)$$
$$= \int_{|\lambda| > v} |\mathcal{F}_{\kappa} f(\lambda)|^2 d\mu_{\kappa}(\lambda).$$

By (9), we have

$$|B_{\kappa}(\lambda h) - 1| \ge C$$
 for $|\lambda h| > v$.

Therefore, from (6) and the Plancherel identity we deduce that

$$||f - P_v(f)||_{2,\kappa}^2 \le C^{-2m} \int_{|\lambda| > v} |B_{\kappa}(\lambda x) - 1|^{2m} |\mathcal{F}_{\kappa} f(\lambda)|^2 d\mu_{\kappa}(\lambda)$$

$$= C^{-2m} \int_{|\lambda| > v} |\mathcal{F}_{\kappa} ((T_h^{\kappa} - I)^m f)(\lambda)|^2 d\mu_{\kappa}(\lambda)$$

$$\le C^{-2m} \int_{\mathbb{R}} |\mathcal{F}_{\kappa} ((T_h^{\kappa} - I)^m f)(\lambda)|^2 d\mu_{\kappa}(\lambda)$$

$$= C^{-2m} ||(T_h^{\kappa} - I)^m f||_{2,\kappa}^2 = C^{-2m} ||\Delta_h^m f||_{2,\kappa}^2.$$

Hence

$$||f - P_v(f)||_{2,\kappa} \le C^{-m} ||\Delta_h^m f||_{2,\kappa} \le C^{-m} w_m(f,\delta)_{2,\kappa},$$

the lemma is proved.

Lemma 6

For any $f \in L^2(d\mu_{\kappa})$, we have

$$\|\mathbb{L}_{\kappa}^{m}(P_{v}(f))\|_{2,\kappa} \le C|h|^{-m}\|\Delta_{h}^{m}f\|_{2,\kappa}, \qquad m \in \mathbb{N}, \tag{10}$$

where v > 0.

Proof. Relations (4), (6) and (8) together with the Plancherel identity yield

$$\begin{split} \|\mathbb{L}_{\kappa}^{m}(P_{v}(f))\|_{2,\kappa}^{2} &= \int_{-v}^{v} |\lambda|^{2m} |\mathcal{F}_{\kappa}f(\lambda)|^{2} d\mu_{\kappa}(\lambda) \\ &\leq C^{-2m} |h|^{-2m} \int_{-v}^{v} |B_{\kappa}(\lambda h) - 1|^{2m} |\mathcal{F}_{\kappa}f(\lambda)|^{2} d\mu_{\kappa}(\lambda) \\ &\leq C^{-2m} |h|^{-2m} \int_{\mathbb{R}} |\mathcal{F}_{\kappa}(\Delta_{h}^{m}f)(\lambda)|^{2} d\mu_{\kappa}(\lambda) \\ &= C^{-2m} |h|^{-2m} \|\Delta_{h}^{m}f\|_{2,\kappa}^{2}. \end{split}$$

Hence

$$\|\mathbb{L}_{\kappa}^{m}(P_{v}(f))\|_{2,\kappa} \leq C^{-m}|h|^{-m}\|\Delta_{h}^{m}f\|_{2,\kappa}.$$

This proves (10).

Corollary 7

The inequality

$$\|\mathbb{L}_{\kappa}^{m}(P_{v}(f))\|_{2,\kappa} \leq C\delta^{-m}w_{m}(f,\delta)_{2,\kappa},$$

holds for any $f \in L^2(d\mu_{\kappa})$, $m \in \mathbb{N}$, v > 0 and $\delta > 0$.

THEOREM 8

There are two positive constants $c_1 = c(m, \kappa)$ and $c_2 = c(m, \kappa)$ such that

$$c_1 w_m(f, \delta)_{2,\kappa} \le K_m(f, \delta^m)_{2,\kappa} \le c_2 w_m(f, \delta)_{2,\kappa} \tag{11}$$

for all $f \in L^2(d\mu_{\kappa})$ and $\delta > 0$.

Proof. To prove the left-hand inequality in (11) it is sufficient to show that

$$w_m(f,\delta)_{2,\kappa} \le CK_m(f,\delta^m)_{2,\kappa}. \tag{12}$$

Let $g \in \mathcal{W}_{2,\kappa}^m$. Using the properties of the modulus of smoothness (see [9], Properties 4.2) we obtain

$$w_{m}(f,\delta)_{2,\kappa} \leq w_{m}(f-g,\delta)_{2,\kappa} + w_{m}(g,\delta)_{2,\kappa}$$

$$\leq A_{\kappa}2^{m} ||f-g||_{2,\kappa} + C(m,\kappa)\delta^{m} ||\mathbb{L}_{\kappa}^{m}g||_{2,\kappa}$$

$$\leq C(||f-g||_{2,\kappa} + \delta^{m} ||\mathbb{L}_{\kappa}^{m}g||_{2,\kappa}),$$

where $C = \max(A_{\kappa}2^m, C(m, \kappa))$. Taking the infimum over all $g \in \mathcal{W}_{2,\kappa}^m$ we arrive at inequality (12).

Now we prove the right-hand inequality in (11). If $g = P_v(f)$ for v > 0, then it follows from the definition of $K_m(f, \delta)_{2,\kappa}$ that

$$K_m(f, \delta^m)_{2,\kappa} \leq \|f - P_v(f)\|_{2,\kappa} + \delta^m \|\mathbb{L}_{\kappa}^m P_v(f)\|_{2,\kappa}.$$

It follows from Lemma 5, and Corollary 7 that

$$K_m(f, \delta^m)_{2,\kappa} \leq 2Cw_m(f, \delta)_{2,\kappa},$$

which proves the right-hand inequality in (11).

References

- [1] Al Subaie, Reem Fahad, and Mohamed Ali Mourou. "Equivalence of K-Functionals and Modulus of Smoothness Generated by a Generalized Dunkl Operator on the Real Line." Adv. Pure Math. 5, no. 6 (2015): 367-376. Cited on 13.
- [2] Belkina, E. S., and Sergeĭ Sergeevich Platonov. "Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations." *Russian Math. (Iz. VUZ)* 52, no. 8 (2008): 1-11. Cited on 13.
- [3] Ben Saïd, Salem. "A product formula and a convolution structure for a k-Hankel transform on \mathbb{R} ." J. Math. Anal. Appl. 463, no. 2 (2018): 1132-1146. Cited on 15.
- [4] Ben Saïd, Salem, and Luc Deleaval. "Translation operator and maximal function for the (k,1)-generalized Fourier transform. J. Funct. Anal. 279, no. 8 (2020): Art. no. 108706. Cited on 15.

- [5] Ben Saïd, Salem, Toshiyuki Kobayashi, and Bent Ørsted. "Laguerre semigroup and Dunkl operators." Compos. Math. 148, no. 4 (2012): 1265-1336. Cited on 15.
- [6] Ben Saïd, Salem, Mohamed Amine Boubatra, and Mohamed Sifi. "On the deformed Besov-Hankel spaces." Opuscula Math. 40, no. 2 (2020): 171-207. Cited on 15.
- [7] Boubatra, Mohamed Amine. "On the generalized Dunkl Dini-Lipschitz spaces." Integral Transforms Spec. Funct. 33, no. 10 (2022): 782-798. Cited on 16.
- [8] El Hamma, Mohamed, and Radouan Daher. "Equivalence of K-functionals and modulus of smoothness constructed by generalized Jacobi transform." *Integral Transforms Spec. Funct.* 30, no. 12 (2019): 1018-1024. Cited on 13.
- [9] Negzaoui, Selma, and Sara Oukili. "Modulus of continuity and modulus of smoothness related to the deformed Hankel transform." *Results Math.* 76, no. 3 (2021): Paper No. 164. Cited on 14, 15, 16 and 19.
- [10] Rakhimi, Larbi, and Radouan Daher. "Equivalence of K-functionals and modulus of smoothness for Laguerre type operator." J. Pseudo-Differ. Oper. Appl. 12, no. 4 (2021): Paper No. 53. Cited on 13.
- [11] Rakhimi, Larbi, and Radouan Daher. "Modulus of smoothness and K-functionals constructed by generalized Laguerre-Bessel operator." *Tatra Mt. Math. Publ.* 81 (2022): 107-116. Cited on 13.
- [12] Watson, George Neville. A Treatise on the Theory of Bessel Functions. 2nd ed. reprinted. Springer Monographs in Mathematics. New York: Cambridge University Press, 1966. Cited on 17.

Larbi Rakhimi
Abdelmajid Khadari
Radouan Daher
Department of Mathematics
Faculty of Sciences Aïn Chock
University Hassan II
Casablanca
Morocco
E-mail: rakhimilarbi@gmail.com
khadariabd@gmail.com
rjdaher024@gmail.com

Received: May 30, 2022; final version: February 25, 2023; available online: April 3, 2023.