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Abstract. In this paper, we have discussed the problem of existence and
uniqueness of solutions under the self-similar form to the space-fractional
diffusion equation. The space-fractional derivative which will be used is the
generalized Riesz-Caputo fractional derivative. Based on the similarity vari-
able η, we have introduced the equation satisfied by the self-similar solutions
for the aforementioned problem. To study the existence and uniqueness of
self-similar solutions for this problem, we have applied some known fixed
point theorems (i.e. Banach’s contraction principle, Schauder’s fixed point
theorem and the nonlinear alternative of Leray-Schauder type).

1. Introduction

Fractional calculus (FC) is a mathematical analysis subject which deals with
different possible approaches of defining fractional order derivatives (FODs) and
integrals (FOIs). The theory of classical (integer order) differential equations
(IODEs) has been then generalized to the broader theory of fractional order dif-
ferential equations (FDEs). For more details on the subject, the reader may refer
to [7, 26, 31].

To define fractional integrals and derivatives, many approaches have been
proposed in the literature, including Riemann-Liouville’s (RL), Hadamard’s, Ca-
puto’s, Riesz’s, Erdelyi-Kober’s approaches, etc. The development of each one of
approches should go through a series of stages ranging from exponential functions
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to special functions. Later, in [23, 24], a new fractional operator which generalized
both the RL and Hadamard operators was introduced by Katugampola. Not long
ago, in [3], a Caputo-type modification of this operator was proposed. This later
is the Caputo type of generalized fractional derivative (CGFD). It represents a
generalization of the Caputo and Caputo-Hadamard FDs. Aleem et al. in [1], pre-
sented a generalisation of the Riesz fractional operator, where this operator covers
as particular cases the classical Riesz fractional derivative. In the same paper, the
authors have also proposed a Caputo-type modification of this operator. This new
fractional derivative (FD) was named as the generalized Riesz-Caputo fractional
derivative (or the Riesz-Caputo generalized fractional derivative (R-CGFD)). In
the same paper, some fundamental results have been introduced and proved.

Different fixed-point theorems have been used by researchers to develop solu-
tions and their existence for non-linear initial value problems (IVPs) and boundary
value problems (BVPs) of fractional differential equations (see [4, 5, 34, 6, 8, 9])

Fractional partial DEs or simply FPDEs can be used for the modelling and
study of many important phenomena in many different fields of science and engi-
neering, such as diffusion processes, damping law, etc. One can find a variety of
applications in [19, 22, 25, 29, 33].

The existence and uniqueness of solutions of non-linear FPDEs have been
studied in many papers including [11, 12, 13, 21, 30].

Generally, for PDEs, we can search for special type solutions known as group-
invariant solutions. As in [14], by solving a reduced system of equations (which
has fewer independent variables compared to the original problem), the group-
invariant solutions can be found. These solutions are also known as self-similar or
scale-invariant solutions which are used to model many processes in mathematics
and engineering’s mechanics. The FPDEs which have self-similar solutions can
easily be reduced to ordinary differential equations (ODEs). This latter process
helps to simplify one’s work on FPDEs.

The idea behind solutions’ self-similarity along with Lie group analysis have
also been applied in FDEs. For example, Luchko and Gorenflo in [27] and Buckwar
in [14] have been discussed the application of Lie group analysis for the equation

∂αu

∂tα
= d

∂βu

∂xβ
, x > 0, t > 0, d > 0, α, β ≥ 0.

They have found a scale-invariant solutions for the fractional ordinary differential
equation (FODE) with a new independent variable η = xt

−α
β . The left and right

sided Erdélyi-Kober derivatives which depend on α, β of this equation and on
the parameter γ of its scaled group are considered. They have derived a general
solution in terms of the generalized Wright function.

Across the literature, one may easily be aware of the existence of plenty of
research works on fractional (space, time and space-time) diffusion equations by
using the similarity method. For more details, the reader may check [10, 17, 28].

In this paper, we discuss the existence, uniqueness and main properties of the
solution of the following space-fractional diffusion equation, which is

∂u(x, t)
∂t

= ∂α,ρu(x, t)
∂|x|α

, (x, t) ∈ [0, X]× [t0,∞[, 1 < α ≤ 2, (1)
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under the following self-similar form

u(x, t) = tβf

(
x

t
1
αρ

)
with (x, t) ∈ [0, X]× [t0,∞[, (2)

where u(x, t) is a scalar function of space and time variables (x, t) ∈ [0, X]× [t0,∞[
with X, t0 > 0, ∂α,ρ

∂|x|α is the R-CGFD of order α with ρ > 0 and which is the main
motivation of the present research, the "basic profile" f in (2) is not known in
advance and is to be identified and β ∈ R is a constant chosen so that the solutions
exist.

The rest of this paper is structured as follows. In the next section, we recall
preliminaries related to some definitions of fractional integrals and derivatives,
theorems and lemmas of FC. The main results are given in section 3. Finally, this
paper is ended with a conclusion.

2. Preliminaries and definitions

In this section, we give the necessary definitions, notations, lemmas and the-
orems from FC theory which will be used through the whole of this work. Let
J = [0, µ] be a finite interval of R with µ > 0. We denote by C(J,R) the Banach
space of all continuous functions g : [0, µ]→ R with the norm

‖g‖∞ = sup
η∈[0,µ]

|g(η)|.

We denote also Cn(J,R) with n ∈ N0 the set of mappings having n times contin-
uously differentiable on J .

As in [26], for 1 ≤ p ≤ ∞ and c ∈ R, consider the space Xp
c [a, b] as follows

Xp
c [a, b] =

{
g : [a, b]→ R : ‖g‖Xpc =

(∫ b

a

|scg(s)|p ds
s

) 1
p

<∞
}
,

for 1 ≤ p <∞, c ∈ R. For the case p =∞,

‖g‖X∞c = ess sup
a≤η≤b

[ηc|g(η)|], c ∈ R.

Definition 2.1 (Generalized fractional integrals. (see [2, 23]))
The left-sided and right-sided of the generalized fractional integrals of order α > 0
and parameter ρ > 0 of an integrable function g : [0, µ]→ R with µ > 0 are defined
respectively by

(Iα,ρ0+ g)(η) = ρ1−α

Γ(α)

∫ η

0
sρ−1(ηρ − sρ)α−1g(s)ds, η > 0 (3)

and
(Iα,ρµ− g)(η) = ρ1−α

Γ(α)

∫ µ

η

sρ−1(sρ − ηρ)α−1g(s)ds, η < µ, (4)

where Γ(.) is Euler’s gamma function defined as

Γ(α) =
∫ +∞

0
xα−1e−xdx, α ∈ C, Re(α) > 0.
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Definition 2.2 (CGFDs. (see [2]))
Let µ > 0, ρ be a positive real number, α ∈ R+ and n ∈ N be such that α ∈
(n− 1, n), and g : [0, µ]→ R a function of class Cn. The left-sided and right-sided
of CGFDs of order α and parameter ρ are defined respectively by

CDα,ρ
0+ g(η) = ρα−n+1

Γ(n− α)

∫ η

0
sρ−1(ηρ − sρ)n−α−1

(
s1−ρ d

ds

)n
g(s)ds (5)

and

CDα,ρ
µ− g(η) = ρα−n+1

Γ(n− α)

∫ µ

η

sρ−1(sρ − ηρ)n−α−1
(
− s1−ρ d

ds

)n
g(s)ds. (6)

The next two results justify the definition 2.2, since the Caputo-type of the
generalized fractional derivative is an inverse operation of the generalized fractional
integral.

Theorem 2.3 (see [2])
Let α > 0 be such that α ∈ (n − 1, n), n ∈ N and ρ > 0. Given a function
g ∈ Cn[0, µ], we have

(Iα,ρ0+
CDα,ρ

0+ g)(η) = g(η)−
n−1∑
k=0

g(k)(0)
k!

(ηρ
ρ

)k
,

and

(Iα,ρµ−
CDα,ρ

µ− g)(η) = g(η)−
n−1∑
k=0

(−1)kg(k)(µ)
k!

(µρ − ηρ
ρ

)k
.

The following theorem yields the compositions of the fractional integral op-
erators Iα,ρ0+ and Iα,ρµ− with the fractional differential operators CDα,ρ

0+ and CDα,ρ
µ− ,

respectively.

Theorem 2.4 (see [32])
Let α, β, ρ ∈ R be such that α > β and β > 0. If g ∈ Xp

c [0, µ], then for ρ > 0,

(CDβ,ρ
0+ I

α,ρ
0+ g)(η) = (Iα−β,ρ0+ g)(η),

(CDβ,ρ
µ− I

α,ρ
µ− g)(η) = (Iα−β,ρµ− g)(η).

Definition 2.5 (Riesz-generalized fractional integral. (see [1]))
Let g(η) ∈ Xp

c (0, µ) and α, ρ > 0. Then, for 0 ≤ η ≤ µ, the generalized Riesz type
integral is defined as

(RG0Iα,ρµ g)(η) = ρ1−α

Γ(α)

∫ µ

0
sρ−1|(sρ − ηρ)|α−1g(s)ds

= (Iα,ρ0+ g)(η) + (Iα,ρµ− g)(η),
(7)

where Iα,ρ0+ and Iα,ρµ− are left and right sided generalized fractional integrals, defined
in (3) and (4), respectively.
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Now, we define the R-CGFD.

Definition 2.6 (Riesz-CGFD (see [1]))
Let α, ρ ∈ C with Re(α),Re(ρ) > 0 and g(η) ∈ Xp

c (0, µ) for 0 ≤ η ≤ µ. Then the
R-CGFD is defined as

RC
0D

α,ρ
µ g(η) = ρα−n+1

Γ(n− α)

∫ µ

0
sρ−1|(ηρ − sρ)|n−α−1

(
s1−ρ d

ds

)n
g(s)ds

= 1
2(CDα,ρ

0+ + (−1)n CDα,ρ
µ− )g(η),

where CDα,ρ
0+ and CDα,ρ

µ− are left and right sided of CGFDs which defined in (5)
and (6), respectively.

Lemma 2.7 (see [1])
Let g ∈ ACnδ [0, µ] with 0 ≤ η ≤ µ. Then the following relation is true

RG
0I
α,ρ
µ

RC
0D

α,ρ
µ g(η) = 1

2(Iα,ρ0+
CDα,ρ

0+ + (−1)nIα,ρµ−
CDα,ρ

µ− )g(η). (8)

Remark 2.8
If 1 < α ≤ 2 and ρ > 0, then for g(η) ∈ C[0, µ], the relation illustrated in (8)
becomes

RG
0I
α,ρ
µ

RC
0D

α,ρ
µ g(η) = g(η)− 1

2 [g(0) + g(µ)]− ηρ

2ρ [g′(0) + g′(µ)] + µρ

2ρg
′(µ).

Remark 2.9
If 1 < α ≤ 2, then, for all g ∈ C[0, µ], and by Remark 2.8, Theorem 2.4, we have

RG
0I
α−1,ρ
µ

RC
0D

α,ρ
µ g(η)

= d

dη
RG

0I
α,ρ
µ

RC
0D

α,ρ
µ g(η)

= d

dη

[
g(η)− 1

2 [g(0) + g(µ)] + µρ

2ρg
′(µ)− ηρ

2ρ [g′(0) + g′(µ)]
]

= g′(η)− [g′(0) + g′(µ)]
2 ηρ−1.

(9)

Furthermore, if g′(0) + g′(µ) = 0, then
RG

0I
α−1,ρ
µ

RC
0D

α,ρ
µ g(η) = g′(η). (10)

In addition, for each η ∈ [0, µ], using the fact that Γ(α+ 1) = αΓ(α), we obtain

|g′(η)| = |RG0Iα−1,ρ
µ

RC
0D

α,ρ
µ g(η)|

=
∣∣∣∣ ρ2−α

Γ(α− 1)

∫ µ

0
ζρ−1|(ζρ − ηρ)|α−2 RC

0D
α,ρ
µ g(ζ)dζ

∣∣∣∣
≤ ρ2−α

Γ(α− 1)

∫ µ

0
ζρ−1|(ζρ − ηρ)|α−2 |RC0Dα,ρ

µ g(ζ)|dζ
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≤ ρ2−α

Γ(α− 1)

∫ η

0
ζρ−1(ηρ − ζρ)α−2 |RC0Dα,ρ

µ g(ζ)|dζ

+ ρ2−α

Γ(α− 1)

∫ µ

η

ζρ−1(ζρ − ηρ)α−2 |RC0Dα,ρ
µ g(ζ)|dζ

≤ sup0≤η≤µ|RC0Dα,ρ
µ g(η)|

[
ρ2−α

Γ(α− 1)

∫ η

0
ζρ−1(ηρ − ζρ)α−2dζ

+ ρ2−α

Γ(α− 1)

∫ µ

η

ζρ−1(ζρ − ηρ)α−2dζ

]
(11)

= ‖RC0Dα,ρ
µ g‖∞

[
−ρ2−α

ρ(α− 1)Γ(α− 1)

∫ η

0

d

dζ
((ηρ − ζρ)α−1)

+ ρ2−α

ρ(α− 1)Γ(α− 1)

∫ µ

η

d

dζ
((ζρ − ηρ)α−1)

]
= ‖RC0Dα,ρ

µ g‖∞
{ρ1−α

Γ(α)
[
− [(ηρ − ζρ)α−1]η0 + [(ζρ − ηρ)α−1]µη

]}
= (ηρ(α−1) + (µρ − ηρ)α−1)

ρα−1Γ(α) ‖RC0Dα,ρ
µ g‖∞

≤ 2µρ(α−1)

ρα−1Γ(α)‖
RC

0D
α,ρ
µ g‖∞.

Definition 2.10 (Equicontinuity)
Let E be a Banach space. We call a part P in C(E) is equicontinuous if

∀ε > 0 ∃δ > 0 ∀u, v ∈ E ∀A ∈ P ‖u− v‖ < δ ⇒ ‖A(u)−A(v)‖ < ε.

Definition 2.11 (Complete continuity (see [16]))
We say A : E → E is completely continuous if for any bounded subset P of E, the
set A(P ) is relatively compact.

Theorem 2.12 (Arzelà-Ascoli’s Theorem (see [18]))
Let B ⊂ C(E,Rn), where E = [a, b] ⊂ R. B is relatively compact (i.e. B is
compact) if and only if

1. B is uniformly bounded,
2. B is equicontinuous.

Recall that a function f is uniformly bounded in B if there exists a constant
M > 0 such that

‖f‖ = sup
x∈E
|f(x)| ≤M for all f ∈ B.

Lemma 2.13 (The generalized Gronwall inequality (see [1]))
Let α > 0, 0 < η < µ and assume that g(η), u1(η) and u2(η) are locally integrable,
nonnegative and non-decreasing functions. Also, assume that v1(η) and v2(η) are
a non-decreasing continuous functions such that 0 ≤ v1(η), v2(η) ≤ L, where L is
a constant.
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Furthermore, if g(η) satisfies the inequality

g(η) ≤ u1(η) + ρ1−αv1(η)
∫ η

0
ζρ−1(ηρ − ζρ)α−1g(ζ)dζ

+ u2(η) + ρ1−αv2(η)
∫ µ

η

ζρ−1(ζρ − ηρ)α−1g(ζ)dζ,

then the following inequality holds true

g(η) ≤ (u1(η) + u2(η))Eα,1(ρ−αv2(η)Γ(α)(µρ − ηρ)α)

× Eα,1(ρ−αv1(η)Γ(α)ηρα),

where Eα,1(.) is a Mittag-Leffler function.

Theorem 2.14 (Banach’s Fixed Point Theorem (see [15]))
Let E be a Banach space and Q : E → E is a contraction mapping. Then Q has a
fixed point, i.e.

∃!x ∈ E : Qx = x.

Theorem 2.15 (Schauder’s Fixed Point Theorem (see [20]))
Let E be a Banach space, and let P be a closed, convex and non-empty subset of
E. Let T : PtoP be a continuous mapping such that T (P ) is a relatively compact
subset of E. Then T has at least one fixed point in P .

Theorem 2.16 (Nonlinear alternative of Leray-Schauder type (see [20]))
Let E be a Banach space with P ⊂ E be a closed and convex. U be an open subset
of P with 0 ∈ U . Assume that A : U → P is a continuous, compact (that is, A(U)
is a relatively compact subset of P ) map. Then either;

(i) A has a fixed point in U ; or
(ii) there is a point u ∈ ∂U and σ ∈ (0, 1) with u = σA(u).

3. The main results

3.1. Statement of the problem

In this subsection, we consider the following problem of the space-fractional
diffusion equation

∂u(x, t)
∂t

= ∂α,ρu(x, t)
∂|x|α

, (x, t) ∈ [0, X]× [t0,∞[,

u(0, t) + u(X, t) = tβM, t ∈ [t0,∞[,
∂u(0, t)
∂x

+ ∂u(X, t)
∂x

= 0, t ∈ [t0,∞[,

where ∂α,ρu
∂|x|α the R-CGFD of order α (1 < α ≤ 2), and β,M ∈ R. Under the

self-similar solution form

u(x, t) = tβf
( x

t
1
αρ

)
, β ∈ R. (12)

We should first deduce the equation satisfied by the function f in (12).
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Theorem 3.1
Let α, β, ρ ∈ R provided that 1 < α ≤ 2, ρ > 0 and (x, t) ∈ [0, X] × [t0,∞[ for
some X, t0 > 0. Then the transformation

u(x, t) = tβf(η) with η = x

t
1
αρ

,

reduces the partial fractional differential equation (1) to the ordinary differential
equation of fractional order of the form

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρηf
′(η), η ∈ [0, µ],

where µ = Xt
−1
αρ

0 .

Proof. Let η = x

t
1
αρ

. From (12), we obtain

∂u(x, t)
∂t

= βtβ−1f(η) + tβ
[
− 1
αρ
t−

1
αρ−1xf ′(η)

]
= tβ−1

[
βf(η)− 1

αρ
ηf ′(η)

]
.

(13)

Furtheremore, for 1 < α ≤ 2, ρ > 0, by the definition 2.6 of the R-CGFD, equation
(12) and by putting ζ = s

t
1
αρ
, we get

∂α,ρu(x, t)
∂|x|α

= tβρα−n+1

Γ(n− α)

∫ X

0
|(xρ − sρ)|n−α−1sρ−1

(
s1−ρ d

ds

)n
f
( s

t
1
αρ

)
ds

= tβ

2 (CDα,ρ
0+ + CDα,ρ

X−)f
( x

t
1
αρ

)
= tβρα−n+1

2Γ(n− α)

∫ x

0
(xρ − sρ)n−α−1sρ−1

(
s1−ρ d

ds

)n
f
( s

t
1
αρ

)
ds

+ tβρα−n+1

2Γ(n− α)

∫ X

x

(sρ − xρ)n−α−1sρ−1
(
s1−ρ d

ds

)n
f
( s

t
1
αρ

)
ds

= tβ+ 1
αρ ρα−n+1

2Γ(n− α)

×
∫ η

0
(xρ − (ζt

1
αρ )ρ)n−α−1(ζt

1
αρ )ρ−1

(
(ζt

1
αρ )1−ρ d

t
1
αρ dζ

)n
f(ζ)dζ

+ tβ+ 1
αρ ρα−n+1

2Γ(n− α) (14)

×
∫ µ

η

((ζt
1
αρ )ρ − xρ)n−α−1(ζt

1
αρ )ρ−1

(
(ζt

1
αρ )1−ρ d

t
1
αρ dζ

)n
f(ζ)dζ
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= tβ+ 1
αρ ρα−n+1

2Γ(n− α)

×
∫ η

0
t

1
α [n−α−1]+ 1

αρ [ρ−1+n(1−ρ)−n](ηρ − ζρ)n−α−1ζρ−1
(
ζ1−ρ d

dζ

)n
f(ζ)dζ

+ tβ+ 1
αρ ρα−n+1

2Γ(n− α)

×
∫ µ

η

t
1
α [n−α−1]+ 1

αρ [ρ−1+n(1−ρ)−n](ζρ − ηρ)n−α−1ζρ−1
(
ζ1−ρ d

dζ

)n
f(ζ)dζ

= tβ−1 ρα−n+1

Γ(n− α)

∫ µ

0
|(ηρ − ζρ)|n−α−1ζρ−1

(
ζ1−ρ d

dζ

)n
f(ζ)dζ

= tβ−1 RC
0D

α,ρ
µ f(η).

By substituting (13) and (14) in (1), we get the following equation

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρ
ηf ′(η), η ∈ [0, µ],

where µ = Xt
−1
αρ

0 .

3.2. Existence and uniqueness results of the basic profile

In this subsection, to study the following problem, we will need the results in
subsection 3.1 along with Theorem 3.1,

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρ
ηf ′(η), 1 < α ≤ 2, η ∈ [0, µ], (15)

with the conditions

f(0) + f(µ) = M, f ′(0) + f ′(µ) = 0 (16)

where β ∈ R and ρ, µ > 0.
In what follows, to derive the principal theorems, we will need the following

lemmas.

Lemma 3.2
Let µ > 0, we define

E = {f ∈ C[0, µ] : f ′(0) + f ′(µ) = 0}. (17)

Then (E, ‖.‖∞) is a Banach space.

Proof. Let µ be a positive parameter. It is obvious that the space E with the norm
‖.‖∞ is a subspace of the Banach space C[0, µ]. So, to show that E is a Banach
space, it is enough to demonstrate that this later is closed in C[0, µ].
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Let (fn)n∈N ∈ E be a real sequence such that limn→∞fn = f in C[0, µ]. Then
we demonstrate that f ∈ E. Let η, υ ∈ [0, µ]× [0, µ]. We have

d

dη
[fn(η)− f(η)] = d

dη
fn(η)− d

dη
f(η),

d

dυ
[fn(υ)− f(υ)] = d

dυ
fn(υ)− d

dυ
f(υ).

Since fn is continuous, we get
lim
n→∞

d

dη
fn(η) = d

dη
f(η),

lim
n→∞

d

dυ
fn(υ) = d

dυ
f(υ)

for all η, υ ∈ [0, µ]× [0, µ].

Then

sup
η

lim
n→∞

∣∣∣ d
dη
fn(η)− d

dη
f(η)

∣∣∣ = lim
n→∞

sup
η

∣∣∣ d
dη
fn(η)− d

dη
f(η)

∣∣∣ = 0,

and

sup
υ

lim
n→∞

∣∣∣ d
dυ
fn(υ)− d

dυ
f(υ)

∣∣∣ = lim
n→∞

sup
υ

∣∣∣ d
dυ
fn(υ)− d

dυ
f(υ)

∣∣∣ = 0.

This implies that 
lim
n→∞

∥∥∥ d
dη
fn(η)− d

dη
f(η)

∥∥∥
∞

= 0,

lim
n→∞

∥∥∥ d
dυ
fn(υ)− d

dυ
f(υ)

∥∥∥
∞

= 0.

Thus,

lim
n→∞

∥∥∥ d
dη
fn(η)− d

dη
f(η) + d

dυ
fn(υ)− d

dυ
f(υ)

∥∥∥
∞

≤ lim
n→∞

∥∥∥ d
dη
fn(η)− d

dη
f(η)

∥∥∥
∞

+ lim
n→∞

∥∥∥ d
dυ
fn(υ)− d

dυ
f(υ)

∥∥∥
∞

≤ 0.

Therefore

lim
n→∞

∥∥∥ d
dη
fn(η)− d

dη
f(η) + d

dυ
fn(υ)− d

dυ
f(υ)

∥∥∥
∞

= 0.

Then, for η = 0 and υ = µ, we have also

lim
n→∞

( d
dη
fn

)
(0) + lim

n→∞

( d
dυ
fn

)
(υ) = f ′(0) + f ′(µ) = 0,

then f ∈ E. Consequently, the subspace E is closed in C[0, µ]. Hence (E, ‖.‖∞)
is a Banach space.
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In the next lemma, we will give the solution of problem (15)–(16).

Lemma 3.3
Let α, β, ρ, µ ∈ R provided that 1 < α ≤ 2 and ρ, µ > 0. For a given f, f ′,
RC

0D
α,ρ
µ f ∈ C[0, µ]. Then the problem (15)–(16) is equivalent to the following

integral equation

f(η) = w + ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

for all η ∈ [0, µ], where

w = M

2 −
µρ

2ρf
′(µ). (18)

Proof. First, by applying the Riesz-generalized fractional integral RG0 Iα,ρµ defined
in (7) to both sides of equation (15), we obtain

RG
0I
α,ρ
µ

RC
0D

α,ρ
µ = RG

0I
α,ρ
µ

(
βf(η)− 1

αρ
ηf ′(η)

)
. (19)

From Lemma 2.7 and Remark 2.8, we get

RG
0I
α,ρ
µ

RC
0D

α,ρ
µ f(η) = f(η)− 1

2 [f(0) + f(µ)]− ηρ

2ρ [f ′(0) + f ′(µ)] + µρ

2ρf
′(µ).

Then the fractional integral equation (19), can be re-written as follows

f(η) = RG
0I
α,ρ
µ

(
βf(η)− 1

αρ
ηf ′(η)

)
+ 1

2[f(0) + f(µ)]

+ ηρ

2ρ [f ′(0) + f ′(µ)]− µρ

2ρf
′(µ).

(20)

Applying (16) to (20) yields

f(η) = ρ1−α

Γ(α)

∫ µ

0
|(ζρ − ηρ)|α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
+ M

2 −
µρ

2ρf
′(µ).

Then, according to (18), the problem (15)–(16) is equivalent to

f(η) = w + ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ.
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Lemma 3.4
Let T be an integral operator defined by

Tf(η) = w + ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ.

(21)

provided that the supremum norm is

‖Tf‖∞ = sup
0≤η≤µ

|Tf(η)|.

Then, T maps E into itself (T : E → E).

Proof. Let 1 < α ≤ 2 and f ∈ E satisfy

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρ
ηf ′(η),

where E is the Banach space defined by (17). Then, from (21), we have

d

dη
Tf(η) = d

dη

[
w + RG

0I
α,ρ
µ (βf(η)− 1

αρ
ηf ′(η))

]
= d

dη

[
RG

0I
α,ρ
µ (βf(η)− 1

αρ
ηf ′(η))

]
= RG

0I
α−1,ρ
µ

(
βf(η)− 1

αρ
ηf ′(η)

)
= RG

0I
α−1,ρ
µ

RG
0D

α,ρ
µ f(η).

It follows from (9) and (10) in Remark 2.9 that

d

dη
Tf(η) = RG

0I
α−1,ρ
µ

RC
0D

α,ρ
µ f(η) = f ′(η).

Therefore
d

dη
Tf(0) + d

dη
Tf(µ) = f ′(0) + f ′(µ) = 0.

Hence, T (E) ⊂ E.

Next, we will deal with the existence and uniqueness of solution for (15)–(16).
Firstly, using Banach’s Fixed Point Theorem, we will derive the conditions of

the solutions’ existence.

Theorem 3.5
Let α, β, ρ, µ ∈ R, provided that 1 < α ≤ 2, ρ > 0 and µ ∈

(
0, (ρ

αΓ(α+1)
2 )

1
ρ(α−1)+1

)
.

If
2µρα|β|

ραΓ(α+ 1)− 2µρ(α−1)+1 < 1. (22)

Then, the problem (15)–(16) has a unique solution on [0, µ].



Existence results of self-similar solutions of FDE [61]

Proof. First, we will transform the problem (15)–(16) into a fixed point problem.
By Lemma 3.3, we define the operator T : E → E as follows

Tf(η) = w + ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ.

(23)

Since the problem (15)–(16) can be written in the form of the fractional integral
equation (23), the fixed point of T is to be considered as a solution for (15)–(16).

Let f,G ∈ E, provided that

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρ
ηf ′(η),

RC
0D

α,ρ
µ G(η) = βG(η)− 1

αρ
ηG′(η).

Then

Tf(η)− TG(η)

= ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
β(f(ζ)−G(ζ))− ζ

αρ
(f ′(ζ)−G′(ζ))

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
β(f(ζ)−G(ζ))− ζ

αρ
(f ′(ζ)−G′(ζ))

)
dζ.

Therefore
|Tf(η)− TG(η)|

≤ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1|RC0Dα,ρ

µ f(ζ)− RC
0D

α,ρ
µ G(ζ)|dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1|RC0Dα,ρ
µ f(ζ)− RC

0D
α,ρ
µ G(ζ)|dζ.

(24)

Moreover, for each η ∈ [0, µ], we have

|RC0Dα,ρ
µ f(η)− RC

0D
α,ρ
µ G(η)| =

∣∣∣β(f(η)−G(η))− η

αρ
(f ′(η)−G′(η))

∣∣∣
≤ |β||f(η)−G(η)|+ µ

αρ
|f ′(η)−G′(η)|.

Using (11) in Remark 2.9, we find

‖RC0Dα,ρ
µ f − RC

0D
α,ρ
µ G‖∞ ≤ |β|‖f −G‖∞ + 2µρ(α−1)+1

ραΓ(α+ 1)‖
RC

0D
α,ρ
µ f − RC

0D
α,ρ
µ G‖∞,

which yields[
1− 2µρ(α−1)+1

ραΓ(α+ 1)

]
‖RC0Dα,ρ

µ f − RC
0D

α,ρ
µ G‖∞ ≤ |β|‖f −G‖∞.
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As ραΓ(α+ 1)− 2µρ(α−1)+1 > 0, we get

‖RC0Dα,ρ
µ f − RC

0D
α,ρ
µ G‖∞ ≤

|β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1 ‖f −G‖∞.

Thus, (24) can be re-written as

‖Tf − TG‖∞

≤ |β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1 ‖f −G‖∞

×
[
ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1dζ + ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1dζ

]
≤
( 2µρα

ραΓ(α+ 1)

)( |β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1

)
‖f −G‖∞

≤ 2µρα|β|
ραΓ(α+ 1)− 2µρ(α−1)+1 ‖f −G‖∞.

By (22), T is a contraction mapping. Using the principle of Banach’s Fixed Point
Theorem 2.14, we deduce that T admits a unique fixed point which is a unique
solution of the problem (15)–(16) on [0, µ].

Secondly, using the fixed point theorem of Schauder, we will derive the condi-
tions of the solutions’ existence.

Theorem 3.6
Let ρ, µ > 0, β ∈ R and 1 < α ≤ 2. If

µρ(α−1)+1 + µρα|β|
ραΓ(α+ 1) <

1
2 , (25)

then, the problem (15)–(16) has at least one solution on [0, µ].

Proof. Let the operator T be defined in (23). We have already transformed the
problem (15)–(16) into a fixed point problem

Tf(η) = w + ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
(
βf(ζ)− 1

αρ
ζf ′(ζ)

)
dζ.

We shall show that T satisfies the assumption of Schauder’s Fixed Point Theorem
2.15. The proof will be given in three claims.

Claim 1: T is a continuous operator.
Let (fn)n∈N be a sequence provided that limn→∞ fn = f in E. Then, for each
η ∈ [0, µ], we have
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|Tfn(η)− Tf(η)|

≤ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

∣∣∣β(fn(ζ)− f(ζ))− ζ

αρ
(f ′n(ζ)− f ′(ζ))

∣∣∣dζ (26)

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
∣∣∣β(fn(ζ)− f(ζ))− ζ

αρ
(f ′n(ζ)− f ′(ζ))

∣∣∣dζ,
where

RC
0D

α,ρ
µ fn(η) = βfn(η)− η

αρ
f ′n(η) and RC

0D
α,ρ
µ f(η) = βf(η)− η

αρ
f ′(η).

We have

|RC0Dα,ρ
µ fn(η)− RC

0D
α,ρ
µ f(η)| =

∣∣∣β(fn(η)− f(η))− η

αρ
(f ′n(η)− f ′(η))

∣∣∣
≤ |β||fn(η)− f(η)|+ µ

αρ
|f ′n(η)− f ′(η)|.

Using (11) in Remark 2.9, we find

‖RC0Dα,ρ
µ fn−RC0Dα,ρ

µ f‖∞ ≤ |β|‖fn−f‖∞ + 2µρ(α−1)+1

ραΓ(α+ 1)‖
RC

0D
α,ρ
µ fn−RC0Dα,ρ

µ f‖∞,

which yields[
1− 2µρ(α−1)+1

ραΓ(α+ 1)

]
‖RC0Dα,ρ

µ fn − RC
0D

α,ρ
µ f‖∞ ≤ |β|‖fn − f‖∞.

As ραΓ(α+ 1)− 2µρ(α−1)+1 > 2µρα|β| > 0, we get

‖RC0Dα,ρ
µ fn − RC

0D
α,ρ
µ f‖∞ ≤

|β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1 ‖fn − f‖∞.

Because fn → f as n → ∞, then we get RC
0D

α,ρ
µ fn → RC

0D
α,ρ
µ f as n → ∞ for

every η ∈ [0, µ].
Now let S0 > 0, such that for every η ∈ [0, µ], we have

|RC0Dα,ρ
µ fn| ≤ S0 and |RC0Dα,ρ

µ f | ≤ S0.

Then, we have

|Tfn(η)− Tf(η)|

≤ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

∣∣∣β(fn(ζ)− f(ζ))− ζ

αρ
(f ′n(ζ)− f ′(ζ))

∣∣∣dζ
+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
∣∣∣β(fn(ζ)− f(ζ))− ζ

αρ
(f ′n(ζ)− f ′(ζ))

∣∣∣dζ
≤ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1|RC0Dα,ρ

µ fn(ζ)− RC
0D

α,ρ
µ f(ζ)|dζ
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+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1|RC0Dα,ρ
µ fn(ζ)− RC

0D
α,ρ
µ f(ζ)|dζ

≤ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1[|RC0Dα,ρ

µ fn(ζ)|+ |RC0Dα,ρ
µ f(ζ)|]dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1[|RC0Dα,ρ
µ fn(ζ)|+ |RC0Dα,ρ

µ f(ζ)|]dζ

≤ 2S0ρ
1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1dζ + 2S0ρ

1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1dζ.

Since the functions

ζ → 2S0ρ
1−α

Γ(α) [(ηρ − ζρ)α−1ζρ−1] and ζ → 2S0ρ
1−α

Γ(α) [(ζρ − ηρ)α−1ζρ−1]

are integrable on [0, η] and [η, µ] respectively for each η ∈ [0, µ], then the Lebesgue
dominated convergence theorem and (26) implies that|Tfn(η) − Tf(η)| → 0 as
n→∞. Thus

lim
n→∞

‖Tfn − Tf‖∞ = 0.

Consequently, T is continuous.
Claim 2: According to (25), let

R ≥
(

1 + 2µρα|β|
ραΓ(α+ 1)− 2(µρ(α−1)+1 + µρα|β|)

)
|w|,

and define a subset

ER = {f ∈ E : ‖f‖∞ ≤ R, R > 0}.

Thus, ER is a closed, bounded and convex subset of E.
Let f ∈ ER and T be the integral operator defined in (23). Then, we prove

that T (ER) ⊂ ER. In fact, by (11) in Remark 2.9, we have

|RC0Dα,ρ
µ f(η)| =

∣∣∣βf(η)− η

αρ
f ′(η)

∣∣∣ ≤ |β||f(η)|+ µ

αρ
|f ′(η)|.

This implies that

‖RC0Dα,ρ
µ f‖∞ ≤

|β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1R. (27)
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Therefore

|Tf(η)| ≤ |w|+ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ
+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ
≤ |w|+ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1|RC0Dα,ρ

µ f(ζ)|dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1|RC0Dα,ρ
µ f(ζ)|dζ

≤ |w|+ |β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1R

[ 2µρα

ραΓ(α+ 1)

]
≤ |w|+ 2µρα|β|R

ραΓ(α+ 1)− 2µρ(α−1)+1

≤
|w|
(

1 + 2µρα|β|
ραΓ(α+ 1)− 2(µρ(α−1)+1 + µρα|β|)

)
(

1 + 2µρα|β|
ραΓ(α+ 1)− 2(µρ(α−1)+1 + µρα|β|)

)
+ 2µρα|β|R
ραΓ(α+ 1)− 2µρ(α−1)+1

≤ R(ραΓ(α+ 1)− 2(µρ(α−1)+1 + µρα|β|))
ραΓ(α+ 1)− 2µρ(α−1)+1

+ 2µρα|β|R
ραΓ(α+ 1)− 2µρ(α−1)+1

≤ R.

Thus T (ER) ⊂ ER, hence T (ER) is bounded.
Claim 3: T (ER) is relatively compact.

Let f ∈ ER, η1, η2 ∈ [0, µ] with η1 < η2, by (27), we get

|Tf(η1)− Tf(η2)|

=
∣∣∣∣ρ1−α

Γ(α)

∫ η1

0
(ηρ1 − ζρ)α−1ζρ−1

(
βf(ζ)− ζ

αρ
f ′(ζ)

)
dζ

+ ρ1−α

Γ(α)

∫ µ

η1

(ζρ − ηρ1)α−1ζρ−1(βf(ζ)− ζ

αρ
f ′(ζ)

)
dζ

− ρ1−α

Γ(α)

∫ η2

0
(ηρ2 − ζρ)α−1ζρ−1

(
βf(ζ)− ζ

αρ
f ′(ζ)

)
dζ

− ρ1−α

Γ(α)

∫ µ

η2

(ζρ − ηρ2)α−1ζρ−1
(
βf(ζ)− ζ

αρ
f ′(ζ)

)
dζ

∣∣∣∣
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≤ ρ1−α

Γ(α)

∫ η1

0
|[ζρ−1(ηρ1 − ζρ)α−1 − ζρ−1(ηρ2 − ζρ)α−1]| |RC0Dα,ρ

µ f(ζ)|dζ

+ ρ1−α

Γ(α)

∫ µ

η2

|[ζρ−1(ζρ − ηρ1)α−1 − ζρ−1(ζρ − ηρ2)α−1]| |RC0Dα,ρ
µ f(ζ)|dζ

+ ρ1−α

Γ(α)

∫ η2

η1

ζρ−1(ηρ2 − ζρ)α−1|RC0Dα,ρ
µ f(ζ)|dζ

+ ρ1−α

Γ(α)

∫ η2

η1

ζρ−1(ζρ − ηρ1)α−1|RC0Dα,ρ
µ f(ζ)|dζ (28)

≤ ρ1−α

Γ(α)
|β|ραΓ(α+ 1)

ραΓ(α+ 1)− 2µρ(α−1)+1R

×
(∫ η1

0
|[ζρ−1(ηρ1 − ζρ)α−1 − ζρ−1(ηρ2 − ζρ)α−1]|dζ

+
∫ µ

η2

|[ζρ−1(ζρ − ηρ1)α−1 − ζρ−1(ζρ − ηρ2)α−1]|dζ

+
∫ η2

η1

ζρ−1(ηρ2 − ζρ)α−1dζ +
∫ η2

η1

ζρ−1(ζρ − ηρ1)α−1dζ

)
.

We have

ζρ−1(ηρ1 − ζρ)α−1 − ζρ−1(ηρ2 − ζρ)α−1 = − 1
αρ

d

dζ
[(ηρ1 − ζρ)α − (ηρ2 − ζρ)α]

and

ζρ−1(ζρ − ηρ1)α−1 − ζρ−1(ζρ − ηρ2)α−1 = 1
αρ

d

dζ
[(ζρ − ηρ1)α − (ζρ − ηρ2)α],

then ∫ η1

0
|[ζρ−1(ηρ1 − ζρ)α−1 − ζρ−1(ηρ2 − ζρ)α−1]|dζ

≤ 1
αρ

[(ηρ2 − η
ρ
1)α + (ηρα2 − η

αρ
1 )]

(29)

and ∫ µ

η2

|[ζρ−1(ζρ − ηρ1)α−1 − ζρ−1(ζρ − ηρ2)α−1]|dζ

≤ 1
αρ

[(µρ − ηρ1)α − (ηρ2 − η
ρ
1)α − (µρ − ηρ2)α],

(30)

we have also∫ η2

η1

ζρ−1(ηρ2 − ζρ)α−1dζ = − 1
αρ

[(ηρ2 − ζρ)α]η2
η1

= 1
αρ

(ηρ2 − η
ρ
1)α, (31)

and ∫ η2

η1

ζρ−1(ζρ − ηρ1)α−1dζ = 1
αρ

[(ζρ − ηρ1)α−1]η2
η1

= 1
αρ

(ηρ2 − η
ρ
1)α. (32)
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By substituting (29), (30), (31) and (32) in (28), we obtain

|Tf(η1)− Tf(η2)| ≤ |β|R
ραΓ(α+ 1)− 2µρ(α−1)+1

× [(µρ − ηρ1)α + 2(ηρ2 − η
ρ
1)α + (ηρα2 − η

αρ
1 )− (µρ − ηρ2)α].

So, the right-hand side of the above inequality tends to zero as η2 → η1. Hence,
we obtain that T (ER) is equicontinuous. Therefore, combining claims 1 to 3 and
by the means of the Ascoli-Arzela Theorem 2.12, we get that T : ER → ER is
continuous and relatively compact. As a consequence, Schauder’s Fixed Point
Theorem assures the existence of at least one fixed point of operator (23) which is
the solution of the problem (15)–(16).

Finally, using the fixed point theorem of Leray-Schauder, we will derive the
conditions of the solutions’ existence.

Theorem 3.7
Let α, β, ρ, µ ∈ R, provided that 1 < α ≤ 2, ρ > 0 and µ ∈

(
0, (ρ

αΓ(α+1)
2

) 1
ρ(α−1)+1 ).

Then, the problem (15)–(16) admits at least one solution on [0, µ].

Proof. Consider the operator T defined in (23). Then we shall show that all as-
sumption of Leray-Schauder Fixed Point Theorem 2.16 are satisfied by the operator
T . The proof will be divided to four claims.

Claim 1: It is clear that T is continuous.
Claim 2: T maps bounded sets into bounded sets in E.

Actually, it is enough to show that for any θ > 0, there exists N > 0 such that for
each f ∈ Dθ = {f ∈ E : ‖f‖∞ ≤ θ}, we have ‖Tf‖∞ ≤ N . Let f ∈ Dθ for each
η ∈ [0, µ], we have

|Tf(η)| ≤ |w|+ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ
+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ (33)

As a similar way as in (27), we have∣∣∣βf(η)− η

αρ
f ′(η)

∣∣∣ ≤ |β|ραΓ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1 θ.

Therefore, (33) implies that

‖Tf‖∞ ≤ |w|+
2µρα|β|

ραΓ(α+ 1)− 2µρ(α−1)+1 θ = N.

Claim 3: It is clear that T maps bounded sets into equicontinuous sets of E.
From Claim1-Claim3, we conclude that T : E → E is continuous and completely
continuous.
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Claim 4: A priori bounds.
Now, we shaw that there exists an open set H ⊂ E with f 6= λT (f) for some
λ ∈ (0, 1) and f ∈ ∂H.

Let f ∈ E and f = λT (f) for 0 < λ < 1. Then, we have for each η ∈ [0, µ],

|f(η)| = |λTf(η)|

=
∣∣∣∣λw + λρ1−α

Γ(α)

∫ µ

0
|(ηρ − ζρ)|α−1ζρ−1

(
βf(ζ)− ζ

αρ
f ′(ζ)

)
dζ

∣∣∣∣
≤ |w|+ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1

∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ
+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1
∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣dζ
≤ |w|+ ρ1−α

Γ(α)

∫ η

0
(ηρ − ζρ)α−1ζρ−1|RC0Dα,ρ

µ f(ζ)|dζ

+ ρ1−α

Γ(α)

∫ µ

η

(ζρ − ηρ)α−1ζρ−1|RC0Dα,ρ
µ f(ζ)|dζ.

(34)

We have

|RC0Dα,ρ
µ f(η)| =

∣∣∣βf(ζ)− ζ

αρ
f ′(ζ)

∣∣∣ ≤ |β| |f(η)|+ µ

αρ
|f ′(η)|

≤ |β| |f(η)|+ 2µρ(α−1)+1

ραΓ(α+ 1) sup
0≤η≤µ

|RC0Dα,ρ
µ f(η)|,

which implies that

sup
0≤η≤µ

|RC0Dα,ρ
µ f(η)| ≤ |β|ραΓ(α+ 1)

ραΓ(α+ 1)− 2µρ(α−1)+1 sup
0≤η≤µ

|f(η)|.

Thus, (34) gives

sup
0≤η≤µ

|f(η)| ≤ |w|+ |β|ραΓ(α+ 1)
Γ(α)[ραΓ(α+ 1)− 2µρ(α−1)+1]

×
[
ρ1−α

∫ η

0
ζρ−1(ηρ − ζρ)α−1 sup

0≤η≤µ
|f(ζ)|dζ

+ ρ1−α
∫ µ

η

ζρ−1(ζρ − ηρ)α−1 sup
0≤η≤µ

|f(ζ)|dζ
]
.

(35)

By using the generalized Gronwall Lemma 2.13, (35) can be re-written as

sup
0≤η≤µ

|f(η)|

≤ |w|Eα,1
(
ρ−αΓ(α)(µρ − ηρ)α

( |β|ραΓ(α+ 1)
Γ(α)(ραΓ(α+ 1)− 2µρ(α−1)+1)

))
× Eα,1

(
ρ−αΓ(α)ηρα

( |β|ραΓ(α+ 1)
Γ(α)(ραΓ(α+ 1)− 2µρ(α−1)+1)

))
,
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which can be simplified to

‖f‖∞ ≤ |w|Eα,1
( (µρ − ηρ)α|β|Γ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1

)
Eα,1

( ηρα|β|Γ(α+ 1)
ραΓ(α+ 1)− 2µρ(α−1)+1

)
= N1.

Let
H = {f ∈ E : ‖f‖∞ < N1 + 1}.

By choosing of H, there is no f ∈ ∂H, such that f = λT (f) for some λ ∈
(0, 1). Consequently, by the nonlinear alternative of Leray-Schauder’s Fixed Point
Theorem 2.16, the operator T has a fixed point f in H, which is a solution to the
problem (15)–(16) on [0, µ].

Now, we prove the principal theorems.

3.3. Existence results to the original problem

In this subsection, we demonstrate the existence and uniqueness of solutions
of the following space-fractional diffusion equation

∂u(x, t)
∂t

= ∂α,ρu(x, t)
∂|x|α

, (x, t) ∈ [0, X]× [t0,∞[,

u(0, t) + u(X, t) = tβM, t ∈ [t0,∞[,

∂u(0, t)
∂x

+ ∂u(X, t)
∂x

= 0, t ∈ [t0,∞[.

(36)

where 1 < α ≤ 2 and β,M ∈ R. Under the self-similar solution form, which is

u(x, t) = tβf(η) with η = x

t
1
αρ

. (37)

Theorem 3.8
Let α, β, ρ,X, t0 ∈ R, provided that 1 < α ≤ 2, ρ, t0 > 0 and

X ∈
(

0,
(
t
ρ(α−1)+1

ρα

0 ραΓ(α+ 1)
2

) 1
ρ(α−1)+1

)
.

If
2Xρα|β|

t0ραΓ(α+ 1)− 2Xρ(α−1)+1t
ρ−1
ρα

0

< 1. (38)

Then, for f ∈ E, (36) has a unique solution in the self-similar form (37).

Proof. The transformation (37) reduces the space-fractional diffusion equation (36)
to the ordinary fractional differential equation of the following form

RC
0D

α,ρ
µ f(η) = βf(η)− 1

αρ
ηf ′(η), (39)
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where

µ = Xt
−1
αρ

0 and X ∈
(

0,
(
t
ρ(α−1)+1

ρα

0 ραΓ(α+ 1)
2

) 1
ρ(α−1)+1

)
,

with the conditions

f(0) + f(µ) = M, f ′(0) + f ′(µ) = 0. (40)

Let f ∈ E be a continuous function. By using (37), the condition (38) is equivalent
to (22), which is

2µρα|β|
ραΓ(α+ 1)− 2µρ(α−1)+1 < 1. (41)

We already proved in Theorem 3.5, the existence and uniqueness of a solution
of the problem (39)–(40) such that (41) is satisfied. As a consequence, there exists
a unique solution of the problem (36) under the self-similar form (37) provided
that (38) holds.

Remark 3.9
When ρ→ 1, (38) reduces to

2Xα|β|
t0Γ(α+ 1)− 2Xα

< 1, (42)

which represents the standard Riesz-Caputo derivative case. When we let α = 2
in (42), we get

2X2|β|
t0Γ(3)− 2X2 < 1, (43)

which gives the integer-order derivative case of the space-fractional diffusion equa-
tion in (1).

Theorem 3.10
Let α, β, ρ,X, t0 ∈ R, provided that 1 < α ≤ 2 and ρ, t0, X > 0. If

Xρ(α−1)+1t
ρ−1
ρα

0 +Xρα|β|
t0ραΓ(α+ 1) <

1
2 . (44)

Then, for f ∈ ER, (36) has at least one solution in the self-similar form (37).

Proof. By considering Theorem 3.6, and using the same steps followed in the proof
of Theorem 3.8, we can prove that (36) has at least one solution in the self-similar
form (37), if (44) is satisfied.

Remark 3.11
When ρ→ 1, (44) reduces to

Xα(1 + |β|)
t0Γ(α+ 1) <

1
2 , (45)
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which represents the standard Riesz-Caputo derivative case. When we let α = 2
in (45), we get

X2(1 + |β|)
t0Γ(3) <

1
2 ,

which gives the integer-order derivative case of the space-fractional diffusion equa-
tion in (1).

Theorem 3.12
Let α, β, ρ,X, t0 ∈ R, provided that 1 < α ≤ 2, ρ, t0 > 0 and let

X ∈
(

0,
(
t
ρ(α−1)+1

ρα

0 ραΓ(α+ 1)
2

) 1
ρ(α−1)+1

)
.

Then, for f ∈ E, (36) has at least one solution in the self-similar form (37).

Proof. Based on Theorem 3.7, and using the same steps followed in the proof of
Theorem 3.8, we can prove the existence of at least one solution of the problem
(36) in the self-similar form (37).

4. Conclusion

In this paper, we have carried out a theoretical study concerning the space-
fractional diffusion equation with anti-periodic boundary conditions. Using special
transformation (the self-similar form (12), we first reduced the considered FPDE to
the FODE (see Theorem 3.1) and then we have applied some fixed point theorems
(Banach’s contraction principle, Schauder’s fixed point theorem and the nonlin-
ear alternative of Leray-Schauder type) to this ODE to prove the existence and
uniqueness results and thus, the existence and uniqueness results to the original
problem. The differential operator we have considered is the Riesz-Caputo gen-
eralized fractional derivative, so the Riesz-Caputo and Riesz-Caputo Hadamard
fractional derivatives can be considered as particular cases from our generalized
problem. This study serves as a new way for the researchers to discuss interesting
problems in fractional differential and integral calculus.
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