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Abstract. Based on the notion of thin sets introduced recently by T. Banakh,
Sz. Głąb, E. Jabłońska and J. Swaczyna we deliver a study of the infinite
single-message transmission protocols. Such protocols are associated with
a set of admissible messages (i.e. subsets of the Cantor cube Zω

2 ).
Using Banach-Mazur games we prove that all protocols detecting errors

are Baire spaces and generic (in particular maximal) ones are not neither
Borel nor meager.

We also show that the Cantor cube can be decomposed to two thin sets
which can be considered as the infinite counterpart of the parity bit. This re-
sult is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński
in 2014.

1. Introduction

We deliver the error-recognition and error-correction approach to single-message
transmission protocols which allows to send infinite messages only (i.e. elements
of the Cantor cube Zω2 ). The background of this note are thin sets introduced
recently in Banakh–Głąb–Jabłonska–Swaczyna [3].

During our consideration we use all four types of natural numbers (including
and excluding both zero and infinity). Thus, in order to avoid misunderstandings,
let us define formally

ω := {0, 1, . . . },
N := {1, 2, . . . },

ω̄ : = ω ∪ {ω},
N̄ : = N ∪ {ω}.
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Now we recall that the Hamming distance [6] is the function which measures
the number of bits where two vectors are different. More precisely, we define
hd:

⋃
n∈N̄ Zn2 × Zn2 → ω̄ by

hd(x, y) := |{k : x(k) 6= y(k)}| x, y ∈ Zn2 , n ∈ N̄.

One can easy show that hd is a metric on each Zn2 (n ∈ N) and an extended
metric on Zω2 . Therefore we can define the equivalence relation ∼ on Zω2 by

x ∼ y :⇐⇒ hd(x, y) < +∞.

Obviously hd is a metric on every element of Zω2 /∼.
This notion is deeply connected with the errors recognition, correction and

checksums. Indeed, once we create a transmission protocol we shall to allow some
errors during transmission.

The aim of this paper is to deliver an ideas and preliminary results to the scope
of the error recognition on the Cantor set Zω2 . Following the simple observation
that thin sets can be considered separately on each class of abstraction of the
relation ∼, we show some of their topological properties. In some sense we consider
this paper as a preliminary study of thin sets which could leads to its potential
applications in the various scopes of mathematics and computer science.

Protocol description

This part is based on [1, section 4] (with a natural extension to the case
n = ω). In the simplest model there are two nodes and a single one-sided signal
transmission, i.e. Alice sends a single message to Bob. Furthermore we assume
that number of bits of all admissible messages are the same (say n ∈ N̄). In such
a trivial setup whole protocol can be described by a set of all admissible messages
which Alice may send to Bob, that is the set T ⊆ Zn2 .

For the transmission Alice sends a message x ∈ T and Bob receives some
element x̄ ∈ Zn2 , but due to some distortions in the transmission we do not claim
x = x̄. Obviously, if x̄ /∈ T then Bob (or code) detects an error. In such a setting
he tries to recover a message, i.e. assume that the Alice submits the element which
is closest to x̄ (in the Hamming distance; so-called likelihood decoding) – say y (if
the are more than one such elements Bob fails to recover). In general, we say that
Bob (or code) corrects the original signal if y = x.

As in most of protocols we assume that x̄ is close to x, it is reasonable to define
an d-neighbourhood of x, that is the set

Bd(x) := {y ∈ Zn2 : hd(x, y) ≤ d}.

In such a setup Bob can detect up to d ∈ N errors in a code word if and only
if Bd(x) ∩ T = {x} for all x ∈ T . Moreover, he can correct up to d ∈ N errors
(i.e. recover all messages with at most d errors) if and only if Bd(x) ∩ Bd(y) = ∅
for all x, y ∈ T with x 6= y.

Motivated by this fact, for a subset T ⊂ Zn2 (n ∈ N̄) having at least two
elements, following [1, section 4.5] we define the minimum distance (of T ) by

d(T ) := inf
{

hd(x, y) : x, y ∈ T, x 6= y
}
.
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Then, using some elementary geometrical argumentation from [1] we can es-
tablish the following folk result.

Lemma 1
Let T ⊂ Zn2 (n ∈ N̄). Then, for all k ∈ N,

a) a code T detects k errors if and only if d(T ) ≥ k + 1;

b) a code T corrects k errors if and only if d(T ) ≥ 2k + 1.

Let us emphasize that in the case n = ω it could happen that d(T ) = +∞.
In this setting the latter lemma states that code detects and corrects any (finite)
numbers of errors. Furthermore, it shows that the problem of detection, correction,
and the minimum distance are in some sense equivalent to each other.

In the present paper we are going to study properties of thin sets introduced
by Banakh et. al. [3] and their generalizations to k-thin sets. We show the Banach-
Mazur game is undetermined for generic thin sets which implies few topological
properties. On the other hand, we prove that thin sets (as well as their generaliza-
tions) naturally appears in the study of correction errors on the infinite bit streams.
The key aim of these results is to bind the topological and the information-theory
approaches to the Cantor cube.

2. Auxiliary results

2.1. Thin sets and their properties

A subset T of the Cantor cube Zω2 is called thin if for every number n ∈ ω the
restriction prn |T of the projection prn : Zω2 → 2ω\{n} given by prn : x 7→ x|ω\{n}
is injective. Equivalently, the minimal distance of T equals at least two – see
Lemma 2 for the precise wording of this statement. In view of Lemma 1, this is
a necessary and sufficient condition for a family of infinite streams of bits which
allows to detect a single error. In this sense thin sets are the infinite counterpart
of a parity bit.

Some properties of this family has been already given in [3]. In particular, it
is known [3, Proposition 9.3] that each Borel thin subset of the Cantor cube is
meager and has Haar measure zero. We deliver some further properties of thin
sets. In turns out that they are deeply connected with Banach-Mazur games. The
key results are obtained using the folk “capture-the-strategy” idea.

We also study some special subtype of this family, so-called xor-sets introduced
by Niwiński–Kopczyński [8]. This allows us to prove that Cantor cube can be
partitioned into two thin sets (see section 4 for details).

First, as a straightforward implication of the definition, we can prove that a
subset of a thin set is also thin. Furthermore this family is closed under union
of chains. These properties follow from analogous asserts of injective mappings
(understood as sets of pairs with suitable assumptions).
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Lemma 2
Let T ⊂ Zω2 . The following statements are equivalent:

(i) T is thin;
(ii) every class of T/∼ is thin;
(iii) d(T ) ≥ 2.

Proof. Implication (i)⇒(ii) is obvious as every subset of a thin set is thin.
To prove (ii)⇒(iii) assume to the contrary that hd(x, y) = 1 for some x, y ∈ T .

Then x ∼ y and {n ∈ ω : x(n) 6= y(n)} = {n0} for some n0 ∈ ω. Thus we
have prn0(x) = prn0(y). By the definition of thin set this implies x = y, and
consequently hd(x, y) = 0 contradicting the assumption.

To show (iii)⇒(i) assume that T is not a thin set. Then there exist n0 ∈ ω
and two distinct elements x, y ∈ T such that prn0(x) = prn0(y). Then

{n ∈ ω : x(n) 6= y(n)} = {n0},

i.e. hd(x, y) = 1.

By the above results and Zorn Lemma we obtain the next proposition.

Proposition 1
Let T ⊂ Zω2 be a thin set. Then there exists a maximal thin set T0 ⊂ Zω2 such that
T ⊆ T0. Moreover, for all Q ∈ Zω2 /∼ we have that T0∩Q is a maximal thin subset
of Q.

Proof. As thin sets are closed under union of chains, the first part is an immediate
implication of Zorn lemma. To show the moreover part assume that there exists
Q ∈ Zω2 /∼ such that T0∩Q is not a maximal thin subset ofQ. Then there exists q ∈
Q\T0 such that (T0∩Q)∪{q} is thin. Therefore applying the implication (ii)⇒(i)
in Lemma 2 we obtain that T0 ∪ {q} is also thin contradicting the maximality.

2.2. Banach-Mazur game

Following Berwanger-Grädel-Kreutzer [4] consider a special type of Banach-
Mazur game parametrized by a set F ⊂ Zω2 (with the product, i.e. Tychonoff
topology). Let G(F ) be an infinite two-player game with a complete information,
where moves of players consist of selecting and extending finite path through a
complete binary tree Zω2 by an element in Z+

2 :=
⋃∞
n=1 Zn2 . The players will be

called Ego and Alter. The two players alternate turns, and each player is aware of
all moves before making the next one; Ego begins. All plays are infinite and the
result outcome of each play is an element of x ∈ Zω2 . Ego wins if x ∈ F , otherwise
Alter wins. For detailed history of this games we refer the reader to Oxtoby [9]
and Telgársky [10].

Using some unraveling techniques it is possible to embed G(F ) to the classical
Banach-Mazur game on a tree Zω2 (see [4] for details). Thus we can reformulate the
original Banach-Mazur theorem [2] in the flavour of Berwanger-Grädel-Kreutzer.
Prior to this we need to recall the notion of strategy.
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Ego’s and Alter’s strategy are the functions

e :
∞⋃
n=0

(Z+
2 )n → Z+

2 and a :
∞⋃
n=1

(Z+
2 )n → Z+

2 ,

respectively. Denote sets of all Alter’s and Ego’s strategies by A and E . For a ∈ A
and e ∈ E one can consider a sequence of moves

ε0 := e(∅),
αi := a(ε0, . . . , εi−1), i ∈ N,
εi := e(α1, . . . , αi), i ∈ N.

Now let us define the concatenation operator

Concat :
∞⋃
n=1

(Z+
2 )n ∪

∞⋃
n=1

((Z+
2 )n × Zω2 ) ∪ (Z+

2 )ω → Z+
2 ∪ Zω2

as follows

Concat(α1, . . . , αn) = (α1,1, . . . , α1,k1 , . . . , αn,1, . . . , αn,kn) ∈ Z+
2

for n ∈ N, k1, . . . , kn ∈ N and (α1, . . . , αn) ∈
n∏
j=1

Zkj

2 ;

Concat(α1, . . . , αn, β) = (α1,1, . . . , α1,k1 , . . . , αn,1, . . . , αn,kn
, β1, β2, . . . ) ∈ Zω2

for n ∈ N, k1, . . . , kn ∈ N, (α1, . . . , αn) ∈
n∏
j=1

Zkj

2 and β ∈ Zω2 ;

Concat(α1, α2, . . . ) = (α1,1, . . . , α1,k1 , α2,1, . . . , α2,k2 , . . . ) ∈ Zω2

for k1, . . . , kn, . . . ∈ N, (α1, . . . , αn) ∈
∞∏
j=1

Zkj

2 .

Then we define a play

Play : E × A 3 (e, a) 7→ Concat(ε0, α1, ε1, α2, ε2, α3, . . . ) ∈ Zω2 .

This is very usual notion in game theory – instead of sequence of moves players
show whole strategy at the beginning. We also use the time-lapse approach to a
strategy. We treat it as a sequence of replies for the opponent’s moves and write
it in terms of pseudocode – it is a classical approach in game theory which is
equivalent to the one above.

We say that a0 ∈ A is an Alter’s winning strategy (in G(F )) if Play(e, a0) /∈ F
for all e ∈ E . Analogously e0 ∈ E is an Ego’s winning strategy (in G(F )) if
Play(e0, a) ∈ F for all a ∈ A. If one of players has a winning strategy then the
game G(F ) is determined. Now we can recall celebrated Banach-Mazur theorem.
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Theorem 1 (Banach-Mazur)
Let F ⊂ Zω2 .

(a) Alter has a winning strategy for the game G(F ) if and only if F is meager.
(b) Ego has a winning strategy for the game G(F ) if and only if there exists a

finite word x ∈ Z+
2 such that (x · Zω2 ) \ F is meager.

As a result we have the following corollary.

Corollary 1
Games G(F ) are determined for all Borel sets F .

In the following two propositions we present necessary conditions for Ego and
Alter to have a winning strategy. The first result essentially follows the idea of
Niwiński and Kopczyński from [8].

Proposition 2
Let F ⊆ Zω2 be a thin set. Then Ego has no winning strategy in a game G(F ).

Proof. Assume to the contrary that Ego has a winning strategy in G(F ). We play
this game two times simultaneously – we call them “initial” and “mirror” play.
Denote the Ego’s moves in the initial and mirror plays as (αi)∞i=0 and (βi)∞i=0,
respectively. Obviously α0 = β0 as the first Ego’s move is fixed.

First Alter’s reply in the initial play is 0. In the mirror play it is Concat((1), α1).
From now on Alter captures the Ego’s strategy in the following way:

– each time Ego moves αk (k ≥ 2) in the initial play, Alter copies this move
to the mirror play as his (k − 1)-th move;

– each time Ego moves βk (k ≥ 1) is the mirror play, Alter copies this move
to the initial play as his k-th move.

These two plays can be illustrated in the table-like form (Simulation 1)

Initial play
Ego α0 α1 α2 . . . αk . . .
Alter 0 β1 β2 . . . βk . . .

Mirror play
Ego α0 β1 β2 . . . βk . . .
Alter Concat(1, α1) α2 . . . αk . . .

Fig. 1: Capturing Ego’s strategy

The final outcome of the initial and mirror plays are

a := Concat(α0, (0), α1, β1, α2, β2, . . .)

and
b := Concat(α0, (1), α1, β1, α2, β2, . . .),

respectively. As Ego has a winning strategy in G(F ) then we obtain a, b ∈ F .
However in this case we have hd(a, b) = 1. This implies that F is not a thin set,
contradicting the assumptions.
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Krom [7] proved that Ego has no winning strategy in G(F ) if and only if
F ⊂ Zω2 is a Baire space. Thus applying Proposition 2 we immediately obtain that
thin sets are Baire spaces.

Now we are heading toward the necessary condition to Alter’s winning strategy,
however we need to introduce few notions first. For k ∈ ω define the function
bitk : ω → {0, 1} such that bitk(x) is the k-th bit from the right in the binary
notation of x (counting from zero). More precisely, for k, n ∈ ω we have

bitk(n) =
{

0, if (n mod 2k+1) ∈ {0, . . . , 2k − 1},
1, if (n mod 2k+1) ∈ {2k, . . . , 2k+1 − 1}.

For n ∈ N, x ∈ Zn2 and m ∈ {0, 1, . . . , 2n − 1} define Θ(x,m) ∈ Zn2 as follows
(⊕ stands for a bitwise xor)

Θ(x,m) := (xk ⊕ bitk(m))k∈{0,...,n−1}.

For an infinite sequence x ∈ Zω2 and m ∈ ω define Θ(x,m) ∈ Zω2 by

Θ(x,m) := (xk ⊕ bitk(m))k∈ω.

We can now proceed to formulate and proof the most technical proposition of
this paper.

Proposition 3
Let F ⊆ Zω2 be a set such that Alter has a winning strategy in a game G(F ). Then
there exists an element X ∈ Zω2 /∼ such that X ∩ F = ∅.

Proof. Fix an Alter strategy. Now we consider infinitely many plays of G(F ) and
show that their outputs cover whole class of abstraction of ∼.

Let (vi)∞n=1 of elements in Z+
2 be a sequence of Alter replies (in all plays),

enumerated by the order of moves. Ego spreads Alters replies among all plays in
a way which are described by the algorithm below. There are two types of Ego’s
moves: Starti(α) and Movei(α) for i ∈ ω and α ∈ Z+

2 :

1. Starti(α) – Ego starts Play i with the initial move α;

2. Movei(α) – Ego makes a subsequent move α in Play i.

We now present an algorithmic description of the Ego’s strategy (in infinitely
many plays). It depends on the Alter’s strategy which is emphasized as an ar-
gument (this is a sort of an input stream to this procedure). For the sake of
brevity, let us denote v0 = (0). Moreover, for all p, q ∈ ω with p ≤ q the sequence
which is obtained by the concatenation of the elements (vi)qi=p by V qp , that is
V qp := Concat(vp, . . . , vq).
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procedure Capture(Alter Strategy σ)
Start0(0) Alter replies: v1
for i = 1 to +∞ do

Starti
(
Θ(V

i(i+3)
2 −1

0 , i)
)

Alter replies: v i(i+3)
2

for j = 0 to i do
Movej

(
V

i(i+1)
2 +i+j

i(i+1)
2 +1+j

)
Alter replies: v i(i+3)

2 +j+1

end for
end for

end procedure
Similarly to the previous proof let us illustrate several first moves in a tabular
form.

Play 0
Ego 0 v2 V 5

4 V 9
7

Alter v1 v3 v6 v10

Play 1
Ego Concat(1, v1) v3 V 6

5 V 10
8

Alter v2 v4 v7 . . .
Play 2

Ego Θ(V 4
0 , 2) V 7

6 . . .
Alter v5 v8

Play 3
Ego Θ(V 8

0 , 3) . . .
Alter v9

. . .
Fig. 2: Capturing Alter’s strategy

Obviously both players make infinitely many moves in each of plays. Fur-
thermore, in order to show that this algorithm is correct, we need to show that
Alter’s replies are properly enumerated (i.e. id of the element coincide with the
replies number). This proof is a straightforward application of the “loop invariant”
method; for the details we refer the reader to the classical book [5].

Now let ri ∈ Zω2 be the output of Play i (i ∈ ω). As Ego rewrites all Alter
answers except the initial move we obtain

ri = Θ(r0, i) for all i ∈ ω.

Therefore if Alter has a winning strategy we get {ri : i ∈ ω} ∩ F = ∅, and thus
[r0]∼ ∩ F = ∅.

3. Main result

In this brief section we present three results. First of them is presented in the
game setting approach, while second and third one are topological properties of
thin sets.
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Proposition 4
Let T ⊂ Zω2 be a thin set such that T ∩Q 6= ∅ for all Q ∈ Zω2 /∼. Then the game
G(T ) is undetermined.

Proof. Since T is thin, Proposition 2 implies that Ego has no winning strategy in
G(T ). On the other hand, as T ∩Q 6= ∅ for all Q ∈ Zω2 /∼, by Proposition 3 we get
that Alter has no winning strategy in G(T ), too.

Now, applying Corollary 1, we can formulate the main result of this paper.

Theorem 2
If T ⊂ Zω2 is a thin set such that T ∩Q 6= ∅ for all Q ∈ Zω2 /∼ then T is not Borel.

As a singleton is a thin set, by Proposition 1 we easily obtain

Corollary 2
Maximal thin sets are neither Borel nor meager.

Proof. Let T ⊂ Zω2 be a maximal thin set. Then, by Proposition 1, we know that
T ∩ Q 6= ∅ for all Q ∈ Zω2 /∼. Whence, by Theorem 2, T is not Borel. Moreover,
by Proposition 4, the game G(T ) is undetermined. Thus, by the Banach-Mazur
theorem, we obtain that T is not meager.

4. Applications to Xor-sets

We show that xor-sets introduced by Niwiński–Kopczyński [8] are maximal
thin sets. Prior to this, let us introduce some sort of conjugacy. For x ∈ Zω2 and
n ∈ ω we define x#n ∈ Zω2 by

x#n(k) :=
{
x(k), k ∈ ω \ {n},
1− x(n), k = n.

For fixed n ∈ ω the operator (·)#n is a symmetry, i.e. (x#n)#n = x for all x ∈ Zω2 .
We are now in the position to present the main definition of this section.

Definition 3
A set X ⊂ Zω2 is called an xor-set if for every n ∈ ω and x ∈ Zω2 we have
x ∈ X ⇐⇒ x#n /∈ X .

Since (·)#n is a symmetry we can easily check that for every xor-set X the set
Zω2 \ X is an xor-set, too. We prove that xor-sets are maximal thin sets. Now we
are going to introduce few technical notions.

First, let us define the relation ≈ on Zω2 by

x ≈ y :⇐⇒ hd(x, y) is finite and even.

Observe that x ≈ y implies x ∼ y. Moreover, each element of Zω2 /∼ split into two
elements of Zω2 /≈. Therefore, as Zω2 /∼ has a cardinality continuum, one consider
a partition of Zω2 to a family of disjoint sets U := {Uη,j : η ∈ R and j ∈ {0, 1}}
such that Uη,0, Uη,1 ∈ Zω2 /≈ and Uη,0 ∪ Uη,1 ∈ Zω2 /∼ (i ∈ R). These sets play an
essential role in the theory of xor-sets.
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Lemma 3
A set X ⊂ Zω2 is an xor-set if and only if there exists a selector S of {{Uη,0, Uη,1} :
η ∈ R} such that X =

⋃
S.

Proof. Let η ∈ R. Observe that for all x ∈ Uη,0∪Uη,1 and n ∈ ω we have x#n ∼ x
and x#n 6≈ x. Therefore x ∈ Uη,0 ⇐⇒ x#n ∈ Uη,1.

Furthermore, for all y ∈ Zω2 such that y ≈ x there exist k ∈ N and a set
{i1, . . . , i2k} such that y = (. . . ((x#i1)#i2) . . .)#i2k . Whence x ∈ X implies [x]≈ ⊂
X .

Moreover, x ∈ Uη,0 ⇐⇒ y ∈ Uη,0 and x ∈ Uη,1 ⇐⇒ y ∈ Uη,1. Thus
[x]≈ ∈ {Uη,0, Uη,1}. As [x]∼ contains two classes of abstraction of ≈ we get{

Uη,0, Uη,1
}

=
{

[x]≈, ([x]∼ \ [x]≈)
}
.

By the definition every xor-set contains exactly one element of each pair, which
implies our assertion.

Proposition 5
Every xor-set X ⊂ Zω2 is a maximal thin set. In particular, X is not Borel.

Proof. As X an xor-set we have that for all x, y ∈ X the distance hd(x, y) is either
infinite of even. Then the implication (iii)⇒(i) in Lemma 2 yields that X is a thin
set.

To show the maximality assume to the contrary that there exist an xor-set X
and an element x ∈ Zω2 \X such that X ∪{x} is thin. By the definition of an xor-set
we have x#1 ∈ X . However, π1(x) = π1(x#1) which leads to a contradiction, as
X ∪ {x} was supposed to be thin.

The remaining part is a straightforward implication of Corollary 2.

As a complementary of an xor-set is an xor-set we obtain the following inter-
esting property.

Corollary 3
There exist two non-Borel, thin and disjoint sets T0, T1 ⊂ Zω2 such that

T0 ∪ T1 = Zω2 .

In fact we can also prove a sort of the reverse statement

Proposition 6
Let T0, T1 be two thin sets such that T0 ∪ T1 = Zω2 . Then T0 and T1 are disjoint
xor-sets.

Proof. Indeed, as T0 is thin and T0 ∪ T1 = Zω2 we have

x ∈ T0 ⇒ x#n /∈ T0 ⇒ x#n ∈ T1 for all x ∈ Zω2 and n ∈ ω. (1)

Similarly x ∈ T1 ⇒ x#n ∈ T0, which yields x ∈ T0 ⇐⇒ x#n ∈ T1.
If there existed x ∈ T0∩T1 then by (1) we would obtain x#n ∈ T1, contradicting

the fact that T1 is a thin set. Therefore T0 ∩ T1 = ∅. Then we have

x ∈ Ti ⇐⇒ x#n /∈ Ti for all x ∈ Zω2 , n ∈ ω and i ∈ {0, 1},

which shows that both T0 and T1 are xor-sets.



Error recognition in the Cantor cube [85]

Remark 1
Applying above results we can easily show that X ⊂ Zω2 is an xor-set if and only
if both X and Zω2 \ X are thin.

5. Generalization to k-thin sets

At the very end of this note let us just mention the natural generalization of
thin sets to k-thin sets. Namely, the set T ⊂ Zn2 (n ∈ N̄) is called k-thin if its
minimum distance equals at least k. Then 2-thin sets are precisely thin sets.

There appears the natural question, if there exists a partition of the Can-
tor cube to finitely many k-thin sets. For k = 2 the answer easily follows from
Proposition 6. We show that it cannot be generalized to k-thin sets.

For k ∈ N and n ∈ N̄ with 2 ≤ k ≤ n we define Q(n, k) as the smallest extended
natural number s such that there exists a partition of Zn2 into s sets which are
k-thin.

Then we obviously have Q(n, 2) = 2 for all n ≥ 2. This case turns out to be
very special.

Proposition 7
Let k ∈ N, n ∈ N̄ with 3 ≤ k ≤ n. Then

(a) for finite n we have Q(n, k) ≥
(

n
b k−1

2 c
)
;

(b) for n = ω we have Q(ω, k) = +∞.

Proof. Consider an arbitrary partition (T1, . . . , Tq) of Zn2 to k-thin sets, where
q ∈ N̄. Furthermore, set

S :=
{
x ∈ Zn2 : x0 + · · ·+ xn−1 ≤ bk−1

2 c
}
.

Then for all x, y ∈ S we have

hd(x, y) ≤ hd(x, 0) + hd(0, y) ≤ 2bk−1
2 c ≤ k − 1.

In particular, each Ti contains at most one element of S. Thus in the case where
n is finite we obtain q ≥ |S| ≥

(
n

b k−1
2 c
)
. If n = ω we simply get q ≥ |S| = +∞.

Finally, observe that we can reapply Theorem 2 and Proposition 1 to generalize
Corollary 2 as follows

Proposition 8
Maximal k-thin sets are neither Borel nor meager.
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