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Abstract. In this paper, for getting more results in groupoids, we consider
a set and introduce the notion of a right (left) independent subset of a
groupoid, and it is studied in detail. As a corollary of these properties, the
following important result is proved: for any groupoid, there is a maximal
right (left) independent subset.

Moreover, the notion of strongly right (left) independent subset is con-
sidered. It is proved that there exists a groupoid having a strongly right
independent 2-set. Finally, we discuss the notion of dynamic elements with
independence.

1. Introduction

Bruck [2] published a book, A survey of binary systems discussed in the theory
of groupoids, loops and quasigroups, and several algebraic structures. Borůvka [3]
stated the theory of decompositions of sets and its application to binary systems.
Nebeský [17] introduced the notion of a travel groupoid by adding two axioms
to a groupoid, and he described an algebraic interpretation of the graph theory.
Chajda and Länger [5] assigned to every directed relational system a groupoid [4]
and it was shown that properties of the relational system can be characterized by
properties of a corresponding groupoid.

Allen et al. [1] introduced the concept of several types of groupoids related to
semigroups, viz., twisted semigroups for which twisted versions of the associative
law hold. Kim et al. [13] showed that every selective groupoid induced by a fuzzy
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subset is a pogroupoid, and they discussed several properties in quasi ordered sets
by introducing the notion of a framework. In 2017, Liu et al. [15] extended the
theory of groupoids already developed for semigroups (Bin(X),2) in a growing
number of research papers withX a set and Bin(X) the set of groupoids defined on
X to the generalizations: fuzzy (sub)groupoids and fuzzy hyper (sub)groupoids.
Hwang et al. [10] discussed the notion of the locally finiteness and convolution
products in groupoids. Fayoumi [6] introduced the notion of the center semigroup
(Bin(X),2) of all binary systems on a set X.

Also, she introduced two methods of factorization for this binary system under
the binary groupoid product in the semigroup (Bin(X),2) and showed that a
strong non-idempotent groupoid can be represented as a product of its similar-
and signature- derived factors. Beside, in [7] it was shown that a groupoid with
the orientation property is a product of its orient- and skew- factors.

Feng et al. [8] discussed some relations among axioms in groupoids, and got
some useful properties.

The motivation of this study came from the idea of the converse of "injective
function", and then we introduce the notion of (strongly) right (left) indepen-
dent subset of a groupoid, and obtain a groupoid having a strongly right (left)
independent 2-set. Moreover, we discuss the notion of dynamic elements with
independence.

2. Preliminaries

A d-algebra ([18]) is a non-empty set X with a constant 0 and a binary
operation "∗" satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra [9, 11, 16] is a d-algebra X satisfying the following additional
axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Given a BCK-algebra, we define a binary relation "≤" by x ≤ y if and only if
x ∗ y = 0. It is known that ≤ is a partially ordered set (shortly, poset) in BCK-
algebras. A poset ≤ is said to be an antichain if x ≤ y if and only if x = y for all
x, y ∈ X.

Let (X,≤) be a poset with the least element 0. If we define a binary operation
"∗" on X as follows:

x ∗ y =
{

0, if x ≤ y,
x, otherwise.

Then (X, ∗, 0) is a BCK-algebra. Such an algebra is said to be a standard BCK-
algebra inherited from the poset (X,≤) or a Tanaka-type algebra (see [12]).
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A groupoid (X, ∗), i.e. a set X together with a binary operation "∗" on the set
X, is said to be a right zero semigroup if x∗y = y for any x, y ∈ X, and a groupoid
(X, ∗) is said to be a left zero semigroup if x ∗ y = x for any x, y ∈ X. A groupoid
(X, ∗) is said to be a rightoid for f : X → X if x ∗ y = f(y) for any x, y ∈ X.
Similarly, a groupoid (X, ∗) is said to be a leftoid for f : X → X if x ∗ y = f(x)
for any x, y ∈ X. Note that a right (left) zero semigroup is a special case of a
rightoid (leftoid) (see [14]). A groupoid (X, ∗) is said to be right cancellative (left
cancellative) if y ∗ x = z ∗ x (x ∗ y = x ∗ z) implies y = z.

3. Right (left) independence in groupoids

Given a groupoid (X, ∗), a non-empty subset E of X is said to be right in-
dependent if x 6= y ∈ E, then x ∗ u 6= y ∗ u for all u ∈ X. Also E is said to be
left independent if x 6= y ∈ E, then u ∗ x 6= u ∗ y for all u ∈ X. E is said to be
independent if it is both right and left independent.

Notice that a groupoid (X, ∗) is right independent if the set X is right inde-
pendent. In other words, (X, ∗) is right independent if and only if every subset E
of X is right independent.

Example 1

(a) Let X := {0, 1, 2, 3, 4} with the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 1 3 0 1
4 4 4 4 4 0

Then (X, ∗, 0) is a BCK-algebra (see [16]), but it is not right independent,
since 1 6= 2 in X, but 1 ∗ 4 = 0 = 2 ∗ 4. It is easy to check that E1 :=
{2, 3}, E2 := {3, 4} are right independent, but E3 := {2, 4} neither right
independent, since 2 6= 4 in E3, but 2 ∗ 4 = 0 = 4 ∗ 4, nor left independent,
since 2 6= 4 in E3, but 0 ∗ 2 = 0 = 0 ∗ 4.

(b) Let X := {0, 1} with the following table:

∗ 0 1
0 0 1
1 1 0

Then (X, ∗) is a groupoid and X is independent.
(c) Let K be a field. We define a binary operation "∗" on K by x∗y := x(x−y)

for all x, y ∈ K. Then (K, ∗, 0) is a d-algebra, but not a BCK-algebra. We
claim that (K, ∗) is not right independent. In fact, if x 6= y in K, then
x ∗ (x+ y) = x(x− (x+ y)) = −xy and y ∗ (x+ y) = y(y− (x+ y)) = −xy.
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Example 2
Every group is (right, left) independent, since cancellation laws hold in a group.

Note that every right (left) independent subset may not be closed. Consider
the right independent subset E2 in Example 1. It is not closed, since 3∗4 = 1 6∈ E2.

Proposition 1
(a) Let (X, ∗) be a leftoid for ϕ, i.e. x ∗ y = ϕ(x) for all x, y ∈ X, and let E

be a right independent subset of X. Then ϕ is injective on E.
(b) Let (X, ∗) is a rightoid for ϕ, i.e. x ∗ y = ϕ(y) for all x, y ∈ X, and let E

be a right independent subset of X. Then E is a singleton.

Proof. (a). If x, y ∈ E with x 6= y, then ϕ(x) = x ∗ u 6= y ∗ u = ϕ(y) for all u ∈ X,
since E is right independent.

(b). Assume E is not a singleton. Then there exist x, y ∈ E such that x 6= y.
Since E is right independent, we have x∗u 6= y∗u for all u ∈ X. On the other hand,
since (X, ∗) is a rightoid for ϕ, we have x ∗ u = ϕ(u) = y ∗ u, a contradiction.

Lemma 1
Let (X, ∗) be a groupoid, and let x ∈ X. Then {x} is left (right) independent.

Proof. The singleton set {x} has no element y in {x} such that x 6= y. It follows
that the independence criteria are fulfilled vacuously.

Theorem 1
Let (X, ∗) be a groupoid. Then there exists a maximal right (left) independent
subset M in X.

Proof. Suppose {Eλ}λ∈Λ is a chain of right (left) independent subsets of (X, ∗),
and let E := ∪λ∈ΛEλ. Then E is a right (left) independent subset of (X, ∗). In
fact, let x, y ∈ E such that x 6= y. Then there exist α, β ∈ Λ such that x ∈ Eα,
y ∈ Eβ . Without loss of generality, we let Eα ⊆ Eβ . Then x, y ∈ Eβ . Since Eβ
is right (left) independent, we obtain x ∗ u 6= y ∗ u (u ∗ x 6= u ∗ y) for all u ∈ X.
This shows that E is right (left) independent. By Zorn’s Lemma, there exists a
maximal right (left) independent subsets M in X.

Theorem 2
Let (X, ∗) be a groupoid. Then (X, ∗) is right (left) cancellative if and only if
(X, ∗) is right (left) independent.

Proof. Assume ∅ 6= E ⊆ X, and x 6= y in E. If x ∗ u = y ∗ u (or u ∗ x = u ∗ y)
for some u ∈ X, which leads to x = y, a contradiction, since (X, ∗) is right (left)
cancellative. Thus, x∗u 6= y ∗u (or u∗x 6= u∗y) for all u ∈ X, and so E is a right
(left) independent subset in X.

The proof of converse is clear.

Corollary 1
Every group has no proper maximal right (left) independent subset.

Proof. Every group has cancellative laws.
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Let us observe that, if (X, ∗, e) is a group, then X is a maximal independent
subset of X.

Proposition 2
Let (X, ∗) be a groupoid satisfying the condition x ∗ y = (x ∗ y) ∗ y for all x, y ∈ X.
If E is a right independent subset of X, then (E, ∗) is a left zero subgroupoid.

Proof. Let x 6= y in E such that x ∗ y 6= x. If we take u := y, then x ∗ u =
x ∗ y = (x ∗ y) ∗ y = (x ∗ y) ∗ u. This shows that E is not right independent, a
contradiction.

The converse of Proposition 2 is trivial. Since if X is a left zero semigroup,
then it is right independent.

Proposition 3
Let (X, ∗, 0) be a standard BCK-algebra, i.e.

x ∗ y =
{

0, if x ≤ y,
x, otherwise.

If M is a right independent subset of X, then M is an antichain.

Proof. Assume that there exist x 6= y in M such that x ≤ y. Then x ∗ y = 0 =
y ∗ y, proving that M is not right independent, a contradiction. Hence M is an
antichain.

Proposition 4
Let (X,≤) be a poset with |X| ≥ 3. Define a binary operation "∗" on X by

x ∗ y :=
{
y, if x ≤ y,
x, otherwise.

If (X, ∗) is a right independent, then the poset (X,≤) has no sub-poset which is
isomorphic to the following Hasse diagram:

Proof. Assume the poset (X,≤) has a sub-poset:

x y

u

for some u, x, y ∈ X. It follows that x ∗ u = u = y ∗ u. Since x 6= y, (X, ∗) is not
right independent, a contradiction.
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Note that in the Proposition 4 the condition |X| ≥ 3 is necessary. For a coun-
terexample, let (X; ∗) be the two-element chain X = {0, 1}, 0 < 1. The poset
(X; ∗) has no sub-poset isomorphic to the three-element poset described in the
Proposition 4, so the hypotheses of the theorem are satisfied. We have 0 ∗ 1 = 1,
but 0 ∗ 1 = 1 and 1 ∗ 1 = 1, so the set X = {0, 1} is not right independent in
(X; ∗), which falsifies the claim.

Proposition 5
Let ϕ : (X, ∗)→ (Y, ?) be a homomorphism of groupoids. If ϕ(x1), ϕ(x2) are right
independent in (Y, ?), then x1, x2 are right independent in (X, ∗).

Proof. Assume that x1, x2 are not right independent in (X, ∗). Then there exists
u ∈ X such that x1 ∗ u = x2 ∗ u. It follows that

ϕ(x1) ? ϕ(u) = ϕ(x1 ∗ u) = ϕ(x2 ∗ u) = ϕ(x2) ? ϕ(u),

which shows that ϕ(x1), ϕ(x2) are not right independent in (Y, ?), a contradiction.

Let X := {a, b} with the following tables:

∗1 a b
a a b
b b a

∗2 a b
a b a
b a b

Then (X, ∗i) for i ∈ {1, 2} are groupoids. E1 = {a} and E2 = {b} are right
independent subsets of order 1 and X is only right independent subset of order 2.

Problem 1
Suppose that (X, ∗) is a groupoid of order n (i.e. |X| = n ≥ 3). How many right
(left) independent subsets E of order k for 1 ≤ k ≤ n, are there? or we can
construct on X?

Let X := {a, b, c} with the following tables:

∗1 a b c
a a c b
b c b a
c b a c

∗2 a b c
a a b c
b b c a
c c a b

∗3 a b c
a b a c
b a c b
c c b a

∗4 a b c
a b c a
b c a b
c a b c

∗5 a b c
a c a b
b a b c
c b c a

∗6 a b c
a c b a
b b a c
c a c b

Then (X, ∗i) for i ∈ {1, 2, . . . , 6} are 6 commutative groupoids of order 3. E1 =
{a}, E2 = {b} and E3 = {c} are right independent subsets of order 1 and E = X is
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right independent subset of order 3 in this case. There are more than 6 groupoids
of order 3 with a right independent subset of order 3. Right independence of X
in (X; ∗) means that the right translations of (X; ∗) are injective; if X is finite,
this means that the columns of the operation table of ∗ are permutations of X. If
|X| = n, then there are (n!)n ways of building such an operation table. For n = 3,
we get (3!)3 = 216.

4. Strongly right (left) independent

Let (X, ∗) be a groupoid. Two elements x, y ∈ X are said to be strongly right
independent if x ∗ u 6= y ∗ v for all u, v ∈ X. Similarly, x, y are said to be strongly
left independent if u∗x 6= v∗y for all u, v ∈ X. E is said to be strongly independent
if it both strongly right and strongly left independent.

Example 3
Let X := {a, b, c} be a poset with the following Hasse diagram:

a

b c

Define a binary operation "∗" on X by

x ∗ y :=
{
y, if x ≤ y,
x, otherwise.

Then we obtain the following table:

∗ a b c
a a b c
b b b b
c c c c

Then it is easy to see that {b, c} is strongly right independent, but {a, b} (or {a, c})
is not strongly right independent, since a ∗ b = b = b ∗ b (resp. a ∗ c = c = c ∗ c).

Proposition 6
Let (X, ∗) be a leftoid for ϕ, i.e. x ∗ y := ϕ(x) for all x, y ∈ X. If E ⊆ X such
that ϕ is one-to-one on E, then E is strongly right independent.

Proof. Let x 6= y in E. Since ϕ is one-to-one on E, we have x∗u = ϕ(x) 6= ϕ(y) =
y ∗ v for all u, v ∈ X. This shows that E is strongly right independent.

Proposition 7
Let X := R be the set of all real numbers and let x∗y := max{x, y} for all x, y ∈ X.
Then the only (strongly) right independent sets are singletons.

Proof. Let {x, y} be a (strongly) right independent subsets of X and let x 6= y.
Then x ∗ u 6= y ∗ v for all u, v ∈ X. It follows that max{x, u} 6= max{y, v} for all
u, v ∈ X. If we let u := v satisfying x ≤ u and y ≤ u, then max{x, u} = u = v =
max{y, v}, which leads a contradiction.
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Proposition 8
Let (X, ∗) be a commutative groupoid. Then the only strongly right independent
subset of X are singletons.

Proof. Let (X, ∗) be a commutative groupoid. Then x ∗ y = y ∗ x for all x, y ∈ X.
If x 6= y, then {x, y} is not strongly right independent. Hence the only strongly
right independent subsets of X are singletons.

Let (X, ∗) be a groupoid, and let ∅ 6= A ⊆ X and x ∈ X. Define x ∗ A =
{x ∗ a : a ∈ A} (resp. A ∗ x = {a ∗ x : a ∈ A}.

Now we construct a groupoid (X, ∗) whose 2-set to be a strongly right inde-
pendent set as follows.

Theorem 3
Let X be a set with |X| ≥ 4. Given x 6= y ∈ X, there exists a groupoid (X, ∗) such
that {x, y} is a strongly right independent subset of X.

Proof. Let X be a set with |X| ≥ 4. Assume a, b, c, d ∈ X (all are distinct). Let
A 6= ∅ 6= B, A ∪ B = X and A ∩ B = ∅. Define a binary operation "∗" on X
satisfying the following: Given x 6= y ∈ X, we let x ∗ A := {a}, x ∗ B := {b} and
y ∗A := {c}, y ∗B := {d} and other entries are arbitrary elements. It follows that
x ∗ u ∈ {a, b}, y ∗ v ∈ {c, d} for all u, v ∈ X. This means that x ∗ u 6= y ∗ v for all
u, v ∈ X, which shows that {x, y} is a strongly right independent subset of X.

Theorem 4
Let f, g : X → X be injective functions with Im(f) ∩ Im(g) = ∅. Let A 6= ∅ 6= B,
A ∪ B = X and A ∩ B = ∅. If (X, ∗) is a groupoid such that x ∗ A = {f(x)} and
x ∗B = {g(x)}, then {x, y} is a strongly right independent subset of X.

Proof. If x 6= y, since f, g are one-to-one, we obtain

f(x) 6= f(y), g(x) 6= g(y)

Given u ∈ X, we have two cases. If u ∈ A, then x ∗ u = f(x) and

y ∗ v =
{
f(y), if v ∈ A,
g(y), if v ∈ B.

Hence y∗v ∈ {g(y), f(y)} and x∗u = f(x) 6∈ {f(y), g(y)}. Since Im(f)∩Im(g) = ∅,
we obtain x ∗ u 6= y ∗ v. If u ∈ B, then x ∗ u = g(x) and

y ∗ v =
{
f(y), if v ∈ A,
g(y), if v ∈ B.

Hence y∗v ∈ {g(y), f(y)} and x∗u = g(x) 6∈ {f(y), g(y)}. Since Im(f)∩Im(g) = ∅,
we obtain x ∗ u 6= y ∗ v. This shows that {x, y} is a strongly right independent
subset of X.
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Note that, in Theorem 4.6, if f, g : X → X are bijective functions, then
Im(f) = Im(g) = X. If we furthermore assume that Im(f) ∩ Im(g) = ∅, then
we have X = X ∩ X = ∅. So the theorem only deal with the empty function
∅ : ∅ → ∅.

Example 4
Let X := Z be the set of all integers. Define a binary operation "∗" on X by

x ∗ y :=
{

3x, if y ∈ 2Z,
3x+ 1, if y ∈ 2Z + 1.

Then every distinct two element set {x, y} forms a strongly right independent
subset of X. In fact, if we define maps f(x) := 3x, g(x) := 3x + 1 for all x ∈ X,
then f , g are one-one and Im(f)∩ Im(g) = ∅. Define A := 2Z, B := 2Z+ 1. Then
X = A ∪ B, A ∩ B = ∅. By Theorem 4, we prove that x, y are strongly right
independent.

5. Dynamic elements and independence

Let X be a set and let ϕ : X → X be a map. An element x ∈ X is said to be
dynamic for ϕ if ϕ(x) 6= x.

Given a groupoid (X, ∗) and a mapping ϕ : X → X, we define:

4R(ϕ) :={x ∈ X : ϕ(x) ∗ v 6= x ∗ u for all u, v ∈ X}
4L(ϕ) :={x ∈ X : v ∗ ϕ(x) 6= u ∗ x for all u, v ∈ X}.

If (X, ∗) is a commutative groupoid, then 4R(ϕ) = 4L(ϕ) = ∅.

Proposition 9
If x ∈ 4R(ϕ) (resp. x ∈ 4L(ϕ)), then x is dynamic.

Proof. Let x ∈ 4R(ϕ) and ϕ(x) = x. Then x ∗ u 6= ϕ(x) ∗ v for all u, v ∈ X. Put
u := v, we get x ∗ u = x ∗ v = ϕ(x) ∗ v, a contraction.

Proposition 10
Let (X, ∗) be a group and let ϕ : X → X be a map. Then 4R(ϕ) = 4L(ϕ) = ∅.

Proof. Assume 4R(ϕ) 6= ∅. Then there exists x ∈ X such that x∗u 6= ϕ(x)∗ v for
all u, v ∈ X. It follows that x = x ∗ e 6= ϕ(x) ∗ v for all v ∈ X, i.e. v 6= [ϕ(x)]−1 ∗x
for all v ∈ X, which is a contraction. Similarly, we obtain 4L(ϕ) = ∅.

Proposition 11
Let (X, ∗) be a right (left) zero semigroup and ϕ : X → X be a map, and let x be
dynamic for ϕ. Then x ∈ 4L(ϕ) (resp. x ∈ 4R(ϕ)).

Proof. Assume (X, ∗) is a right zero semigroup and ϕ : X → X is a map, and x is
a dynamic element. Let u, v ∈ X. Then

v ∗ ϕ(x) = ϕ(x) 6= x = u ∗ ϕ(x).

Thus, x ∈ 4L(ϕ).
Similarly, if (X, ∗) is a left zero semigroup, then x ∈ 4R(ϕ).
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Proposition 12
Let R be the set of all real numbers and let x ∗ y := max{x, y} for all x, y ∈ R.
Then 4R(ϕ) = 4L(ϕ) = ∅.

Proof. Assume 4R(ϕ) 6= ∅. Then there exists x ∈ X such that x ∗ u 6= ϕ(x) ∗ v
for all u, v ∈ X. Take ξ ∈ R such that max{x, ϕ(x)} ≤ ξ. It follows that ξ =
max{x, ξ} 6= max{ξ, ϕ(x)} = ξ, a contradiction. Similarly, 4L(ϕ) = ∅.

Proposition 13
Let X := R be the set of all real numbers and let a, b, c ∈ X with bc 6= 0. Define
a map ϕ : X → X by ϕ(x) := x + 1 for all x ∈ X. Define a binary operation "∗"
by x ∗ y := a+ bx+ cy for all x, y ∈ X. Then 4R(ϕ) = 4L(ϕ) = ∅.

Proof. Assume 4R(ϕ) 6= ∅. Then there exists x ∈ X such that x∗u 6= ϕ(x)∗ v for
all u, v ∈ X. It follows that a+ bx+ cu 6= a+ bϕ(v) + cv for all u, v ∈ X. Hence
bx+ cu 6= b(x+ 1) + cv = bx+ b+ cv, and so cu 6= b+ cv for all u, v ∈ X, which
implies that v 6= cu−b

c for all v ∈ X, a contradiction. Hence 4R(ϕ) = ∅.
Now, assume 4L(ϕ) 6= ∅. Then there exists x ∈ X such that v ∗ ϕ(x) 6= u ∗ x

for all u, v ∈ X. It follows that a + bv + cϕ(x) 6= a + bu + cx for all u, v ∈ X.
Hence bv + c(x+ 1) = bv + cx+ c 6= bu+ cx, and so bv + c 6= bu for all u, v ∈ X,
which implies that v 6= bu−c

b for all v ∈ X, a contradiction. Hence 4L(ϕ) = ∅.
Thus, 4R(ϕ) = 4L(ϕ) = ∅.

Proposition 14
Let (X, ∗) be a groupoid, ϕ : X → X be a map, and let x ∈ 4R(ϕ) (resp. x ∈
4L(ϕ)). Then {x, ϕ(x)} is a strongly right (left) independent.

Proof. Assume (X, ∗) is a groupoid, ϕ : X → X is a map, and let x ∈ 4R(ϕ)
(resp. x ∈ 4L(ϕ)). Then x ∗ u 6= ϕ(x) ∗ v (u ∗ x 6= v ∗ ϕ(x)) for all u, v ∈ X, and
so {x, ϕ(x)} is a strongly right (left) independent.

Proposition 15
Let (X, ∗) be a groupoid, ϕ : X → X be a map, and let x ∈ 4R(ϕ) ∩4L(ϕ), then
{x, ϕ(x)} is a strongly independent.

Proof. Assume (X, ∗) is a groupoid, ϕ : X → X is a map, and let x ∈ 4R(ϕ) ∩
4L(ϕ)). Using Proposition 5.6, we get {x, ϕ(x)} is a strongly right and left inde-
pendent, and so a strongly independent.

Proposition 16
If (X, ∗) is a groupoid and x ∈ X is a dynamic for idempotent map ϕ, then ϕ2 6= I.

Proof. Assume (X, ∗) is a groupoid and x ∈ X is a dynamic for idempotent map
ϕ. Then ϕ2(x) = ϕ(ϕ(x)) = ϕ(x) 6= x, and so ϕ2 6= I.

Proposition 17
If (X, ∗) is a groupoid and x ∈ X is a dynamic for idempotent map ϕ, then x is a
dynamic for ϕ2.
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Proof. Assume (X, ∗) is a groupoid and x ∈ X is a dynamic for idempotent map
ϕ. Then ϕ(x) 6= x. Since ϕ is an idempotent map, we get ϕ2(x) = ϕ(x) 6= x, and
so x is a dynamic for ϕ2.

Proposition 18
Let (X, ∗) be an idempotent rightoid (resp. leftoid) for ϕ. Then 4L(ϕ) = ∅ (resp.
4R(ϕ) = ∅).

Proof. Assume (X, ∗) is an idempotent rightoid for ϕ and x ∈ X. Using an
idempotent operation, we have u ∗x = ϕ(x) = ϕ(ϕ(x)) = v ∗ϕ(x) for all u, v ∈ X,
and so x 6∈ 4L(ϕ).

Also, assume (X, ∗) is an idempotent leftoid for ϕ and x ∈ X. Using an
idempotent operation, we have x ∗u = ϕ(x) = ϕ(ϕ(x)) = ϕ(x) ∗ v for all u, v ∈ X,
and so x 6∈ 4R(ϕ).
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