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parameters of summation

Abstract. In the present work, some Hardy-type integral inequalities were
proved for two parameters of summation q ≤ p < 0 and p < 0, q > 0. In
addition, some two-sided estimates are obtained.

1. Introduction

Hardy type inequalities were studied by a large number of authors during the
20th century and have inspired some important research, which is now at work.
Over the two past decades, a large number of papers have been published with
various generalizations and applications.

The following statements were established in [5, Th.330, Th.347]. If p > 0,
r 6= 1, f(t) ≥ 0 and 0 <

∫∞
0 t−r(tf(t))pdt <∞,

F (x) =
∫ x

0
f(t)dt for r > 1, F (x) =

∫ ∞
x

f(t)dt for r < 1,

then for p > 1, one has∫ ∞
0

x−rF p(x)dx <
( p

|r − 1|

)p
∫ ∞

0
x−r(xf(x))pdx,

for 0 < p < 1, one has∫ ∞
0

x−rF p(x)dx >
( p

|r − 1|

)p
∫ ∞

0
x−r(xf(x))pdx,
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where the constant
(

p
|r−1|

)p is the best possible.
Bicheng Yang [4] proved the similar Hardy type integral inequalities for one

negative parameter of summation p < 0 in the following Theorem.

Theorem 1 (see [4])
If p < 0, r 6= 1, f(t) ≥ 0 and 0 <

∫∞
0 t−r(tf(t))pdt <∞,

F (x) =
∫ x

0
f(t)dt for r < 1, F (x) =

∫ ∞
x

f(t)dt for r > 1,

then one has ∫ ∞
0

x−rF p(x)dx ≤
( −p
|r − 1|

)p
∫ ∞

0
x−r(xf(x))pdx, (1.1)

where the constant
( −p
|r−1|

)p is the best possible.

In several cases the integral Hardy inequalities or Hardy type inequalities are
applied to functions or weighted functions satisfying additional conditions. In [3,
Theorem 1-3], the authors gave a generalization of inequality (1.1) by introducing
a monotone weighted function w.

Theorem 2 (see [3])
Let p < 0, f, w > 0 and

∫∞
0 w(x)−r(xf(x))pdx <∞, then

(a) If x
w(x) is non-decreasing and r > 1,∫ ∞

0
F p

1 (x)w−r(x)dx ≤
( p

1− r

)p
∫ ∞

0
(xf(x))pw−r(x)dx, (1.2)

where F1(t) =
∫∞

x
f(t)dt.

(b) If x
w(x) is non-increasing and 0 ≤ r < 1,∫ ∞

0
F p

2 (x)w−r(x)dx ≤
( p

r − 1

)p
∫ ∞

0
(xf(x))pw−r(x)dx, (1.3)

where F2(t) =
∫ x

0 f(t)dt.
(c) If x

w(x) is non-decreasing and r < 0,∫ ∞
0

F p
2 (x)w−r(x)dx ≤

( p

r − 1

)p
∫ ∞

0
(xf(x))pw−r(x)dx. (1.4)

In this work, two generalizations of Theorem 2 and the Theorem 1 are es-
tablished, first replacing (0,+∞) by (a, b), where 0 ≤ a < b ≤ +∞, second by
applying two negative parameters p, q. In addition, in the case of the cone of
monotone functions, two sided integral inequalities are obtained for p < 0, q > 0.

We need the following Hölder’s inequality for p < 0 (see [6], [1]).
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Lemma 1
If p < 0, 1

p + 1
p′ = 1, f ∈ Lp(E), g ∈ Lp′(E), where E is Lebesgue measurable set,

f(t), g(t) ≥ 0, then

∫
E

f(t)g(t)dt ≥
(∫

E

fp(t)dt
) 1

p
(∫

E

gp′(t)dt
) 1

p′

, (1.5)

where the equality holds if and only if there exists constants c and d, such they are
not all zero and

c fp(t) = d gp′(t), a.e. in E.

2. Main results

The following Lemma is useful in the proofs of the first result.

Lemma 2
Let p < 0, 0 ≤ a < b ≤ +∞ and f be a positive measurable function on (a, b),
defined F1(x) =

∫ b

x
f(t)dt and F2(x) =

∫ x

a
f(t)dt.

(a) If r > 1, then

F p
1 (x) ≤

( p

1− r

)p−1(
x

r−1
p − b

r−1
p
)p−1

∫ b

x

t
1+p−r

p′ fp(t)dt. (2.1)

(b) If r < 1, then

F p
2 (x) ≤

( p

r − 1

)p−1(
x

r−1
p − a

r−1
p
)p−1

∫ x

a

t
1+p−r

p′ fp(t)dt. (2.2)

Proof. Let p < 0. (a) Suppose that r > 1, using the Hölder inequality (1.5) for
1
p + 1

p′ = 1, we get

F1(x) =
∫ b

x

t
− 1+p−r

p′p t
1+p−r

p′p f(t)dt

≥
(∫ b

x

t−
1+p−r

p dt

) 1
p′
(∫ b

x

t
1+p−r

p′ fp(t)dt
) 1

p

=
( p

1− r

) 1
p′ (
x

r−1
p − b

r−1
p
) 1

p′

(∫ b

x

t
1+p−r

p′ fp(t)dt
) 1

p

,

which yields

F p
1 (x) ≤

( p

1− r

)p−1(
x

r−1
p − b

r−1
p
)p−1

∫ ∞
x

t
1+p−r

p′ fp(t)dt.
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(b) Suppose now r < 1, applying (1.5), we obtain

F2(x) =
∫ x

a

t
− 1+p−r

p′p t
1+p−r

p′p f(t)dt

≥
(∫ x

a

t−
1+p−r

p dt

) 1
p′
(∫ x

a

t
1+p−r

p′ fp(t)dt
) 1

p

=
( p

r − 1

) 1
p′ (
x

r−1
p − a

r−1
p
) 1

p′

(∫ x

a

t
1+p−r

p′ fp(t)dt
) 1

p

,

thus
F p

2 (x) ≤
( p

r − 1

)p−1(
x

r−1
p − a

r−1
p
)p−1

∫ x

a

t
1+p−r

p′ fp(t)dt.

Now, we state and prove the first generalization on (a, b).

Theorem 3
Let p < 0, r > 1, 0 ≤ a < b ≤ ∞ and f , w be positive measurable functions on
(a, b), F1(x) =

∫ b

x
f(t)dt. If x

w(x) is non-decreasing, then

∫ b

a

w−r(x)F p
1 (x)dx ≤

( p

1− r

)p
∫ b

a

w−r(x)
(

1−
(x
b

) 1−r
p
)p−1

(xf(x))pdx. (2.3)

Proof. Applying inequality (2.1) and the Fubini’s theorem, we get∫ b

a

w−r(x)F p
1 (x)dx

≤
( p

1− r

)p−1 ∫ b

a

∫ b

x

w−r(x)
(
x

r−1
p − b

r−1
p
)p−1

t
1+p−r

p′ fp(t)dtdx

=
( p

1− r

)p−1 ∫ b

a

t
1+p−r

p′ fp(t)
(∫ t

a

1
wr(x)x

r−1
p (p−1)

(
1−

( b
x

) r−1
p
)p−1

dx

)
dt

=
( p

1− r

)p−1 ∫ b

a

t
1+p−r

p′ fp(t)
(∫ t

a

( x

w(x)

)r

x
1−r

p −1
(

1−
(x
b

) 1−r
p
)p−1

dx

)
dt.

Since
(

x
w(x)

)r and
(
1−
(

x
b

) 1−r
p
)p−1 are non-decreasing functions on (a, t), therefore

∫ b

a

w−r(x)F p
1 (x)dx

≤
( p

1− r

)p−1 ∫ b

a

t
1+p−r

p′ fp(t)
( t

w(t)

)r(
1−

( t
b

) 1−r
p
)p−1

(∫ t

a

x
1−r

p −1dx

)
dt

=
( p

1− r

)p
∫ b

a

t
1+p−r

p′ fp(t)
( t

w(t)

)r(
1−

( t
b

) 1−r
p
)p−1(

t
1−r

p − a
1−r

p
)
dt
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≤
( p

1− r

)p
∫ b

a

t
1+p−r

p′ fp(t)
(

t

w(t)

)r (
1−

( t
b

) 1−r
p
)p−1

t
1−r

p dt

=
( p

1− r

)p
∫ b

a

w−r(t)
(

1−
( t
b

) 1−r
p
)p−1

(tf(t))pdt.

Remark 1
Taking b = +∞ in Theorem 3, we get∫ +∞

a

w−r(x)F p
1 (x)dx ≤

( p

1− r

)p
∫ +∞

a

w−r(x)(xf(x))pdx, (2.4)

where F1(x) =
∫ +∞

x
f(t)dt.

The inequality (2.4) which is a particular case of (2.3) is an extension of inequality
(1.2) and they coincide when a = 0.

Theorem 4
Let p < 0, r < 1, 0 ≤ a < b ≤ ∞ and f , w be positive measurable functions on
(a, b), F2(x) =

∫ x

a
f(t)dt.

(a) If 0 ≤ r < 1 and x
w(x) is non-increasing, then

∫ b

a

w−r(x)F p
2 (x)dx

≤
( p

r − 1

)p
∫ b

a

w−r(x)
(

1−
(a
x

) r−1
p
)p−1

(xf(x))pdx.

(2.5)

(b) If r < 0 and x
w(x) is a non-decreasing function, the inequality (2.5) holds.

Proof. (a). Suppose that 0 ≤ r < 1 and x
w(x) is a non-increasing function. Using

the inequality (2.2) of Lemma 2 and the Fubini’s theorem, we obtain

∫ b

a

w−r(x)F p
2 (x)dx

≤
( p

r − 1

)p−1 ∫ b

a

∫ x

a

w−r(x)
(
x

r−1
p − a

r−1
p
)p−1

t
1+p−r

p′ fp(t)dtdx

=
( p

r − 1

)p−1 ∫ b

a

t
1+p−r

p′ fp(t)
(∫ b

t

( x

w(x)

)r

x
1−r

p −1
(

1−
(a
x

) r−1
p
)p−1

dx

)
dt.

Since
(

x
w(x)

)r and
(
1−
(

a
x

) r−1
p
)p−1 are non-increasing functions on (t, b), it follows

that
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a

w−r(x)F p
2 (x)dx

≤
( p

r − 1

)p−1 ∫ b

a

t
1+p−r

p′ fp(t)
( t

w(t)

)r(
1−

(a
t

) r−1
p
)p−1

(∫ b

t

x
1−r

p −1dx

)
dt

=
( p

r − 1

)p
∫ b

a

t
1+p−r

p′ fp(t)
( t

w(t)

)r(
1−

(a
t

) r−1
p
)p−1(

t
1−r

p − b
1−r

p
)
dt

≤
( p

r − 1

)p
∫ b

a

t
1+p−r

p′ fp(t)
( t

w(t)

)r(
1−

(a
t

) r−1
p
)p−1

t
1−r

p dt

=
( p

r − 1

)p
∫ b

a

w−r(t)
(

1−
(a
t

) r−1
p
)p−1

(tf(t))pdt.

(b). The proof is similar if r < 0 and x
w(x) is a non-decreasing function.

Remark 2
Setting a = 0 in Theorem 4, we obtain∫ b

0
w−r(x)F p

2 (x)dx ≤
( p

r − 1

)p
∫ b

0
w−r(x)(xf(x))pdx, (2.6)

where F2(x) =
∫ b

0 f(t)dt.
The inequality (2.6) which is a special case of (2.5) is an extension of inequalities
(1.3) and (1.4), additionally they coincide when b = +∞.

We need the following lemma from [2] to prove the second result.

Lemma 3 (see [2])
Let −∞ < q ≤ p < 0 and φ, ψ be measurable positive functions on (a, b) and
suppose that 0 <

∫ b

a
φq(x)ψ(x)dx <∞, then

∫ b

a

φ p(x)ψ(x)dx ≤
(∫ b

a

ψ(x)dt
) q−p

q
(∫ b

a

φ q(x)ψ(x)dx
) p

q

. (2.7)

Inequality (2.7) holds for 0 < p ≤ q <∞ and is reversed for 0 < q ≤ p <∞.

Let −∞ < q ≤ p < 0, r 6= 1, putting φ(x) = xf(x) and ψ(x) = w−r(x) in
(2.7), we get∫ b

a

(xf(x))pw−r(x)dx ≤
(∫ b

a

w−r(x)dt
) q−p

q
(∫ b

a

(xf(x))qw−r(x)dx
) p

q

. (2.8)

The next result includes the second generalization with two negative parameters
of summation.

Corollary 1
Let −∞ < q ≤ p < 0, r 6= 1 and f , w be positive measurable functions on (0,+∞),
F1(x) =

∫ +∞
x

f(t)dt, F2(x) =
∫ x

0 f(t)dt.
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(a) If r > 1 and x
w(x) is non-decreasing, then

∫ +∞

0
F p

1 (x)w−r(x)dx ≤
( p

1− r

)p
(∫ +∞

0
w−r(x)dx

)1− p
q

×
(∫ +∞

0
(xf(x))qw−r(x)dx

) p
q

.

(2.9)

(b) If 0 ≤ r < 1 and x
w(x) is non-increasing, then

∫ +∞

0
F p

2 (x)w−r(x)dx ≤
( p

r − 1

)p
(∫ +∞

0
w−r(x)dx

)1− p
q

×
(∫ +∞

0
(xf(x))qw−r(x)dx

) p
q

.

(2.10)

(c) If r < 0 and x
w(x) is a non-decreasing function, inequality (2.10) holds.

Proof. The proof of (2.9) and (2.10) follows from Theorem 3 and from Theorem 4
by setting a = 0, b = +∞ and applying (2.8).

Remark 3
Taking p = q in the Corollary 1, we obtain inequalities (1.2), (1.3) and (1.4).

2.1. Case of monotone functions

We present here some estimates and two-sided estimates for
∫ b

a
F p

2 (x)w−r(x)dx
and

∫ b

a
F p

1 (x)w−r(x)dx in the case of monotonic functions, for this we need the
next Lemma.

Lemma 4
Let p < 0, q > 0, 0 ≤ a ≤ b ≤ ∞, φ , ψ be positive measurable functions on (a, b),
then ∫ b

a

φ(x)ψp(x)dx ≥
(∫ b

a

ψq(x)φ(x)dx
) p

q
(∫ b

a

φ(x)dx
)1− p

q

, (2.11)

∫ b

a

φ(x)ψq(x)dx ≥
(∫ b

a

ψp(x)φ(x)dx
) q

p
(∫ b

a

φ(x)dx
)1− q

p

. (2.12)

Proof. By applying the Hölder inequality (1.5) with exponent q
p < 0 and its con-

jugate ( q
p )′ = q

q−p , we have∫ b

a

φ(x)ψp(x)dx =
∫ b

a

ψp(x)(φ(x))p/q(φ(x))1−p/qdx

≥
(∫ b

a

ψq(x)φ(x)dx
) p

q
(∫ b

a

φ(x)dx
)1− p

q

.
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By choosing the exponent p
q < 0 instead of q

p < 0, inequality (2.12) is proved
similarly.

Now we state and prove the following result.

Theorem 5
Let p < 0, q > 0, 0 ≤ a < b < ∞, r 6= 1 and let f , w be positive measurable
functions on (a, b). If moreover F1(x) =

∫ b

x
f(t)dt and F2(x) =

∫ x

a
f(t)dt, then

(a) If f is non-decreasing then(∫ b

a

F q
1 (x)w−r(x)dx

) 1
q

≥
(∫ b

a

w−r(x)dx
) 1

q−
1
p
(∫ b

a

((b− x)f(x))pw−r(x)dx
) 1

p

.

(2.13)

(∫ b

a

F p
2 (x)w−r(x)dx

) 1
p

≤
(∫ b

a

w−r(x)dx
) 1

p−
1
q
(∫ b

a

((x− a)f(x))qw−r(x)dx
) 1

q

.

(2.14)

(b) If f is non-increasing then(∫ b

a

F p
1 (x)w−r(x)dx

) 1
p

≤
(∫ b

a

w−r(x)dx
) 1

p−
1
q
(∫ b

a

((b− x)f(x))q(x)w−r(x)dx
) 1

q

.

(2.15)

(∫ b

a

F q
2 (x)w−r(x)dx

) 1
q

≥
(∫ b

a

w−r(x)dx
) 1

q−
1
p
(∫ b

a

((x− a)f(x))p w−r(x)dx
) 1

p

.

(2.16)

Proof. (a). Let f be a positive non-decreasing function,∫ b

x

f(t)dt ≥ f(x)
∫ b

x

dt =
(
b− x

)
f(x),

then ∫ b

a

F q
1 (x)w−r(x)dx ≥

∫ b

a

((b− x)f(x))qw−r(x)dx.
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Applying (2.12) on the right hand side of the above inequality, we get∫ b

a

F q
1 (x)w−r(x)dx

≥
(∫ b

a

((b− x)f(x)
)p(x)w−r(x)dx

) q
p

(∫ b

a

w−r(x)dx
)1− q

p

,

(2.17)

then, we get (2.13). The proof of (2.16) is similar to that of (2.13).
(b). Let be f a positive non-decreasing function,

F2(x) =
∫ x

a

f(t)dt ≤
(
x− a

)
f(x),

since p < 0, we obtain∫ b

a

F p
2 (x)w−r(x)dx ≥

∫ b

a

((x− a)f(x))pw−r(x)dx.

Applying (2.11) on the right hand side of the above inequality, we deduce∫ b

a

F p
2 (x)w−r(x)dx

≥
(∫ b

a

((x− a) f(x))q w−r(x)dx
) p

q
(∫ b

a

w−r(x)dx
)1− p

q

,

(2.18)

thus, the desired inequality (2.14) is obtained. The proof (2.15) is similar to that
of (2.14).

Now we present some two sided integral inequalities.

Corollary 2
Let p < 0, q > 0, 0 ≤ a < b <∞, r < 1 and f be a positive non-decreasing and w
a positive measurable functions on (a, b), F2(x) =

∫ x

a
f(t)dt.

(a) If 0 ≤ r < 1 and x
w(x) is non-increasing, then

(∫ b

a

w−r(x)dx
)1− p

q
(∫ b

a

((x− a)f(x))qw−r(x)dx
) p

q

≤
∫ b

a

F p
2 (x)w−r(x)dx

≤
( p

r − 1

)p
∫ b

a

w−r(x)
(

1−
(a
x

) r−1
p
)p−1

(xfp(x))pdx.

(2.19)

(b) If r < 0 and x
w(x) is non-decreasing then (2.19) holds.

Proof. Inequality (2.19) is a direct consequence of (2.18) and (2.5).
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Combining the inequalities (2.17) and (2.3) we get the following corollary.
Corollary 3
Let p < 0, q > 0, 0 ≤ a < b < ∞, r > 1, f be a positive non-increasing and
let w be a positive measurable functions on (a, b), F1(x) =

∫ b

x
f(t)dt. If x

w(x) is
non-decreasing, then(∫ b

a

((b− x)f(x))q(x)w−r(x)dx
) p

q
(∫ b

a

w−r(x)dx
)1− p

q

≤
∫ b

a

F p
1 (x)w−r(x)dx

≤
( p

1− r

)p
∫ b

a

w−r(x)
(

1−
(x
b

) 1−r
p
)p−1

(xfp(x))rdx.
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