

FOLIA 385

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 22 (2023)

Noureddine Azzouz, Bouharket Benaissa and Abdelkader Senouci Some Hardy type integral inequalities with two parameters of summation

Abstract. In the present work, some Hardy-type integral inequalities were proved for two parameters of summation $q \le p < 0$ and p < 0, q > 0. In addition, some two-sided estimates are obtained.

1. Introduction

Hardy type inequalities were studied by a large number of authors during the 20th century and have inspired some important research, which is now at work. Over the two past decades, a large number of papers have been published with various generalizations and applications.

The following statements were established in [5, Th.330, Th.347]. If p > 0, $r \neq 1$, $f(t) \ge 0$ and $0 < \int_0^\infty t^{-r} (tf(t))^p dt < \infty$,

$$F(x) = \int_0^x f(t)dt \quad \text{for } r > 1, \qquad F(x) = \int_x^\infty f(t)dt \quad \text{for } r < 1,$$

then for p > 1, one has

$$\int_0^\infty x^{-r} F^p(x) dx < \left(\frac{p}{|r-1|}\right)^p \int_0^\infty x^{-r} (xf(x))^p dx,$$

for 0 , one has

$$\int_{0}^{\infty} x^{-r} F^{p}(x) dx > \left(\frac{p}{|r-1|}\right)^{p} \int_{0}^{\infty} x^{-r} (xf(x))^{p} dx,$$

AMS (2010) Subject Classification: 26D10, 26D15.

Keywords and phrases: Hölder type inequalities, Hardy type inequalities, parameters of summation.

ISSN: 2081-545X, e-ISSN: 2300-133X.

where the constant $\left(\frac{p}{|r-1|}\right)^p$ is the best possible.

Bicheng Yang [4] proved the similar Hardy type integral inequalities for one negative parameter of summation p < 0 in the following Theorem.

THEOREM 1 (see [4]) If $p < 0, r \neq 1, f(t) \ge 0$ and $0 < \int_0^\infty t^{-r} (tf(t))^p dt < \infty$,

$$F(x) = \int_0^x f(t)dt \quad \text{for } r < 1, \qquad F(x) = \int_x^\infty f(t)dt \quad \text{for } r > 1,$$

then one has

$$\int_{0}^{\infty} x^{-r} F^{p}(x) dx \le \left(\frac{-p}{|r-1|}\right)^{p} \int_{0}^{\infty} x^{-r} (xf(x))^{p} dx, \tag{1.1}$$

where the constant $\left(\frac{-p}{|r-1|}\right)^p$ is the best possible.

In several cases the integral Hardy inequalities or Hardy type inequalities are applied to functions or weighted functions satisfying additional conditions. In [3, Theorem 1-3], the authors gave a generalization of inequality (1.1) by introducing a monotone weighted function w.

THEOREM 2 (see [3]) Let p < 0, f, w > 0 and $\int_0^\infty w(x)^{-r} (xf(x))^p dx < \infty$, then

(a) If $\frac{x}{w(x)}$ is non-decreasing and r > 1,

$$\int_0^\infty F_1^p(x)w^{-r}(x)dx \le \left(\frac{p}{1-r}\right)^p \int_0^\infty (xf(x))^p w^{-r}(x)dx,$$
(1.2)

where $F_1(t) = \int_x^\infty f(t) dt$.

(b) If $\frac{x}{w(x)}$ is non-increasing and $0 \le r < 1$,

$$\int_{0}^{\infty} F_{2}^{p}(x)w^{-r}(x)dx \le \left(\frac{p}{r-1}\right)^{p}\int_{0}^{\infty} (xf(x))^{p}w^{-r}(x)dx,$$
(1.3)

where $F_2(t) = \int_0^x f(t) dt$.

(c) If $\frac{x}{w(x)}$ is non-decreasing and r < 0,

$$\int_0^\infty F_2^p(x)w^{-r}(x)dx \le \left(\frac{p}{r-1}\right)^p \int_0^\infty (xf(x))^p w^{-r}(x)dx.$$
(1.4)

In this work, two generalizations of Theorem 2 and the Theorem 1 are established, first replacing $(0, +\infty)$ by (a, b), where $0 \le a < b \le +\infty$, second by applying two negative parameters p, q. In addition, in the case of the cone of monotone functions, two sided integral inequalities are obtained for p < 0, q > 0.

We need the following Hölder's inequality for p < 0 (see [6], [1]).

[100]

LEMMA 1 If p < 0, $\frac{1}{p} + \frac{1}{p'} = 1$, $f \in L_p(E)$, $g \in L_{p'}(E)$, where E is Lebesgue measurable set, $f(t), g(t) \ge 0$, then

$$\int_{E} f(t)g(t)dt \ge \left(\int_{E} f^{p}(t)dt\right)^{\frac{1}{p}} \left(\int_{E} g^{p'}(t)dt\right)^{\frac{1}{p'}},\tag{1.5}$$

where the equality holds if and only if there exists constants c and d, such they are not all zero and

$$c f^p(t) = d g^{p'}(t), \qquad a.e. \ in \ E.$$

2. Main results

The following Lemma is useful in the proofs of the first result.

LEMMA 2 Let $p < 0, 0 \le a < b \le +\infty$ and f be a positive measurable function on (a,b), defined $F_1(x) = \int_x^b f(t)dt$ and $F_2(x) = \int_a^x f(t)dt$.

(a) If r > 1, then

$$F_1^p(x) \le \left(\frac{p}{1-r}\right)^{p-1} \left(x^{\frac{r-1}{p}} - b^{\frac{r-1}{p}}\right)^{p-1} \int_x^b t^{\frac{1+p-r}{p'}} f^p(t) dt.$$
(2.1)

(b) If r < 1, then

$$F_2^p(x) \le \left(\frac{p}{r-1}\right)^{p-1} \left(x^{\frac{r-1}{p}} - a^{\frac{r-1}{p}}\right)^{p-1} \int_a^x t^{\frac{1+p-r}{p'}} f^p(t) dt.$$
(2.2)

Proof. Let p < 0. (a) Suppose that r > 1, using the Hölder inequality (1.5) for $\frac{1}{p} + \frac{1}{p'} = 1$, we get

$$F_{1}(x) = \int_{x}^{b} t^{-\frac{1+p-r}{p'p}} t^{\frac{1+p-r}{p'p}} f(t) dt$$

$$\geq \left(\int_{x}^{b} t^{-\frac{1+p-r}{p}} dt \right)^{\frac{1}{p'}} \left(\int_{x}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) dt \right)^{\frac{1}{p}}$$

$$= \left(\frac{p}{1-r} \right)^{\frac{1}{p'}} \left(x^{\frac{r-1}{p}} - b^{\frac{r-1}{p}} \right)^{\frac{1}{p'}} \left(\int_{x}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) dt \right)^{\frac{1}{p}},$$

which yields

$$F_1^p(x) \le \left(\frac{p}{1-r}\right)^{p-1} \left(x^{\frac{r-1}{p}} - b^{\frac{r-1}{p}}\right)^{p-1} \int_x^\infty t^{\frac{1+p-r}{p'}} f^p(t) dt.$$

(b) Suppose now r < 1, applying (1.5), we obtain

$$F_{2}(x) = \int_{a}^{x} t^{-\frac{1+p-r}{p'p}} t^{\frac{1+p-r}{p'p}} f(t) dt$$

$$\geq \left(\int_{a}^{x} t^{-\frac{1+p-r}{p}} dt \right)^{\frac{1}{p'}} \left(\int_{a}^{x} t^{\frac{1+p-r}{p'}} f^{p}(t) dt \right)^{\frac{1}{p}}$$

$$= \left(\frac{p}{r-1} \right)^{\frac{1}{p'}} \left(x^{\frac{r-1}{p}} - a^{\frac{r-1}{p}} \right)^{\frac{1}{p'}} \left(\int_{a}^{x} t^{\frac{1+p-r}{p'}} f^{p}(t) dt \right)^{\frac{1}{p}},$$

thus

$$F_2^p(x) \le \left(\frac{p}{r-1}\right)^{p-1} \left(x^{\frac{r-1}{p}} - a^{\frac{r-1}{p}}\right)^{p-1} \int_a^x t^{\frac{1+p-r}{p'}} f^p(t) dt.$$

Now, we state and prove the first generalization on (a, b).

Theorem 3

Let $p < 0, r > 1, 0 \le a < b \le \infty$ and f, w be positive measurable functions on $(a,b), F_1(x) = \int_x^b f(t) dt$. If $\frac{x}{w(x)}$ is non-decreasing, then

$$\int_{a}^{b} w^{-r}(x) F_{1}^{p}(x) dx \leq \left(\frac{p}{1-r}\right)^{p} \int_{a}^{b} w^{-r}(x) \left(1 - \left(\frac{x}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} (xf(x))^{p} dx.$$
(2.3)

Proof. Applying inequality (2.1) and the Fubini's theorem, we get

$$\begin{split} &\int_{a}^{b} w^{-r}(x) F_{1}^{p}(x) dx \\ &\leq \left(\frac{p}{1-r}\right)^{p-1} \int_{a}^{b} \int_{x}^{b} w^{-r}(x) \left(x^{\frac{r-1}{p}} - b^{\frac{r-1}{p}}\right)^{p-1} t^{\frac{1+p-r}{p'}} f^{p}(t) dt dx \\ &= \left(\frac{p}{1-r}\right)^{p-1} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\int_{a}^{t} \frac{1}{w^{r}(x)} x^{\frac{r-1}{p}(p-1)} \left(1 - \left(\frac{b}{x}\right)^{\frac{r-1}{p}}\right)^{p-1} dx\right) dt \\ &= \left(\frac{p}{1-r}\right)^{p-1} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\int_{a}^{t} \left(\frac{x}{w(x)}\right)^{r} x^{\frac{1-r}{p}-1} \left(1 - \left(\frac{x}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} dx\right) dt \end{split}$$

Since $\left(\frac{x}{w(x)}\right)^r$ and $\left(1-\left(\frac{x}{b}\right)^{\frac{1-r}{p}}\right)^{p-1}$ are non-decreasing functions on (a, t), therefore

$$\begin{split} &\int_{a}^{b} w^{-r}(x) F_{1}^{p}(x) dx \\ &\leq \left(\frac{p}{1-r}\right)^{p-1} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\frac{t}{w(t)}\right)^{r} \left(1 - \left(\frac{t}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} \left(\int_{a}^{t} x^{\frac{1-r}{p}-1} dx\right) dt \\ &= \left(\frac{p}{1-r}\right)^{p} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\frac{t}{w(t)}\right)^{r} \left(1 - \left(\frac{t}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} \left(t^{\frac{1-r}{p}} - a^{\frac{1-r}{p}}\right) dt \end{split}$$

[102]

$$\leq \left(\frac{p}{1-r}\right)^p \int_a^b t^{\frac{1+p-r}{p'}} f^p(t) \left(\frac{t}{w(t)}\right)^r \left(1 - \left(\frac{t}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} t^{\frac{1-r}{p}} dt \\ = \left(\frac{p}{1-r}\right)^p \int_a^b w^{-r}(t) \left(1 - \left(\frac{t}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} (tf(t))^p dt.$$

Remark 1

Taking $b = +\infty$ in Theorem 3, we get

$$\int_{a}^{+\infty} w^{-r}(x) F_{1}^{p}(x) dx \le \left(\frac{p}{1-r}\right)^{p} \int_{a}^{+\infty} w^{-r}(x) (xf(x))^{p} dx, \qquad (2.4)$$

where $F_1(x) = \int_x^{+\infty} f(t) dt$. The inequality (2.4) which is a particular case of (2.3) is an extension of inequality (1.2) and they coincide when a = 0.

Theorem 4

Let $p < 0, r < 1, 0 \le a < b \le \infty$ and f, w be positive measurable functions on $(a,b), F_2(x) = \int_a^x f(t) dt$.

(a) If $0 \le r < 1$ and $\frac{x}{w(x)}$ is non-increasing, then

$$\int_{a}^{b} w^{-r}(x) F_{2}^{p}(x) dx$$

$$\leq \left(\frac{p}{r-1}\right)^{p} \int_{a}^{b} w^{-r}(x) \left(1 - \left(\frac{a}{x}\right)^{\frac{r-1}{p}}\right)^{p-1} (xf(x))^{p} dx.$$
(2.5)

(b) If r < 0 and $\frac{x}{w(x)}$ is a non-decreasing function, the inequality (2.5) holds.

Proof. (a). Suppose that $0 \le r < 1$ and $\frac{x}{w(x)}$ is a non-increasing function. Using the inequality (2.2) of Lemma 2 and the Fubini's theorem, we obtain

$$\begin{split} \int_{a}^{b} w^{-r}(x) F_{2}^{p}(x) dx \\ &\leq \left(\frac{p}{r-1}\right)^{p-1} \int_{a}^{b} \int_{a}^{x} w^{-r}(x) \left(x^{\frac{r-1}{p}} - a^{\frac{r-1}{p}}\right)^{p-1} t^{\frac{1+p-r}{p'}} f^{p}(t) dt dx \\ &= \left(\frac{p}{r-1}\right)^{p-1} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\int_{t}^{b} \left(\frac{x}{w(x)}\right)^{r} x^{\frac{1-r}{p}-1} \left(1 - \left(\frac{a}{x}\right)^{\frac{r-1}{p}}\right)^{p-1} dx\right) dt \end{split}$$

Since $\left(\frac{x}{w(x)}\right)^r$ and $\left(1-\left(\frac{a}{x}\right)^{\frac{r-1}{p}}\right)^{p-1}$ are non-increasing functions on (t,b), it follows that

[103]

$$\begin{split} &\int_{a}^{b} w^{-r}(x) F_{2}^{p}(x) dx \\ &\leq \left(\frac{p}{r-1}\right)^{p-1} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\frac{t}{w(t)}\right)^{r} \left(1 - \left(\frac{a}{t}\right)^{\frac{r-1}{p}}\right)^{p-1} \left(\int_{t}^{b} x^{\frac{1-r}{p}-1} dx\right) dt \\ &= \left(\frac{p}{r-1}\right)^{p} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\frac{t}{w(t)}\right)^{r} \left(1 - \left(\frac{a}{t}\right)^{\frac{r-1}{p}}\right)^{p-1} \left(t^{\frac{1-r}{p}} - b^{\frac{1-r}{p}}\right) dt \\ &\leq \left(\frac{p}{r-1}\right)^{p} \int_{a}^{b} t^{\frac{1+p-r}{p'}} f^{p}(t) \left(\frac{t}{w(t)}\right)^{r} \left(1 - \left(\frac{a}{t}\right)^{\frac{r-1}{p}}\right)^{p-1} t^{\frac{1-r}{p}} dt \\ &= \left(\frac{p}{r-1}\right)^{p} \int_{a}^{b} w^{-r}(t) \left(1 - \left(\frac{a}{t}\right)^{\frac{r-1}{p}}\right)^{p-1} (tf(t))^{p} dt. \end{split}$$

(b). The proof is similar if r < 0 and $\frac{x}{w(x)}$ is a non-decreasing function.

Remark 2

Setting a = 0 in Theorem 4, we obtain

$$\int_{0}^{b} w^{-r}(x) F_{2}^{p}(x) dx \le \left(\frac{p}{r-1}\right)^{p} \int_{0}^{b} w^{-r}(x) (xf(x))^{p} dx,$$
(2.6)

where $F_2(x) = \int_0^b f(t)dt$. The inequality (2.6) which is a special case of (2.5) is an extension of inequalities (1.3) and (1.4), additionally they coincide when $b = +\infty$.

We need the following lemma from [2] to prove the second result.

LEMMA 3 (see [2])

Let $-\infty < q \le p < 0$ and ϕ , ψ be measurable positive functions on (a,b) and suppose that $0 < \int_a^b \phi^q(x)\psi(x)dx < \infty$, then

$$\int_{a}^{b} \phi^{p}(x)\psi(x)dx \leq \left(\int_{a}^{b} \psi(x)dt\right)^{\frac{q-p}{q}} \left(\int_{a}^{b} \phi^{q}(x)\psi(x)dx\right)^{\frac{p}{q}}.$$
 (2.7)

Inequality (2.7) holds for $0 and is reversed for <math>0 < q \le p < \infty$.

Let $-\infty < q \le p < 0, r \ne 1$, putting $\phi(x) = xf(x)$ and $\psi(x) = w^{-r}(x)$ in (2.7), we get

$$\int_{a}^{b} (xf(x))^{p} w^{-r}(x) dx \le \left(\int_{a}^{b} w^{-r}(x) dt\right)^{\frac{q-p}{q}} \left(\int_{a}^{b} (xf(x))^{q} w^{-r}(x) dx\right)^{\frac{p}{q}}.$$
 (2.8)

The next result includes the second generalization with two negative parameters of summation.

COROLLARY 1

Let $-\infty < q \le p < 0, r \ne 1$ and f, w be positive measurable functions on $(0, +\infty)$, $F_1(x) = \int_x^{+\infty} f(t)dt, F_2(x) = \int_0^x f(t)dt.$

[104]

(a) If r > 1 and $\frac{x}{w(x)}$ is non-decreasing, then

$$\int_{0}^{+\infty} F_{1}^{p}(x)w^{-r}(x)dx \leq \left(\frac{p}{1-r}\right)^{p} \left(\int_{0}^{+\infty} w^{-r}(x)dx\right)^{1-\frac{p}{q}} \times \left(\int_{0}^{+\infty} (xf(x))^{q}w^{-r}(x)dx\right)^{\frac{p}{q}}.$$
(2.9)

(b) If $0 \le r < 1$ and $\frac{x}{w(x)}$ is non-increasing, then

$$\int_{0}^{+\infty} F_{2}^{p}(x)w^{-r}(x)dx \leq \left(\frac{p}{r-1}\right)^{p} \left(\int_{0}^{+\infty} w^{-r}(x)dx\right)^{1-\frac{p}{q}} \times \left(\int_{0}^{+\infty} (xf(x))^{q}w^{-r}(x)dx\right)^{\frac{p}{q}}.$$
(2.10)

(c) If r < 0 and $\frac{x}{w(x)}$ is a non-decreasing function, inequality (2.10) holds.

Proof. The proof of (2.9) and (2.10) follows from Theorem 3 and from Theorem 4 by setting $a = 0, b = +\infty$ and applying (2.8).

Remark 3

Taking p = q in the Corollary 1, we obtain inequalities (1.2), (1.3) and (1.4).

2.1. Case of monotone functions

We present here some estimates and two-sided estimates for $\int_a^b F_2^p(x)w^{-r}(x)dx$ and $\int_a^b F_1^p(x)w^{-r}(x)dx$ in the case of monotonic functions, for this we need the next Lemma.

LEMMA 4 Let $p < 0, q > 0, 0 \le a \le b \le \infty, \phi$, ψ be positive measurable functions on (a, b), then

$$\int_{a}^{b} \phi(x)\psi^{p}(x)dx \ge \left(\int_{a}^{b} \psi^{q}(x)\phi(x)dx\right)^{\frac{p}{q}} \left(\int_{a}^{b} \phi(x)dx\right)^{1-\frac{p}{q}},$$
(2.11)

$$\int_{a}^{b} \phi(x)\psi^{q}(x)dx \ge \left(\int_{a}^{b} \psi^{p}(x)\phi(x)dx\right)^{\frac{q}{p}} \left(\int_{a}^{b} \phi(x)dx\right)^{1-\frac{q}{p}}.$$
(2.12)

Proof. By applying the Hölder inequality (1.5) with exponent $\frac{q}{p} < 0$ and its conjugate $(\frac{q}{p})' = \frac{q}{q-p}$, we have

$$\begin{split} \int_a^b \phi(x)\psi^p(x)dx &= \int_a^b \psi^p(x)(\phi(x))^{p/q}(\phi(x))^{1-p/q}dx\\ &\geq \left(\int_a^b \psi^q(x)\phi(x)dx\right)^{\frac{p}{q}} \left(\int_a^b \phi(x)dx\right)^{1-\frac{p}{q}}. \end{split}$$

[105]

By choosing the exponent $\frac{p}{q}<0$ instead of $\frac{q}{p}<0,$ inequality (2.12) is proved similarly.

Now we state and prove the following result.

Theorem 5

Let $p < 0, q > 0, 0 \le a < b < \infty, r \ne 1$ and let f, w be positive measurable functions on (a,b). If moreover $F_1(x) = \int_x^b f(t)dt$ and $F_2(x) = \int_a^x f(t)dt$, then

(a) If f is non-decreasing then

$$\left(\int_{a}^{b} F_{1}^{q}(x)w^{-r}(x)dx\right)^{\frac{1}{q}} \geq \left(\int_{a}^{b} w^{-r}(x)dx\right)^{\frac{1}{q}-\frac{1}{p}} \left(\int_{a}^{b} ((b-x)f(x))^{p}w^{-r}(x)dx\right)^{\frac{1}{p}}.$$
(2.13)

$$\left(\int_{a}^{b} F_{2}^{p}(x)w^{-r}(x)dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w^{-r}(x)dx\right)^{\frac{1}{p}-\frac{1}{q}} \left(\int_{a}^{b} ((x-a)f(x))^{q}w^{-r}(x)dx\right)^{\frac{1}{q}}.$$
(2.14)

(b) If f is non-increasing then

$$\left(\int_{a}^{b} F_{1}^{p}(x)w^{-r}(x)dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} w^{-r}(x)dx\right)^{\frac{1}{p}-\frac{1}{q}} \left(\int_{a}^{b} ((b-x)f(x))^{q}(x)w^{-r}(x)dx\right)^{\frac{1}{q}}.$$
(2.15)

$$\left(\int_{a}^{b} F_{2}^{q}(x)w^{-r}(x)dx\right)^{\frac{1}{q}} \geq \left(\int_{a}^{b} w^{-r}(x)dx\right)^{\frac{1}{q}-\frac{1}{p}} \left(\int_{a}^{b} ((x-a)f(x))^{p} w^{-r}(x)dx\right)^{\frac{1}{p}}.$$
(2.16)

Proof. (a). Let f be a positive non-decreasing function,

$$\int_{x}^{b} f(t)dt \ge f(x) \int_{x}^{b} dt = (b - x)f(x),$$

then

$$\int_{a}^{b} F_{1}^{q}(x)w^{-r}(x)dx \ge \int_{a}^{b} ((b-x)f(x))^{q}w^{-r}(x)dx.$$

[106]

Applying (2.12) on the right hand side of the above inequality, we get

$$\int_{a}^{b} F_{1}^{q}(x) w^{-r}(x) dx \\ \geq \left(\int_{a}^{b} ((b-x)f(x))^{p}(x) w^{-r}(x) dx \right)^{\frac{q}{p}} \left(\int_{a}^{b} w^{-r}(x) dx \right)^{1-\frac{q}{p}},$$
(2.17)

then, we get (2.13). The proof of (2.16) is similar to that of (2.13). (b). Let be f a positive non-decreasing function,

$$F_2(x) = \int_a^x f(t)dt \le (x-a)f(x),$$

since p < 0, we obtain

$$\int_{a}^{b} F_{2}^{p}(x)w^{-r}(x)dx \ge \int_{a}^{b} ((x-a)f(x))^{p}w^{-r}(x)dx.$$

Applying (2.11) on the right hand side of the above inequality, we deduce

$$\int_{a}^{b} F_{2}^{p}(x) w^{-r}(x) dx \\ \geq \left(\int_{a}^{b} ((x-a) f(x))^{q} w^{-r}(x) dx \right)^{\frac{p}{q}} \left(\int_{a}^{b} w^{-r}(x) dx \right)^{1-\frac{p}{q}},$$
(2.18)

thus, the desired inequality (2.14) is obtained. The proof (2.15) is similar to that of (2.14).

Now we present some two sided integral inequalities.

COROLLARY 2

Let $p < 0, q > 0, 0 \le a < b < \infty, r < 1$ and f be a positive non-decreasing and w a positive measurable functions on $(a, b), F_2(x) = \int_a^x f(t) dt$.

(a) If $0 \le r < 1$ and $\frac{x}{w(x)}$ is non-increasing, then

$$\left(\int_{a}^{b} w^{-r}(x)dx\right)^{1-\frac{p}{q}} \left(\int_{a}^{b} ((x-a)f(x))^{q}w^{-r}(x)dx\right)^{\frac{p}{q}} \le \int_{a}^{b} F_{2}^{p}(x)w^{-r}(x)dx \qquad (2.19)$$
$$\le \left(\frac{p}{r-1}\right)^{p} \int_{a}^{b} w^{-r}(x)\left(1-\left(\frac{a}{x}\right)^{\frac{r-1}{p}}\right)^{p-1} (xf^{p}(x))^{p}dx.$$

(b) If r < 0 and $\frac{x}{w(x)}$ is non-decreasing then (2.19) holds.

Proof. Inequality (2.19) is a direct consequence of (2.18) and (2.5).

[107]

Combining the inequalities (2.17) and (2.3) we get the following corollary.

Corollary 3

Let $p < 0, q > 0, 0 \le a < b < \infty, r > 1$, f be a positive non-increasing and let w be a positive measurable functions on (a,b), $F_1(x) = \int_x^b f(t)dt$. If $\frac{x}{w(x)}$ is non-decreasing, then

$$\begin{split} \left(\int_{a}^{b} ((b-x)f(x))^{q}(x)w^{-r}(x)dx\right)^{\frac{p}{q}} \left(\int_{a}^{b} w^{-r}(x)dx\right)^{1-\frac{p}{q}} \\ & \leq \int_{a}^{b} F_{1}^{p}(x)w^{-r}(x)dx \\ & \leq \left(\frac{p}{1-r}\right)^{p} \int_{a}^{b} w^{-r}(x)\left(1-\left(\frac{x}{b}\right)^{\frac{1-r}{p}}\right)^{p-1} (xf^{p}(x))^{r}dx. \end{split}$$

References

- Benaissa, Bouharket. "On the Reverse Minkowski's Integral Inequality." Kragujevac J. Math. 46, no. 3 (2022): 407-416. DOI: 10.46793/kgjmat2203.407b. Cited on 100.
- [2] Benaissa, Bouharket. "A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities." J. Siberian Fed. Univ. Math. Phys. 15, no. 3 (2022): 319-328. DOI:10.17516/1997-1397-2022-15-3-319-328. Cited on 104.
- [3] Benaissa, Bouharket, and Mehmet Zeki Sarikaya. "Generalisation of some Hardytype integral inequality with negative parameter." *Bulletin of the Transilvania* University of Brasov 13 (2020): 69-76. DOI: 10.31926/but.mif.2020.13.62.1.6. Cited on 100.
- [4] Bicheng, Yang. "On a new Hardy integral inequalities." Int. Math. Forum 2, no. 65-68 (2007): 3317-3322. Cited on 100.
- [5] Hardy, Godfrey H., John E. Littlewood, and George Pólya. *Inequalities.* Cambridge: Cambridge University Press, 1952. Cited on 99.
- [6] Kuang, Ji Chang. Applied Inequalities. Changsha: Human Education Press, 1993. Cited on 100.

Noureddine Azzouz Faculty of Sciences University Center Nour Bachir El Bayadh Laboratory of Informatics and Mathematics University of Tiaret Algeria E-mail: azzouz_n@live.fr

Bouharket Benaissa Faculty of Material Sciences Laboratory of Informatics and Mathematics University of Tiaret Algeria E-mail: bouharket.benaissa@univ-tiaret.dz

[108]

Abdelkader Senouci Faculty of Mathematics and Informatics Laboratory of Informatics and Mathematics University of Tiaret Algeria E-mail: kamer295@yahoo.fr

Received: March 5, 2023; final version: May 16, 2023; available online: July 21, 2023.