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q-Cesàro double sequence space L̃q
s derived by

q-analog

Abstract. This study includes the new Banach space L̃q
s designed as the do-

main in Ls space of the 4d (4-dimensional) q-Cesàro matrix obtained as the
q-analog of the well-known 4d Cesàro matrix. After showing the complete-
ness of the aforementioned space, giving some inclusion relations, determin-
ing the fundamental set of this space and calculating the duals, finally, some
matrix transformations related to the new space were characterized.

1. Introduction

Although the first q-analog studies date back to the 19th century, some mathe-
maticians have been intensely interested in the q-analogs of the some of the known
results. As in many other subjects, q-analogs have a widespread application es-
pecially in combinatorics, special functions and recently in sequence spaces. The
q-analog of any number or expression is more general then these that includes a
parameter q and the original number or expression is obtained when the limit is
taken for q = 1.

All positive real numbers’ set is demonsrated with R+. The q-analog of a
z ∈ R+ ∪ {0} is described as

[z]q =


1− qz

1− q , q ∈ R+ − {1},

z, q = 1.
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A double sequence is a function described as F : N×N→ ζ, (t, k) 7→ F (t, k) =
utk, where ζ represents any non-empty set and N is the natural numbers’ set
containing zero. The notion of convergence of double sequences of real numbers
was presented by Pringsheim [31] at the beginning of the 20th century. A few
years later, the concept of regular convergence, which requires convergence for
each index separately in addition to convergence in the Pringsheim’s sense, was
also developed by Hardy [23]. Later, Zeltser [40] has fundamentally presented
results regarding the topological structure of double sequences. All convergent in
the Pringsheim’s sense (P-convergent), regular convergent, s-absolutely summable
and bounded double sequences’ spaces are represented by CP , Cr, Ls and Mu,
respectively. It is worth mentioning that, P-convergent any double sequence can
be bounded or unbounded. All double sequences’ space, both P-convergent and
bounded, is represented by CbP . When s = 1 is selected, the Lu space introduced
by Zeltser [41] is obtained from the Ls space described by Başar and Sever [4].
The vector space of all real valued double sequences represented by Ω.

In the rest of the study, it will be preferred to write the sum
∑
t,k in place of∑∞

t=0
∑∞
k=0. For ϑ ∈ {P, bP, r}, if any u = (utk) ∈ Ω is ϑ-convergent to a limit

point L, then it is written as ϑ−limt,k→∞ utk = L. All null double sequences’ space
is represented by Cϑ0. Zeltser [41] described the double sequences ezn = (ezntk ) by

ezntk :=
{

1, if (z, n) = (t, k),

0, elsewhere

and e by e =
∑
z,n e

zn. For any 4d matrix B = (bzntk), if bzntk = 0 for t > z or
k > n or both for all z, n, t, k ∈ N, it is said that B = (bzntk) is a triangular matrix
and also if bznzn 6= 0 for all z, n ∈ N, in that case the 4d triangular matrix B is
entitled as triangle.

Let us envision that double sequence spaces Ψ and Λ, a sequence u = (utk) ∈ Ψ
and the 4d matrix B = (bzntk). For all u = (utk), if (Bu)zn = ϑ −

∑
t,k bzntkutk

(the B-transform of u) is in Λ, then B is a matrix mapping from Ψ into Λ and we
denote this situation by B : Ψ→ Λ. Also, B ∈ (Ψ : Λ) if and only if Bzn ∈ Ψβ(ϑ)

and Bu ∈ Λ, where Bzn = (bzntk)t,k∈N and (Ψ : Λ) = {B = (bzntk) : B : Ψ→ Λ}
for every z, n ∈ N.

The set Ψ(ϑ)
B described as

Ψ(ϑ)
B :=

{
u = (utk) ∈ Ω : Bu :=

(
ϑ−
∑
t,k

bzntkutk

)
z,n∈N

exists, Bu ∈ Ψ ⊂ Ω
}

(1)

represents the ϑ-domain of the 4d matrix B.
The 4d matrix that transforms every double sequence both bounded and P-

convergent into a P-convergent double sequence without changing the limit is
named as the RH-regular matrix [22, 32].

Both single and double sequences, their spaces and matrix domains have been
seen as interesting topics in mathematics by the authors, and in recent years, many
studies have been done in this area. Altay and Başar [3] have been described and
studies some double series spaces, including BS and CSϑ spaces, whose sequences
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of partial sums are in the spacesMu and Cϑ, respectively. After that, some authors
such as Çapan and Başar [12, 13], Demiriz and Duyar [15, 16], Demiriz and Erdem
[18, 19], Erdem and Demiriz [20, 21], Mursaleen and Başar [29], Tuğ [33, 34, 35]
and Yeşilkayagil and Başar [38, 39] described the spaces obtained as the domains
of some special 4d matrices and elaborated on some inclusion relations, duals and
matrix transformations related these spaces. On the other hand, Aktuğlu and
Bekar [2] and Bekar [6] introduced a q-analog of the well-known 2d Cesàro matrix
and they examined some properties of this matrix. Furthermore, Demiriz and
Şahin [17] and Yaying et al. [36] obtained new spaces as the domains of q-analog of
the 2d Cesàro matrix and Yaying et al. [37] obtained new spaces as the domains of
(p, q)-analog of the 2d Binomial matrix and scrutinized the aforementioned spaces.
Researchers who want to get more detailed information about summability theory,
2d and 4d matrices, single and double sequence spaces, matrix domains and other
related subjects can benefit from the studies [1, 5, 8, 9, 10, 11, 24, 25, 26, 27, 28,
30, 42].

In parallel with the studies mentioned above, in the current study, it is obtained
the new double sequence space as the domain of the 4d q-Cesàro matrix described
by Çinar and Et [14] in the space Ls, which is the q-analog of the ordinary 4d
Cesàro matrix for 0 < s < ∞. After giving some results about the newly defined
space, we expressed the some duals of the space and lastly completed the article
with some matrix transformations and corollaries.

2. q-Cesàro double sequence space L̃q
s

In the current part, it is introduced the space L̃qs ∈ Ω for 0 < s < ∞ and
is shown that this space is complete and linearly isomorphic to Ls. Then, to
determine the location of the newly defined space among the other spaces, it is
given inclusion relations and finally, is calculated the fundamental set of L̃qs.

The ordinary first order 4d Cesàro matrix C = (czntk) presented by

czntk :=


1

(z + 1)(n+ 1) , 0 ≤ t ≤ z, 0 ≤ k ≤ n,

0, otherwise

for all z, n, t, k ∈ N.
Recently, the 4d q-Cesàro matrix C(1,1)(q) = (czntk(q)) which is the q-analog

of the first order ordinary 4d Cesàro matrix was given by Çinar and Et [14] as

czntk(q) :=


qt+k

[z + 1]q[n+ 1]q
, 0 ≤ t ≤ z, 0 ≤ k ≤ n,

0, otherwise

for all z, n, t, k ∈ N and we also know from the aforementioned study that the 4d
q-Cesàro matrix is RH-regular for q ≥ 1. The inverse of the 4d q-Cesàro matrix is
given by
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c−1
zntk(q) :=

(−1)z+n−(t+k) [t+ 1]q[k + 1]q
qz+n , z − 1 ≤ t ≤ z, n− 1 ≤ k ≤ n,

0, otherwise.

From its definition, we can understand that C(1,1)(q) is a triangle. Further-
more, C(1,1)(q)-transform of a double sequence u = (utk) is stated as

νzn := (C(1,1)(q)u)zn = 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk, z, n ∈ N. (2)

To draw attention to an important point, for q = 1, C(1,1)(q) is turned into ordinary
4d Cesàro matrix C. So, the matrix C(1,1)(q) generalizes the 4d matrix C.

In the current paper, we introduce the set L̃qs of all q-Cesàro absolutely s-
summable double sequences by

L̃qs =
{
u = (utk) ∈ Ω :

∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk

∣∣∣∣s <∞}, 0 < s <∞.

In that case, the set L̃qs can be rewritten as L̃qs = (Ls)C(1,1)(q) with the notation
(1). Let Ψ is a normed double sequence space. In that case, the matrix domain
ΨC(1,1)(q) is called as the q-Cesàro double sequence space.

It should be noted that for the case q = 1, L̃qs turns into the Cesàro double
sequence space L̃s which is described and examined by Mursaleen and Başar [29].

In the rest of the study, all terms with a negative index will be considered zero
and it will be assumed that q > 1. Now, we are ready to give the theorem about
the completeness of the set we just defined.

Theorem 1
The following statements hold:

(i) For the case 0 < s < 1, the set L̃qs is a complete s-normed space with

‖u‖oL̃q
s

= ‖C(1,1)(q)u‖oLs
=
∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk

∣∣∣∣s.
(ii) For the case 1 ≤ s <∞, the set L̃qs is a Banach space with

‖u‖L̃q
s

= ‖C(1,1)(q)u‖Ls
=
(∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk

∣∣∣∣s) 1
s

.

Proof. Since the proofs of both parts are similar, the theorem will only be proved
for the second part.

We can immediately see that L̃qs is a vector space and the function ‖.‖L̃q
s
is a

norm on the space L̃qs for 1 ≤ s <∞, so we omit these.
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For the aim of L̃qs is a Banach space, let us take a Cauchy sequence u(m) =(
u

(m)
tk

)
∈ L̃qs for a fixed m ∈ N. Then, for all ε > 0, there exists an N ∈ N such

that

‖u(m) − u(l)‖L̃q
s

=
(∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k
(
u

(m)
tk − u

(l)
tk

)∣∣∣∣s) 1
s

=
(∑
z,n

∣∣(C(1,1)(q)u(m))
zn
−
(
C(1,1)(q)u(l))

zn

∣∣s) 1
s

< ε

(3)

for all m, l > N . This says us that
{(
C(1,1)(q)u(m))

zn

}
m∈N is a Cauchy sequence

in Ls. Since, the space Ls is a Banach space for 1 ≤ s < ∞, the sequence{(
C(1,1)(q)u(m))

zn

}
m∈N converges, that is{(

C(1,1)(q)u(m))
zn

}
m∈N → (C(1,1)(q)u)zn, m→∞.

Then, by using these infinitely limit points, it can be described the sequence
(C(1,1)(q)u)zn.

Now, we must show the relation (C(1,1)(q)u)zn ∈ Ls in the rest of the proof.
Since

{(
C(1,1)(q)u(m))

zn

}
m∈N ∈ Ls, then we can write the inequality

(∑
z,n

∣∣(C(1,1)(q)u(m))
zn

∣∣s) 1
s <∞.

Thus, it is easy to reach the fact (C(1,1)(q)u)zn ∈ Ls from the following inequality
by applying limit on (3) for l→∞,

‖(C(1,1)(q)u)zn‖Ls
=
(∑
z,n

|(C(1,1)(q)u)zn|s
) 1

s

≤
(∑
z,n

∣∣(C(1,1)(q)u(m))zn − (C(1,1)(q)u)zn
∣∣s) 1

s

+
(∑
z,n

∣∣(C(1,1)(q)u(m))zn
∣∣s) 1

s

<∞.

Consequently, u ∈ L̃qs and L̃qs is complete with ‖.‖L̃q
s
for 1 ≤ s <∞.

Theorem 2
The spaces L̃qs and Ls are linearly norm isomorphic for 1 ≤ s <∞.

Proof. For the proof, it must be shown that there is a norm-preserving bijection
between the aforementioned spaces. The linearity of the function described for
this purpose as L : L̃qs → Ls, L(u) = C(1,1)(q)u can be seen immediately. Besides
this, from the proposition L(u) = 0⇒ u = 0, L is decided to be an injection.
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By taking into account the sequences ν = (νtk) ∈ Ls and u = (utk) whose
terms are

uzn = 1
qz+n

z∑
t=z−1

n∑
k=n−1

(−1)z+n−(t+k)[t+ 1]q[k + 1]qνtk, z, n ∈ N,

we reach the surjectivity of L from the following expression

‖u‖L̃q
s

=
(∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk

∣∣∣∣s) 1
s

=
(∑
z,n

∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k

×
z∑

t=z−1

n∑
k=n−1

1
qt+k

(−1)t+k−(i+j)[i+ 1]q[j + 1]qνij
∣∣∣∣s) 1

s

=
(∑
z,n

|νzn|s
) 1

s

= ‖ν‖Ls
<∞.

Since the relation ‖u‖L̃q
s

= ‖ν‖Ls
holds for 1 ≤ s <∞, then L keeps the norm.

Now, we may present following findings regarding inclusion relations.

Theorem 3
The inclusion Ls ⊂ L̃qs is valid for 1 ≤ s <∞.

Proof. Let us take a sequence u = (utk) ∈ Ls for 1 < s < ∞. Then, from the
Holder’s inequality and the relation (2), it is achieved that

|νzn|s =
∣∣∣∣ 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+kutk

∣∣∣∣s

≤
(

1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k|utk|s
)

×
(

1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k
)s−1

= 1
[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k|utk|s.

(4)

By taking sum over the z, n ∈ N on the inequality (4), it is seen that

∑
z,n

|νzn|s ≤
∑
z,n

(
1

[z + 1]q[n+ 1]q

z,n∑
t,k=0

qt+k|utk|s
)
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=
∞,∞∑
t,k=0

|utk|s
( ∞∑
z=t

∞∑
n=k

qt+k

[z + 1]q[n+ 1]q

)
.

Thus, it is seen that ‖u‖sL̃q
s
≤M‖u‖sLs

<∞, where

M = sup
t,k∈N

( ∞∑
z=t

∞∑
n=k

qt+k

[z + 1]q[n+ 1]q

)
.

This implies that u ∈ L̃qs, that is Ls ⊂ L̃qs which is desired result. The case s = 1
can also be represented in the same way.

Theorem 4
The inclusion L̃s ⊂ L̃qs holds. Moreover, if s = 1, then the inclusion is strict.

Proof. Since, the space L̃qs reduced to the space L̃s whenever q approaches 1, the
inclusion part is clear. For the case s = 1, by the aid of the sequence e00, we
obtain (C(1,1)(q)e00)zn =

( 1
[z+1]q [n+1]q

)
zn
∈ Lu, that is e00 ∈ L̃u

q but (Ce00)zn =( 1
(z+1)(n+1)

)
zn

/∈ Lu, that is e00 /∈ L̃u. These say us that the inclusion L̃s ⊂ L̃qs
strict for s = 1, as claimed.

Theorem 5
The inclusion L̃qs ⊂ L̃qs1

is strict for 1 ≤ s < s1 <∞.

Proof. Consider the sequence u = (utk) ∈ L̃qs such that C(1,1)(q)u ∈ Ls. We know
from the Başar and Sever [4] that if 1 ≤ s < s1, then Ls ⊂ Ls1 . Therefore,
C(1,1)(q)u ∈ Ls1 , that is u = (utk) ∈ L̃qs1

. Thus, inclusion part holds.
For the strictness part, let us take a sequence ν̃ ∈ Ls1 \ Ls and consider the

sequence ũ = (ũzn) described as

ũzn = [z + 1]q[n+ 1]q ν̃z,n − [z]q[n+ 1]q ν̃z−1,n

qz+n

+ −[z + 1]q[n]q ν̃z,z−1 + [z]q[n]q ν̃z−1,n−1

qz+n .

Then, it is concluded that C(1,1)(q)ũ = ν̃ and thus ũ ∈ L̃qs1
\ L̃qs. Consequently,

the inclusion is strict.

"A non-empty subset X of a locally convex space Ψ is called fundamental set
if the closure of the linear span of X equals Ψ [7, Boss]." In [38], Yeşilkayagil and
Başar have been proved that the set S = {etk : t, k ∈ N} is the fundamental set
of Ls for 0 < s <∞.
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Using this fact, we describe the double sequence dtk = (dtkzn) by the following way:

dtkzn :=



[t+ 1]q[k + 1]q
qt+k

, z = t, n = k,

− [t+ 1]q[k + 1]q
qt+k+1 , z = t, n = k + 1,

− [t+ 1]q[k + 1]q
qt+k+1 , z = t+ 1, n = k,

[t+ 1]q[k + 1]q
qt+k+2 , z = t+ 1, n = k + 1,

0, otherwise

for all z, n, t, k ∈ N. In that case, {dtk : t, k ∈ N} is the fundamental set of L̃qs for
0 < s <∞ because C(1,1)(q)dtk = etk.

3. Dual Spaces

Now, it is calculated the α-, β(ϑ)- and γ-duals of the space L̃qs. If Ψ and Λ
are two double sequence spaces, then the set D(Ψ : Λ) is described as

D(Ψ : Λ) =
{
x = (xzn) ∈ Ω : xu = (xznuzn) ∈ Λ for all (uzn) ∈ Ψ

}
.

In that case, α-, β(ϑ)- and γ-duals of the space Ψ are described as

Ψα = D(Ψ : Lu), Ψβ(ϑ) = D(Ψ : CSϑ) and Ψγ = D(Ψ : BS).

Now, we may give the following conditions and a table collected from the
studies [12, 13, 38] to characterize some 4d matrix classes:

sup
z,n,t,k∈N

|bzntk| <∞, (5)

sup
z,n∈N

∑
t,k

|bzntk|s
′
<∞, 1

s
+ 1
s′

= 1, (6)

sup
t,k∈N

∑
z,n

|bzntk|s1 <∞, (7)

∃ (btk) ∈ Ω 3 ϑ− lim
z,n→∞

bzntk = btk, (8)

Btk = (bzntk)z,n∈N ∈ Cϑ0. (9)

The symbol "•" represents unknown conditions for (Ψ : Λ).
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Table 1: Characterizations of (Ls : Λ), where Λ ∈ {Mu, Cϑ, Cϑ0, Ls1 }.

(Ψ ↓: Λ→) Mu Cϑ Cϑ0 Ls1(0 < s1 <∞)

Ls(0 < s ≤ 1) (5) (5),(8) (5),(9) (7)

Ls(1 < s <∞) (6) (6),(8) (6),(9) •

Theorem 6
Consider the set $1(q) described as

$1(q) =
{
x = (xzn) ∈ Ω : sup

t,k∈N

∞∑
z,n=0

gzntk

}
where the 4d matrix G = (gzntk) described by

gzntk :=


(−1)z+n−(t+k)

qz+n [t+ 1]q[k + 1]qxzn, z − 1 ≤ t ≤ z, n− 1 ≤ k ≤ n,

0, otherwise.

In that case, {L̃qs}α = $1(q) for 0 < s ≤ 1.

Proof. By using (2), we obtain that

xznuzn = xzn

( z∑
t=z−1

n∑
k=n−1

(−1)z+n−(t+k)

qz+n [t+ 1]q[k + 1]qνtk
)

=
z∑

t=z−1

n∑
k=n−1

( (−1)z+n−(t+k)

qz+n [t+ 1]q[k + 1]qxzn
)
νtk

= (Gν)zn

(10)

for u ∈ L̃qs. Hence, by the aid of the equality (10) it is obtained that "xu =
(xznuzn) ∈ Lu when u ∈ L̃qs if and only if Gν ∈ Lu when ν ∈ Ls". In that case it
is reached the biconditional statement "x ∈ {L̃qs}α if and only if G ∈ (Ls : Lu)".
By taking into consideration the condition of the class (Ls : Ls1) for 0 < s ≤ 1
and s1 = 1 in Table 1 together with G = (gzntk) in place of B = (bzntk), it is
reached that {L̃qs}α = $1(q) for 0 < s ≤ 1.

Now, we may describe the sets $2(q), $3(q), $4(q) and $5(q) which will be
utilized in Theorem 7.

$2(q) =
{
x = (xtk) ∈ Ω :

∑
t,k

∣∣∣[t+ 1]q[k + 1]q∆11

( xtk
qt+k

)∣∣∣s′

<∞
}
,

$3(q) =
{
x = (xtk) ∈ Ω : sup

n∈N

∑
t

∣∣∣[t+ 1]q[n+ 1]q∆10

( xtn
qt+n

)∣∣∣s′

<∞
}
,

$4(q) =
{
x = (xtk) ∈ Ω : sup

r∈N

∑
k

∣∣∣[z + 1]q[k + 1]q∆01

( xzk
qz+k

)∣∣∣s′

<∞
}
,
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$5(q) =
{
x = (xtk) ∈ Ω : sup

z,n∈N

∣∣∣ [z + 1]q[n+ 1]qxzn
qz+n

∣∣∣s′

<∞
}
,

where

∆11

( xtk
qt+k

)
=
( xtk
qt+k

− xt+1,k + xt,k+1

qt+k+1 + xt+1,k+1

qt+k+2

)
,

∆10

( xtn
qt+n

)
=
( xtn
qt+n

− xt+1,n

qt+n+1

)
,

∆01

( xzk
qz+k

)
=
( xzk
qz+k −

xz,k+1

qz+k+1

)

and 1
s + 1

s′ = 1.

Theorem 7

{
L̃qs
}β(bP) =

5⋂
k=2

$k(q) for 1 < s <∞.

Proof. Let us choose two sequences x = (xtk) ∈ Ω and u ∈ L̃qs such that ν ∈ Ls
with the relation (2). In that case, we reach that

σzn =
z,n∑
t,k=0

xtkutk

=
z,n∑
t,k=0

xtk

(
1

qt+k

t∑
m=t−1

k∑
l=k−1

(−1)t+k−(m+l)[m+ 1]q[l + 1]qνml
)

=
z−1∑
t=0

[t+ 1]q[n+ 1]q∆10

( xtn
qt+n

)
νtn

+
n−1∑
k=0

[z + 1]q[k + 1]q∆01

( xzk
qz+k

)
νzk

+
z−1∑
t=0

n−1∑
k=0

[t+ 1]q[k + 1]q∆11

( xtk
qt+k

)
νtk

+ [z + 1]q[n+ 1]qxznνzn
qz+n = (Oν)zn,

(11)



q-Cesàro double sequence space L̃q
s derived by q-analog [121]

where the 4d matrix O = (ozntk) is described as

ozntk :=



[t+ 1]q[k + 1]q∆11

( xtk
qt+k

)
, 0 ≤ t ≤ z − 1, 0 ≤ k ≤ n− 1,

[t+ 1]q[n+ 1]q∆10

( xtn
qt+n

)
, 0 ≤ t ≤ z − 1, k = n,

[z + 1]q[k + 1]q∆01

( xzk
qz+k

)
, 0 ≤ k ≤ n− 1, t = z,

[z + 1]q[n+ 1]qxzn
qz+n , k = n, t = z,

0, elsewhere

(12)

for z, n, t, k ∈ N. In that case, from the relation (11), it is infered that xu =
(xtkutk) ∈ CSbP whenever u = (utk) ∈ L̃qs if and only if σ = (σzn) ∈ CbP whenever
ν ∈ Ls. This implies that x ∈ {L̃qs}β(bP) if and only if O ∈ (Ls : CbP). Hence, in
view of Table 1, the following statement

sup
z,n∈N

∑
t,k=0

|ozntk|s
′

= sup
z,n∈N

{ z−1∑
t=0

n−1∑
k=0

∣∣∣[t+ 1]q[k + 1]q∆11

( xtk
qt+k

)∣∣∣s′

+
z−1∑
t=0

∣∣∣[t+ 1]q[n+ 1]q∆10

( xtn
qt+n

)∣∣∣s′

+
n−1∑
k=0

∣∣∣[z + 1]q[k + 1]q∆01

( xzk
qz+k

)∣∣∣s′

+
∣∣∣ [z + 1]q[n+ 1]qxzn

qz+n

∣∣∣s′}
<∞

holds and we reach that∑
t,k

∣∣∣[t+ 1]q[k + 1]q∆11

( xtk
qt+k

)∣∣∣s′

<∞

sup
n∈N

∑
t

∣∣∣[t+ 1]q[n+ 1]q∆10

( xtn
qt+n

)∣∣∣s′

<∞

sup
z∈N

∑
k

∣∣∣[z + 1]q[k + 1]q∆01

( xzk
qz+k

)∣∣∣s′

<∞

∣∣∣ [z + 1]q[n+ 1]qxzn
qz+n

∣∣∣s′

∈Mu.

Thus, {L̃qs}β(bP) =
⋂5
k=2 $5(q) for 1 < s <∞.

Since its proof can be done similarly to Theorem 7, the following theorem will
be given without proof.
Theorem 8
The β(ϑ)-duals of L̃qs is the set {x = (xzn) ∈ Ω : O = (ozntk) ∈ (Ls : Cϑ)}, where
O = (ozntk) is described by (12) and ϑ ∈ {P, r}.
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4. Matrix Transformations

Current part aims to present the classes (L̃qs : Λ), where Λ ∈ {Mu, Cϑ, Cϑ0,Ls1}
for 0 < s, s1 <∞.

Theorem 9
Let B = (bzntk) and H = (hzntk) 4d matrices be given by the relation

hzntk = [t+ 1]q[k + 1]q∆tk
11

(bzntk
qz+n

)
. (13)

B ∈ (L̃qs : Λ) if and only if H ∈ (Ls : Λ) and

Bzn ∈ (L̃qs)β(ϑ) (14)

for 0 < s, s1 <∞, where Λ ∈ {Mu, Cϑ, Cϑ0,Ls1}.

Proof. If B ∈ (L̃qs : Λ), Bu ∈ Λ for all u ∈ L̃qs such that ν = C(1,1)(q)u ∈ Ls for
0 < s, s1 < ∞, where Λ ∈ {Mu, Cϑ, Cϑ0,Ls1}. This says us that Bzn ∈ (L̃qs)β(ϑ).
As the (i, j)-th partial sums of the series

∑
t,k bzntkutk we get

(Bu)[i,j]
zn =

i,j∑
t,k=0

bzntkutk

=
i−1∑
t=0

j−1∑
k=0

[t+ 1]q[k + 1]q∆tk
11

(bzntk
qt+k

)
νtk

+
i−1∑
t=0

[t+ 1]q[j + 1]q∆tj
10

(bzntj
qt+j

)

+
j−1∑
k=0

[i+ 1]q[k + 1]q∆ik
01

(bznik
qi+k

)
+ [i+ 1]q[j + 1]q

qi+j
bznij

(15)

for all z, n, i, j ∈ N. If we describe the 4d infinite matrix Hzn = (h[z,n]
ijtk ) as

h
[z,n]
ijtk :=



[t+ 1]q[k + 1]q∆tk
11

(bzntk
qt+k

)
, 0 ≤ t ≤ i− 1, 0 ≤ k ≤ j − 1,

[t+ 1]q[j + 1]q∆tj
10

(bzntj
qt+j

)
, 0 ≤ t ≤ i− 1, k = j,

[i+ 1]q[k + 1]q∆ik
01

(bznik
qi+k

)
, 0 ≤ k ≤ j − 1, t = i,

[i+ 1]q[j + 1]q
qi+j

bznij , k = j, t = i,

0, otherwise

the relation (15) can be restated as

(Bu)[i,j]
zn = (Hznν)[i,j]. (16)
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Furthermore, when it is taken ϑ-limit on Hzn = (h[z,n]
ijtk ) as i, j →∞, it is seen that

ϑ− lim
i,j→∞

h
[z,n]
ijtk = [t+ 1]q[k + 1]q∆tk

11

(bzntk
qt+k

)
. (17)

By the aid of (17), we can describe the 4d matrix H = (hzntk) as

hzntk = [t+ 1]q[k + 1]q∆tk
11

(bzntk
qt+k

)
and also by taking ϑ-limit on (16) for i, j → ∞, it is reached that Bu = Hν. So,
Hν ∈ Λ when ν ∈ Ls and H ∈ (Ls : Λ).

On the other hand, consider that Bzn ∈ (L̃qs)β(ϑ) and H ∈ (Ls : Λ) for
0 < s, s1 < ∞, where Λ ∈ {Mu, Cϑ, Cϑ0,Ls1}. Let us take the sequence u ∈ L̃qs
such that ν = C(1,1)(q)u ∈ Ls. In that case, Bu exists. Also, from the (i, j)-th
partial sums of

∑
t,k bzntkutk we reach that

i,j∑
t,k=0

bzntkutk =
i,j∑

t,k=0
h

[z,n]
ijtk νtk

for all z, n, t, k ∈ N. By letting ϑ-limit as i, j → ∞ on the equality above, it is
concluded that Bu = Hν. Thus, B ∈ (L̃qs : Λ).

Corollary 1
Let B = (bzntk) and H = (hzntk) 4d matrices be given by the relation (13). In that
case, in addition to providing the condition (14) for each classes, the necessary
and sufficient conditions for the classes (L̃qs : Λ) can be seen from the Table 2.

Table 2: Characterizations of (L̃q
s : Λ), where Λ ∈ {Mu, Cϑ, Cϑ0, Ls1 }.

(Ψ ↓: Λ→) Mu Cϑ Cϑ0 Ls1(0 < s1 <∞)

L̃qs(0 < s ≤ 1) (5) (5),(8) (5),(9) (7)

L̃qs(1 < s <∞) (6) (6),(8) (6),(9) •

holds with hzntk instead of bzntk.

Lemma 1 ([38])
Consider that Ψ,Λ ⊂ Ω, a 4d matrix B = (bzntk) and 4d triangle F = (fzntk).
Then, B ∈ (Ψ : ΛF ) if and only if FB ∈ (Ψ : Λ).

Now, by keeping in mind the Lemma just mentioned above, we can give the
final result of our study.
Corollary 2
Let B = (bzntk) and W = (wzntk) 4d matrices be given by the relation

wzntk =
z,n∑
t,k=0

cznij(q)bijtk.

Then, the necessary and sufficient conditions for the classes (Ls : ΛC(1,1)(q)) can
be read from the Table 3.
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Table 3: Characterizations of (Ls : ΛC(1,1)(q)), where Λ ∈ {Mu, Cϑ, Cϑ0, Ls1 }.

(Ψ ↓: Λ→) (Mu)
C(1,1)(q) (Cϑ)

C(1,1)(q) (Cϑ0)
C(1,1)(q) (Ls1)

C(1,1)(q)

Ls(0 < s ≤ 1) (5) (5),(8) (5),(9) (7)

Ls(1 < s <∞) (6) (6),(8) (6),(9) •

where 0 < s1 <∞ holds with wzntk instead of bzntk.
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