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Abstract. In the present paper, a theorem on θ−|T ; δ|k summability method
of an infinite series is proved, and also by using this method, a result on
summability of a trigonometric Fourier series is obtained.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn). Let T = (tnv) be a

normal matrix, i.e. a lower triangular matrix of nonzero diagonal entries. Then T
defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to Ts = (Tn(s)), where

Tn(s) =
n∑
v=0

tnvsv, n = 0, 1, . . . .

Let (θn) be any sequence of positive real numbers. The series
∑
an is said to

be summable θ − |T ; δ|k, k ≥ 1 and δ ≥ 0, if (see [11]),
∞∑
n=1

θδk+k−1
n |Tn(s)− Tn−1(s)|k <∞. (1)

Further, two lower semimatrices T̄ = (t̄nv) and T̂ = (t̂nv) are defined as follows:

t̄nv =
n∑
i=v

tni, n, v = 0, 1, . . . . (2)
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t̂00 = t̄00 = t00, t̂nv = t̄nv − t̄n−1,v, n = 1, 2, . . . . (3)

and

∆̄Tn(s) = Tn(s)− Tn−1(s) =
n∑
v=0

t̂nvav. (4)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−k = p−k = 0, k ≥ 1).

By taking θn = Pn

pn
, δ = 0 and tnv = pv

Pn
in (1), we get |N̄ , pn|k summability

method (see [1]). For any sequence (λn), it should be noted that ∆λn = λn−λn+1,
∆0λn = λn and ∆kλn = ∆∆k−1λn for k = 1, 2, . . . (see [7]).

It should be noted that (yn) is the n-th (C, 1) mean of the sequence (nan),
i.e. yn = 1

n+1
∑n
v=1 vav. Also, if we write Xn =

∑n
v=0

pv

Pv
, then (Xn) is a positive

increasing sequence tending to infinity as n→∞.

2. Known Result

The following theorem has been proved in [3].

Theorem 1
Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞.

If the conditions

λm = o(1) as m→∞, (5)
m∑
n=1

nXn

∣∣∆2λn
∣∣ = O(1) as m→∞, (6)

m∑
n=1

pn
Pn

|yn|k

Xk−1
n

= O(Xm) as m→∞

hold, then the series
∑
anλn is summable |N̄ , pn|k, k ≥ 1.

3. Main Result

There are many papers on the field of summability, some of them are [4, 5, 8,
9, 10, 12, 13, 14, 15, 16]. In this paper, Theorem 1 is generalized to the θ− |T ; δ|k
summability method as in the following.
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Theorem 2
Let T = (tnv) be a positive normal matrix such that

tn0 = 1, n = 0, 1, . . . , (7)

tn−1,v ≥ tnv for n ≥ v + 1, (8)

tnn = O
( pn
Pn

)
, (9)

|t̂n,v+1| = O(v|∆v(t̂nv)|). (10)

Let θnpn = O(Pn). If the conditions (5), (6) and

m∑
n=1

θδk−1
n

|yn|k

Xk−1
n

= O(Xm) as m→∞, (11)

m+1∑
n=v+1

θδkn |∆v(t̂nv)| = O
(
θδk−1
v

)
as m→∞ (12)

are satisfied, then the series
∑
anλn is summable θ−|T ; δ|k, k ≥ 1 and 0 ≤ δ < 1/k.

We need the following lemma to prove Theorem 2.

Lemma 1 ([2])
Under the conditions of Theorem 2, we have

nXn|∆λn| = O(1) as n→∞, (13)
∞∑
n=1

Xn|∆λn| <∞, (14)

Xn|λn| = O(1) as n→∞. (15)

4. Proof of Theorem 2

Let (Wn) denote T -transform of the series
∑
anλn. Then, by (4), we have

∆̄Wn =
n∑
v=0

t̂nvavλv =
n∑
v=1

t̂nvλv
v

vav. (16)

Applying Abel’s transformation in (16), we obtain

∆̄Wn =
n−1∑
v=1

∆v

(
t̂nvλv
v

) v∑
r=1

rar + t̂nnλn
n

n∑
r=1

rar

=
n−1∑
v=1

v + 1
v

∆v

(
t̂nv
)
λvyv +

n−1∑
v=1

v + 1
v

t̂n,v+1∆λvyv
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+
n−1∑
v=1

t̂n,v+1λv+1
yv
v

+ n+ 1
n

tnnλnyn

= Wn,1 +Wn,2 +Wn,3 +Wn,4.

To complete the proof of Theorem 2, we will prove

∞∑
n=1

θδk+k−1
n |Wn,r|k <∞ for r = 1, 2, 3, 4.

First, applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′ = 1, we have

m+1∑
n=2

θδk+k−1
n |Wn,1|k = O(1)

m+1∑
n=2

θδk+k−1
n

n−1∑
v=1
|∆v(t̂nv)||λv|k|yv

|k

×
( n−1∑
v=1
|∆v(t̂nv)|

)k−1
.

By using (2) and (3), we get ∆v(t̂nv) = tnv − tn−1,v. Also, using (2), (7) and (8),
we get

n−1∑
v=1
|∆v(t̂nv)| =

n−1∑
v=1

(tn−1,v − tnv) ≤ tnn.

Then, by using (9), (12), (15), we have

m+1∑
n=2

θδk+k−1
n |Wn,1|k = O(1)

m+1∑
n=2

θδk+k−1
n tk−1

nn

n−1∑
v=1
|∆v(t̂nv)||λv|k|yv

|k

= O(1)
m+1∑
n=2

θδkn

n−1∑
v=1
|∆v(t̂nv)||λv|k|yv |k

= O(1)
m∑
v=1
|λv|k|yv|k

m+1∑
n=v+1

θδkn |∆v(t̂nv)|

= O(1)
m∑
v=1

θδk−1
v |λv|k−1|λv||yv|k

= O(1)
m∑
v=1

θδk−1
v |λv|

|yv|k

Xk−1
v

.

Now, by applying Abel’s transformation and using the conditions (11), (14) and
(15), we get
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m+1∑
n=2

θδk+k−1
n |Wn,1|k

= O(1)
m−1∑
v=1

∆|λv|
v∑
r=1

θδk−1
r

|yr|k

Xk−1
r

+O(1)|λm|
m∑
v=1

θδk−1
v

|yv|k

Xk−1
v

= O(1)
m−1∑
v=1
|∆λv|Xv +O(1)|λm|Xm

= O(1) as m→∞.

Now, using (10), (9), (12), (13) and applying Hölder’s inequality, we obtain

m+1∑
n=2

θδk+k−1
n |Wn,2|k

= O(1)
m+1∑
n=2

θδk+k−1
n

( n−1∑
v=1

v|∆v(t̂nv)||∆λv||yv|
)k

= O(1)
m+1∑
n=2

θδk+k−1
n

n−1∑
v=1

(v|∆λv|)k|∆v(t̂nv)||yv|k ×
( n−1∑
v=1
|∆v(t̂nv)|

)k−1

= O(1)
m+1∑
n=2

θδkn

n−1∑
v=1

(v|∆λv|)k|∆v(t̂nv)||yv|k

= O(1)
m∑
v=1

(v|∆λv|)k−1(v|∆λv|)|yv|k
m+1∑
n=v+1

θδkn |∆v(t̂nv)|

= O(1)
m∑
v=1

θδk−1
v v|∆λv|

|yv|k

Xk−1
v

.

Here, applying Abel’s transformation and using the conditions (11), (6), (14) and
(13), we get

m+1∑
n=2

θδk+k−1
n |Wn,2|k

= O(1)
m−1∑
v=1

∆(v|∆λv|)
v∑
r=1

θδk−1
r

|yr|k

Xk−1
r

+O(1)m|∆λm|
m∑
v=1

θδk−1
v

|yv|k

Xk−1
v

= O(1)
m−1∑
v=1

∆(v|∆λv|)Xv +O(1)m|∆λm|Xm
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= O(1)
m−1∑
v=1

v|∆2λv|Xv +O(1)
m−1∑
v=1
|∆λv|Xv +O(1)m|∆λm|Xm

= O(1) as m→∞.

Now, using (10), (9), (12), (15), we have

m+1∑
n=2

θδk+k−1
n |Wn,3|k

= O(1)
m+1∑
n=2

θδk+k−1
n

n−1∑
v=1
|∆v(t̂nv)||λv+1|k|yv|k ×

( n−1∑
v=1
|∆v(t̂nv)|

)k−1

= O(1)
m+1∑
n=2

θδkn

n−1∑
v=1
|∆v(t̂nv)||λv+1|k|yv|k

= O(1)
m∑
v=1
|λv+1|k−1|λv+1||yv|k

m+1∑
n=v+1

θδkn |∆v(t̂nv)|

= O(1)
m∑
v=1

θδk−1
v |λv+1|

|yv|k

Xk−1
v

.

Then, as in Wn,1, we get

m+1∑
n=2

θδk+k−1
n |Wn,3|k = O(1) as m→∞.

Finally, as in Wn,1, we have

m∑
n=1

θδk+k−1
n |Wn,4|k

= O(1)
m∑
n=1

θδk+k−1
n tknn|λn|k|yn|k

= O(1)
m∑
n=1

θδk−1
n |λn|k−1|λn||yn|k

= O(1)
m∑
n=1

θδk−1
n |λn|

|yn|k

Xk−1
n

= O(1) as m→∞.

This completes the proof of Theorem 2.
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5. An application to Fourier series

Let f be a periodic function with period 2π and Lebesgue integrable over
(−π, π). The trigonometric Fourier series of f is defined as

f(x) ∼ 1
2a0 +

∞∑
n=1

(an cosnx+ bn sinnx) =
∞∑
n=0

Tn(x),

where

a0 = 1
π

∫ π

−π
f(x)dx,

an = 1
π

∫ π

−π
f(x) cos(nx)dx,

bn = 1
π

∫ π

−π
f(x) sin(nx)dx.

Write

φ(y) = 1
2{f(x+ y) + f(x− y)} and φ1(y) = 1

y

∫ y

0
φ(u)du.

If φ1(y) ∈ BV(0, π), then yn(x) = O(1), where yn(x) is the n-th (C, 1) mean of the
sequence (nTn(x)) (see [6]). By using this fact, the following theorem on absolute
summability of the trigonometric Fourier series is obtained in [3].

Theorem 3
If φ1(y) ∈ BV(0, π), and the sequences (pn), (λn) and (Xn) satisfy the conditions
of Theorem 1, then the series

∑
Tn(x)λn is summable |N̄ , pn|k, k ≥ 1.

Now, Theorem 3 is generalized to the θ−|T ; δ|k summability method as in the
following form.

Theorem 4
Let T = (tnv) be a positive normal matrix which satisfies the conditions (7)-(10).
If φ1(y) ∈ BV(0, π), and the sequences (pn), (λn), (θn) and (Xn) satisfy the con-
ditions of Theorem 2, then the series

∑
Tn(x)λn is summable θ − |T ; δ|k, k ≥ 1

and 0 ≤ δ < 1/k.

If we take θn = Pn

pn
, δ = 0 and tnv = pv

Pn
in Theorem 2 and Theorem 4, then

we get Theorem 1 and Theorem 3, respectively.
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