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Abstract. The present paper deals with some existence results for the Dar-
boux problem of partial fractional random differential equations with finite
delay. The arguments are based on a random fixed point theorem with
stochastic domain combined with the measure of noncompactness. An illus-
tration is given to show the applicability of our results.

1. Introduction

The fractional calculus is concerned with noninteger order extensions of deriva-
tives and integrals. Differential and integral equations of fractional order have a
wide range of applications, see [1, 2, 29, 33] for more information. In recent years,
there has been substantial progress in ordinary and partial fractional differential
and integral equations; see the monographs of Abbas et al. [3, 4, 5], Ahmad et
al. [12], Kilbas et al. [24], Lakshmikantham et al., the papers of Abbas et al. [6],
Ahmad and Nieto [13], Karapinar et al. [7, 9, 8, 22, 10], Salim et al. [31, 32], Vityuk
and Golushkov [36], and the references therein.

The essence of a dynamic system in natural sciences or engineering is deter-
mined by the precision of the knowledge we have about the system’s characteristics.
A deterministic dynamical system emerges when information about a dynamic sys-
tem is exact. However, most of the data obtainable for the modelling and assess-
ment of dynamic system characteristics is incorrect, imprecise, or unclear. In other
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terms, determining the parameters of a dynamical system is fraught with uncer-
tainty. When we have statistical understanding about the parameters of a dynamic
system, that is, when the knowledge is probabilistic, the most popular strategy in
mathematical modelling of such systems is to employ random differential equations
or stochastic differential equations. As natural extensions of deterministic differ-
ential equations, random differential equations appear in numerous applications
and have been studied by several mathematicians; see the monographs [17, 25, 35]
and the papers of Baleanu et al. [16], Boumaaza et al. [11, 34], Harikrishnan et
al. [20], Karapinar et al. [23, 30], Liu et al. [26], and references therein.

Prompted by the aforementioned papers, in this paper, we consider the fol-
lowing problem:

(cDζ
0y)(t, η, δ) = ψ(t, η, y(t,η), δ),

if (t, η) ∈ J := [0, θ1]× [0, θ2], δ ∈ Ψ,
(1)

y(t, η, δ) = $(t, η, δ),

if (t, η) ∈ J̃ := [−κ1, θ1]× [−κ2, θ2]\(0, θ1]× (0, θ2], δ ∈ Ψ,
(2)

{
y(t, 0, δ) + ϕ1(y) = $1(t, δ), t ∈ [0, θ1],

y(0, η, δ) + ϕ2(y) = $2(η, δ), η ∈ [0, θ2],
δ ∈ Ψ, (3)

where κ1, κ2, θ1, θ2 > 0, cDζ
0 is the standard Caputo’s fractional derivative of order

ζ = (ζ1, ζ2) ∈ (0, 1] × (0, 1], (Ψ,A, ν) is a measurable space, ψ : J × C([−κ1, 0] ×
[−κ2, 0], E)×Ψ→ E is a given function, $ : J̃×Ψ→ E, ϕ1, ϕ2 : C(J,E)→ E are
given continuous functions, $1 : [0, θ1] × Ψ → E, $2 : [0, θ2] × Ψ → E are given
absolutely continuous functions with $1(t, δ) = $(t, 0, δ), $2(η, δ) = $(0, η, δ)
for each t ∈ [0, θ1], η ∈ [0, θ2], δ ∈ Ψ, ϕ2(y(t, 0, δ)) = ϕ1(y(0, η, δ)) = 0 for each
t ∈ [0, θ1], η ∈ [0, θ2], δ ∈ Ψ. If y ∈ S(θ1,θ2) = C([−κ1, θ1]× [−κ2, θ2], E), then for
any (t, η) ∈ J define y(t,η) by

y(t,η)(τ, %, δ) = y(t+ τ, η + %, δ) for (τ, %) ∈ [−κ1, 0]× [−κ2, 0].

Our research extends the existing studies on fractional problems with Ca-
puto fractional derivatives, taking into account various conditions imposed on our
problem within the abstract Banach space. It expands the scope of investigation
to include problems involving delay and random variables, which introduces the
need for additional requirements and different tools, such as random fixed point
theorems with stochastic domains and the measure of noncompactness concept.
Due to the scarcity of publications on Caputo partial fractional differential equa-
tions, our results within this specific framework are original and offer a substantial
contribution to the current literature in this field of study.

The following is how this paper is organized. Section 2 contains definitions
and lemmas that will be utilized throughout the work. Section 3 provides the
existence results for the problem (1)–(3). In the final part, we present an example
to demonstrate our main results.
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2. Preliminaries

First, we introduce and explain the notations and concepts used in this study.
Denote by L1(J) the space of Bochner-integrable functions y : J → E with the

norm

‖y‖1 =
∫ θ1

0

∫ θ2

0
‖y(t, η)‖Edηdt.

Let C := C(J,E) be the Banach space of continuous functions y : J → E with the
norm

‖y‖C = sup
(t,η)∈J

‖y(t, η)‖E .

Denote by L∞(Ψ, ν) the Banach space of measurable functions y : Ψ → C which
are essentially bounded equipped with the norm

‖y‖∞ := ess sup
δ∈Ψ

‖y(δ)‖C = inf{c > 0 : ‖y(δ)‖C ≤ c ν − a.e. Ψ}.

Consider the space AC(J) of absolutely continuous functions from J into E.
Consider the σ-algebra DE of Borel subsets of E. The map ȳ : Ψ → E is

measurable if for any Ω ∈ DE , we have

ȳ−1(Ω) = {δ ∈ Ψ : ȳ(δ) ∈ Ω} ⊂ A.

Definition 2.1
A mapping S : Ψ× E → E is jointly measurable if for any Ω ∈ DE , we have

S−1(Ω) = {(δ, ȳ) ∈ Ψ× E : S(δ, ȳ) ∈ Ω} ⊂ A×DE ,

where A×DE is the direct product of the σ-algebras A and DE those defined in
Ψ and E, respectively.

Lemma 2.2
Let S : Ψ×E → E be a mapping such that S(·, ȳ) is measurable for all ȳ ∈ E, and
let S(δ, .) be continuous for all δ ∈ Ψ. Then the map (δ, ȳ) 7→ S(δ, ȳ) is jointly
measurable.

Definition 2.3
A function ψ : J ×E ×Ψ→ E is called random Carathéodory if the assumptions
that follow are verified:

(i) the map (t, η, δ)→ ψ(t, η, y, δ) is jointly measurable for all y ∈ E, and

(ii) y → ψ(t, η, y, δ) is continuous for almost all (t, η) ∈ J and δ ∈ Ψ.

The map S : Ψ × E → E is a random operator if S(δ, y) is measurable in δ
for all y ∈ E and it is given as S(δ)y = S(δ, y). S(δ) is a random operator on
E. A random operator S(δ) on E is continuous if S(δ, y) is continuous in y for
all δ ∈ Ψ. (See [21] for more details).
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Definition 2.4 ([19])
Let P(W) be the family of all nonempty subsets of W and let F be a mapping
from Ψ into P(W). S : {(δ, η) : δ ∈ Ψ, η ∈ F(δ)} → W is a random operator
with stochastic domain F if F is measurable (i.e. for all closed Ω ⊂ W, {δ ∈
Ψ, F(δ) ∩ Ω 6= ∅} is measurable) and for all open Ω̃ ⊂W and all η ∈W, {δ ∈ Ψ :
η ∈ F(δ), S(δ, η) ∈ Ω̃} is measurable. S is continuous if every S(δ) is continuous.
A mapping η : Ψ → W is a random fixed point of S if for P -almost all δ ∈ Ψ,
η(δ) ∈ F(δ) and S(δ)η(δ) = η(δ) and for all open Ω̃ ⊂ W, {δ ∈ Ψ : η(δ) ∈ Ω̃} is
measurable.

LetMĒ denote the class of all bounded subsets of a metric space Ē.

Definition 2.5 ([14])
Let Ē be a complete metric space. A map µ : MĒ → [0,∞) is a measure of
noncompactness on Ē if for all Ω,Ω1,Ω2 ∈MĒ , it verifies:

(MNC.1) µ(Ω) = 0 if and only if Ω is precompact (regularity),

(MNC.2) µ(Ω) = µ(Ω) (invariance under closure),

(MNC.3) µ(Ω1 ∪ Ω2) = max{µ(Ω1), µ(Ω2)} (semi-additivity).

Example 2.6
In every metric space Ē, the map$ : MĒ → [0,∞) with$(Ω) = 0 if Ω is relatively
compact and $(Ω) = 1 otherwise is a measure of noncompactness ([15], Example1,
p. 19).

Let ε = (0, 0), ζ1, ζ2 > 0 and ζ = (ζ1, ζ2). For ψ ∈ L1(J), the left-sided mixed
Riemann-Liouville integral of order ζ is given by:

(Iζεψ)(t, η) = 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− %)ζ1−1(η − τ)ζ2−1ψ(%, τ)dτd%.

In particular,

(I0
ε y)(t, η) = y(t, η), (Iωε y)(t, η) =

∫ t

0

∫ η

0
y(%, τ)dτd%; for a.a. (t, η) ∈ J,

where ω = (1, 1) and 1 − ζ means (1 − ζ1, 1 − ζ2) ∈ [0, 1) × [0, 1). Denote by
D2
tη := ∂2

∂t∂η , the mixed second order partial derivative.

Definition 2.7 ([36])
Let ζ ∈ (0, 1] × (0, 1] and y ∈ AC(J). The Caputo fractional-order derivative of
order ζ of y is given by:

cDζ
εy(t, η) = (I1−ζ

ε D2
tηy)(t, η).

The case ω = (1, 1) is included and we have

(cDω
ε y)(t, η) = (D2

tηy)(t, η) for a.a. (t, η) ∈ J.
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Lemma 2.8 ([18])
If W is a bounded subset of Banach space Ē, then for each α > 0, there is a
sequence {ηβ}∞β=1 ⊂W such that

µ(W) ≤ 2µ({ηβ}∞β=1) + α.

Lemma 2.9 ([28])
If {yβ}∞β=1 ⊂ L1(J), then µ({yβ}∞β=1) is measurable and for each (t, η) ∈ J ,

µ

({∫ t

0

∫ η

0
yβ(%, τ)dτd%

}∞
β=1

)
≤ 2

∫ t

0

∫ η

0
µ({yβ(%, τ)}∞β=1)dτd%.

Lemma 2.10 ([27])
Consider the continuous operator S : Λ → Λ, where S(Λ) is bounded and Λ is a
convex and closed subset of a real Banach space. If there exists a constant β ∈ [0, 1)
such that for each bounded subset Ω ⊂ Λ,

µ(S(Ω)) ≤ βµ(Ω),

then S has a fixed point in Λ.

3. Existence Results

Let us start by giving the following result.

Lemma 3.1 ([2, 4])
Let E ∈ L1(J). The linear problem:

cDζ
εy(t, η) = E(t, η) for a.a. (t, η) ∈ J := [0, θ1]× [0, θ2],

y(t, 0) = $1(t), t ∈ [0, θ1],

y(0, η) = $2(η), η ∈ [0, θ2],

$1(0) = $2(0),

has the following unique solution:

y(t, η) = κ(t, η) + IζεE(t, η) for a.a. (t, η) ∈ J,

where
κ(t, η) = $1(t) +$2(η)−$1(0).

Suppose that ψ is random Carathéodory on J × C ×Ψ.

Lemma 3.2
Let 0 < ζ1, ζ2 ≤ 1, κ(t, η, δ) = $1(t, δ) + $2(η, δ) − $1(0, δ). A function y ∈
Ψ×S(θ1,θ2) is a solution of (1)-(3) if and only if y verifies (2) for (t, η) ∈ J̃ , δ ∈ Ψ,
and the fractional integral equation:
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y(t, η, δ)

= κ(t, η, δ)− ϕ1(y)− ϕ2(y) +
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ψ(t, η, y(τ,%), δ)d%dτ

for (t, η) ∈ J , δ ∈ Ψ.

Proof. By following the same steps employed in the proof of Lemma 3.1 and ac-
counting for the random variable and nonlocal conditions, which do not impact
the proof’s progression, we can infer the outcome.

The hypotheses:

(Ax1) The functions δ 7→ $1(t, δ) and δ 7→ $2(η, δ) are measurable and essen-
tially bounded for each t ∈ [0, θ1] and η ∈ [0, θ2], respectively.

(Ax2) The function $ is measurable for (t, η) ∈ J̃ ×Ψ.

(Ax3) The function ψ is random Carathéodory on J × C ×Ψ.

(Ax4) There exist constants σ∗, σ̃ > 0 such that

‖ϕ1(y)‖E ≤ σ∗(1 + ‖y‖C)

and
‖ϕ2(y)‖E ≤ σ̃(1 + ‖y‖C)

for y ∈ C(J,E).

(Ax5) There exist functions ς1, ς2 ∈ L∞(Ψ, C(J, [0,∞))) such that for each
(t, η) ∈ J ,

‖ψ(t, η, y, δ)‖E ≤ ς1(t, η, δ) + ς2(t, η, δ)‖y‖C ,

for all y ∈ C and a.e. δ ∈ Ψ.

(Ax6) For each (t, η) ∈ J, and any bounded B ⊂ C,

µ(ψ(t, η, B, δ)) ≤ ς2(t, η, δ)µc(B) for a.e. δ ∈ Ψ,

µ(ϕ1(B)) ≤ ς3(t, η, δ)µc(B) for a.e. δ ∈ Ψ

and
µ(ϕ2(B)) ≤ ς4(t, η, δ)µc(B) for a.e. δ ∈ Ψ,

where ς3, ς4 ∈ L∞(Ψ, C(J, [0,∞))). Here µ, µc are respectively, the mea-
sures of noncompactness on E and C.

Set
κ∗(δ) = sup

(t,η)∈J
‖κ(t, η, δ)‖E .
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Theorem 3.3
Suppose that (Ax1)–(Ax6) are met. If

γ := 2(‖ς3‖∞ + ‖ς4‖∞) + 4‖ς2‖∞θζ1
1 θ

ζ2
2

Γ(1 + ζ1)Γ(1 + ζ2) < 1,

then (1)–(3) admit a random solution on [−κ1, θ1]× [−κ2, θ2].

Proof. Define the operator T : Ψ× S(θ1,θ2) → S(θ1,θ2) by

(T(δ)y)(t, η)

=



$(t, η, δ), (t, η) ∈ J̃ ,

κ(t, η, δ)− ϕ1(y)− ϕ2(y)

+ 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1

×ψ(τ, %, y(τ,%), δ)d%dτ, (t, η) ∈ J,

δ ∈ Ψ.

Since the functions$1,$2 and ϕ1,H and ψ are absolutely continuous, the function
κ and the indefinite integral are absolutely continuous for all δ ∈ Ψ and almost
all (t, η) ∈ J . And, since κ is continuous for all δ ∈ Ψ, then T(δ) defines a
mapping T : Ψ×S(θ1,θ2) → S(θ1,θ2). Hence y is a solution for (1)–(3) if and only if
y = (T(δ))y. We will demonstrate in three steps that T verifies all the requirements
of Lemma 2.10.

Claim 1: T(δ) is a random operator with stochastic domain on S(θ1,θ2).
Since ψ(t, η, y, δ) is random Carathéodory, the map δ → ψ(t, η, y, δ) is measurable
in view of Definition 2.1. Also, the product (t− τ)ζ1−1(η − %)ζ2−1ψ(τ, %, y(τ,%), δ)
is measurable. Then

δ 7→κ(t, η, δ)− ϕ1(y)− ϕ2(y)

+ 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1ψ(τ, %, y(τ,%), δ)d%dτ,

is measurable. Consequently, T is a random operator on Ψ×S(θ1,θ2) into S(θ1,θ2).
Consider the operator X : Ψ→ P(S(θ1,θ2)) given by

X(δ) = {y ∈ S(θ1,θ2) : ‖y‖∞ ≤ R(δ)},

where R(·) is a measurable function such that

R(δ) ≥ ρ1

ρ2
,

where

ρ1 = κ∗(δ) + σ̃ + σ∗ + ‖ς1‖∞θζ1
1 θ

ζ2
2

Γ(1 + ζ1)Γ(1 + ζ2) ,

ρ2 = 1− ‖ς2‖∞θζ1
1 θ

ζ2
2

Γ(1 + ζ1)Γ(1 + ζ2) − σ̃ − σ
∗,
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and
‖ς2‖∞θζ1

1 θ
ζ2
2

Γ(1 + ζ1)Γ(1 + ζ2) + σ̃ + σ∗ < 1,

and by (Ax1), (Ax2) and (Ax3) we have that X(δ) is closed, convex, bounded and
solid for all δ ∈ Ψ. Then X is measurable (see [19]). Let δ ∈ Ψ be fixed, then from
(Ax4) and (Ax5), for any y ∈ X(δ), we obtain

‖(T(δ)y)(t, η)‖E
≤ ‖κ(t, η, δ)‖E + ‖ϕ1(y)‖E + ‖ϕ2(y)‖E

+
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ‖ψ(τ, %, y(τ,%), δ)‖Ed%dτ

≤ ‖κ(t, η, δ)‖E + σ̃(1 + ‖y‖C) + σ∗(1 + ‖y‖C)

+ 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1ς1(τ, %, δ)d%dτ

+ 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1ς2(τ, %, δ)‖y(τ,%)‖∞d%dτ

≤ κ∗(δ) + (σ̃ + σ∗)(1 +R(δ))

+ ‖ς1‖∞
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1d%dτ

+ ‖ς2‖∞R(δ)
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1d%dτ

≤ κ∗(δ) + (σ̃ + σ∗)(1 +R(δ)) + (‖ς1‖∞ + ‖ς2‖∞R(δ))θζ1
1 θ

ζ2
2

Γ(1 + ζ1)Γ(1 + ζ2)

≤ R(δ).

Thus, T is a random operator with stochastic domain X and T(δ) : X(δ) → T(δ).
Moreover, T(δ) maps bounded sets into bounded sets in S(θ1,θ2).

Claim 2: T(δ) is continuous.
Consider the sequence {yn}, where yn → y in S(θ1,θ2). Then, for each (t, η) ∈ J
and δ ∈ Ψ, we have

‖(T(δ)yn)(t, η)−(T(δ)y)(t, η)‖E
≤ ‖ϕ1(yn)− ϕ1(y)‖E + ‖ϕ2(yn)− ϕ2(y)‖E

+ 1
Γ(ζ1)Γ(ζ2)

∫ t

0

∫ η

0
(t− τ)ζ1−1(η − %)ζ2−1

× ‖ψ(τ, %, yn(τ,%), δ)− ψ(τ, %, y(τ,%), δ)‖Ed%dτ.

Thus
‖T(δ)yn − T(δ)y‖C → 0as n→∞.
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As a result, we can deduce that T(δ) : X(δ) → T(δ) is a continuous random
operator with stochastic domain X, and T(δ)(X(δ)) is bounded.

Claim 3: For each bounded subset B of X(δ) we have µc(T(δ)B) ≤ γµc(B).
Let δ ∈ Ψ. For any B ⊂ X and any α > 0, and by Lemmas 2.8 and 2.9, there
exists a sequence {yn}∞n=0 ⊂ B, where for all (t, η) ∈ J , and by (Ax6), we get

µc((T(δ)B)(t, η))

= µ

({
κ(t, η)− ϕ1(y)− ϕ2(y)

+
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ψ(τ, %, y(τ,%), δ)d%dτ : y ∈ B
})

≤ 2µ
{
− ϕ1(yn)− ϕ2(yn)

+
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ψ(τ, %, yn(τ,%), δ)d%dτ
}∞
n=1

+ α

≤ 2µ{ϕ1(yn)}+ 2µ{ϕ2(yn)}

+ 4
∫ t

0

∫ η

0
µ
({ (t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ψ(τ, %, yn(τ,%), δ)
}∞
n=1

)
d%dτ + α

≤ 2ς3(τ, %, δ)µ({yn}∞n=1) + 2ς4(τ, %, δ)µ({yn}∞n=1)

+ 4
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) µ({ψ(τ, %, yn(τ,%), δ)}∞n=1)d%dτ + α

≤ 2ς3(τ, %, δ)µc(B) + 2ς4(τ, %, δ)µc(B)

+ 4
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ς2(τ, %, δ)µ({yn(τ,%)}∞n=1)d%dτ + α

≤ 2(‖ς3‖∞ + ‖ς4‖∞)µc(B)

+
(

4
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ς2(τ, %, δ)dτd%
)
µ({yn}∞n=1) + α

≤ 2(‖ς3‖∞ + ‖ς4‖∞)µc(B)

+
(

4
∫ t

0

∫ η

0

(t− τ)ζ1−1(η − %)ζ2−1

Γ(ζ1)Γ(ζ2) ς2(τ, %, δ)d%dτ
)
µc(B) + α

≤
(

2(‖ς3‖∞ + ‖ς4‖∞) + 4‖ς2‖∞θ1
ζ1θ2

ζ2

Γ(1 + ζ1)Γ(1 + ζ2)

)
µc(B) + α

= γµc(B) + α.

Since α > 0 is arbitrary, then

µc(T(B)) ≤ γµc(B).
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Lemma 2.10 implies that for each δ ∈ Ψ, T has at least one fixed point in
X. Since

⋂
δ∈Ψ intX(δ) 6= ∅, and we have the existence of a measurable selector

of intX, Lemma 2.10 implies that T has a stochastic fixed point, i.e. the problem
(1)–(3) has at least one random solution on S(θ1,θ2).

4. An Example

Let E = R, Ψ = (−∞, 0) be equipped with the usual σ-algebra consisting of
Borel measurable subsets of (−∞, 0). Consider the following problem:

(cDζ
0y)(t, η, δ) = ψ(t, η, y(t,η), δ), if (t, η) ∈ J := [0, 1]× [0, 1], δ ∈ Ψ, (4)

$(t, η, δ) = t sin δ + η2 cos δ

if (t, η) ∈ J̃ := [−1, 1]× [−2, 1]\(0, 1]× (0, 1], δ ∈ Ψ,
(5)

{
y(t, 0, δ) + ϕ1(y) = t sin δ, t ∈ [0, 1],

y(0, η, δ) + ϕ2(y) = η2 cos δ, η ∈ [0, 1],
δ ∈ Ψ (6)

for (t, η) ∈ [0, 1] × [0, 1], δ ∈ Ψ, where ζ = (ζ1, ζ2) ∈ (0, 1] × (0, 1], function
ψ : [0, 1]× [0, 1]× C([−1, 1]× [−2, 1], E)×Ψ→ E is such that

ψ(t, η, y(t,η), δ) = 1 + ctη2|y(t− 1, η − 2, δ)|
(1 + δ2)et+η+5 ,

with c > 0, and 
(ϕ1y)(t, η, δ) = d1η

1 + δ2 (1 + ‖y‖C), t ∈ [0, 1],

(ϕ2y)(t, η, δ) = d2t

1 + δ2 (1 + ‖y‖C), η ∈ [0, 1],

with d1, d2 > 0. We can observe that the hypotheses (Ax1), (Ax2) and (Ax4) are
satisfied.

The function (t, η, δ) 7→ ψ(t, η, y, δ) is jointly continuous for all y ∈ C([−1, 1]×
[−2, 1], E) and hence jointly measurable for all y ∈ C([−1, 1] × [−2, 1], E). Also
the map y 7→ ψ(t, η, y, δ) is continuous for all (t, η) ∈ [0, 1]×[0, 1] and δ ∈ Ψ. Thus,
ψ is Carathéodory and (Ax3) is verified. For each y ∈ R, (t, η) ∈ [0, 1]× [0, 1] and
δ ∈ Ψ we get

|ψ(t, η, y, δ)| ≤ 1 + c|y|
e5 .

Hence, (Ax5) and (Ax6) are verified with

‖ς1‖∞ = 1, ‖ς2‖∞ = ce−5, ς3 = d1η

1 + δ2 , ς4 = d2t

1 + δ2 .

A simple computations show that all conditions of Theorem 3.3 are satisfied
for a good choice of the constants c, d1 and d2. It follows that the random problem
(4)–(6) has at least one random solution on [−1, 1]× [−2, 1].
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