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Abstract. By rewriting the differential entropy in a form of a differ-integral
function’s limit, and deforming the ordinary derivative to a fractional-order
one, we derive in this paper a novel generalized fractional-order differen-
tial entropy along with its related information measures. When the order
of fractional differentiation α → 1, the ordinary Shannon’s differential en-
tropy is recovered, which corresponds to the results from first-order ordinary
differentiation.

1. Introduction

Inspired by the concept of entropy introduced by Clausius [2] thermodynamics
and Boltzmann [1] in classical statistical mechanics, Shannon proposed his entropy
in the context of communication theory [12]. It consists of a measure of surprise
or uncertainty associated with the probability distribution of a random variable
(RV). For a discrete RV X taking values in X = {x1, x2, . . . , xq} and having a
probability mass function pi = P (X = xi) with

∑q
i=1 pi = 1 and pi ≥ 0 for

i = 1, . . . , q, it is given by

H(X) = −
q∑

i=1
pi log pi. (1)
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The principal properties of this suggested measure of uncertainty (i.e. Eq (1)) has
shown a perfect agreement with the intuitive notions of randomness and justified
its usefulness with respect to statistical problems in communication theory.

The continuous analogue of (1) is known as the differential entropy. For
a continuous RV having a probability density function (pdf) fX(x) and a sup-
port SX ⊆ R, it is given by

h(X) := −
∫

SX

fX(x) log fX(x)dx. (2)

However, this straightforward extension of the concept of entropy from discrete to
continuous schemes raises some concerns including

1) it may be negative;

2) it may become infinity large;

3) it doesn’t remain necessarily invariant under the transformation of the co-
ordinate systems.

For further discussion on these and more concerns one may refer to [5].
In this paper, inspired by Ubriaco’s work in [11], we propose a fractional-order

continuous entropy (and its related fractional information measures) by rewriting
the differential entropy in (2) in the form of a differ-integral function, then we
deform the ordinary derivative to a fractional-order one by recourse to the frac-
tional calculus (FC) theory. The use of FC allows to measure the information in
a generalized metric space.

The remainder of this paper is organized as follows. In section 2, we give
a brief survey on the theory of FC, and we re-call some definitions concerning
the RL fractional integral and derivative. The main results on fractional-order
information measures are then presented in section 3. Finally, section 4 concludes
the paper.

2. Fractional calculus

2.1. A brief survey

Fractional calculus (FC) is a mathematical analysis branch which studies dif-
ferent possible approaches of defining fractional-order integrals and derivatives.
Based on FC, the theory of classical integer-order differential equations has been
then generalized to the broader theory of fractional-order differential equations.
FC can be traced back to a letter written to l’Hopital by Leibniz in 1695 [7]. In
1832, Liouville carried out a heavy-handed investigation on FC [8]. After that, the
Riemann-Liouville (RL) fractional integro-differential operator was introduced by
Riemann in [10] along with a comprehensive theory of FC. FC has led to many
breakthroughs in different fields of physics and engineering where various processes
can be modeled in a more accurate and authentic way [4].
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2.2. A review on Rieman-Liouville fractional integral and derivative

The left-sided Rieman-Liouville (RL) fractional integral RLIα
a+f of order α ∈ R,

α > 0 of an integrable function f : [a, b] → R, 0 ≤ a < b ≤ ∞ is defined as [6],

(RLIα
a+f)(t) = RLIα

a+ [f(x)](t) = 1
Γ(α)

∫ t

a

(t − x)α−1f(x)dx

for a ∈ R, t > a, α > 0, where Γ(.) is Euler’s gamma function defined as Γ(α) =∫ +∞
0 xα−1e−xdx for α ∈ R, α > 0.

The left-sided Rieman-Liouville (RL) fractional derivative RLDα
a+f of order

α ∈ R, α > 0 of an integrable and differentiable function f : [a, b] → R, 0 ≤ a <
b ≤ ∞ is defined as [6],

(RLDα
a+f)(t) = RLDα

a+ [f(x)](t) =
( d

dt

)n

(RLIn−α
a+ f)(t)

for a ∈ R, t > a, α > 0, n = [α] + 1. When 0 < α < 1, we get

(RLDα
a+f)(t) = d

dt
(RLI1−α

a+ f)(t), a ∈ R, t > a. (3)

3. Fractional calculus-based information measures

Definition 1 (Shannon’s differential entropy, see [3])
The differential entropy of a continuous random variable (RV) X with a probability
density function (pdf) fX(x) and a support SX ⊆ R is defined as

h(X) := −
∫

SX

fX(x) log fX(x)dx = E[− log fX(X)], (4)

when the integral exists.
Through the whole paper, E[X] is the expected value of the variable X and

the base of the logarithm will be set to Euler’s number e =
∑∞

n=0
1
n! .

Our basic idea consists of rewriting (4) as follows

h(X) := lim
t→−1

d

dt

∫
SX

f−t
X (x)dx. (5)

Then, we deform the ordinary differential operator d
dt in (5) to the RL-fractional

differential operator RLDα
a+ defined in (3) (which reduces to d

dt in the limit α →
1). Based on these ideas, we define the following fractional-order information
measures.

3.1. The fractional differential entropy

Theorem 1 (The fractional differential entropy)
The fractional differential entropy of a continuous RV X with a pdf fX(x) and a
support SX ⊆ R is defined as

hα(X) :=
∫

SX

fX(x)(− log fX(x))αdx = E[−(log fX(X))α], 0 < α < 1. (6)
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Proof. Using the operator defined in (3) (for a = −∞), (5) can be rewritten as
follows

hα(X) := lim
t→−1

d

dt

(
RLI1−α

−∞

[ ∫
SX

e−t log fX (x)dx

]
(t)

)
, 0 < α < 1.

Therefore, we need to solve the following integral

hα(X) := 1
Γ(1 − α) lim

t→−1

d

dt

∫
SX

( t∫
−∞

(t − y)−αe−y log fX (x)dy

)
dx.

By letting w = t − y, using the definition of the Γ(.) function, taking the ordinary
derivative and setting t = 1, we get (6).

In the following, we give few examples of the proposed fractional entropy for
some common continuous probability distributions.

Example 1
Let X be a uniformly distributed RV in [0, a], a > 0, i.e. X ∼ Uniform(0, a).
Then, its fractional entropy is given by

hα(X) = (log a)α.

Example 2
Let X be an exponentially distributed RV with a rate parameter λ, i.e. X ∼
Exp(λ). Then, its fractional entropy is given by

hα(X) = Γ(α + 1, − log λ)
λ

,

where Γ(., .) is the upper incomplete gamma function (See (8.2.2) in [9]).

Example 3
Let X be a normally distributed RV with a mean µ and a standard deviation σ,
i.e. X ∼ N (µ, σ). Then, its fractional entropy is given by

hα(X) = 1√
2πσ2

+∞∫
−∞

e
−(x−µ)2

2σ2
(1

2 log(2πσ2) + (x − µ)2

2σ2

)α

dx.

3.2. The fractional joint and conditional differential entropy

Theorem 2 (The fractional joint differential entropy)
Let X and Y be two jointly distributed continuous RVs with a joint pdf fX,Y (x, y)
and a support SX,Y ⊆ R2. Then, the fractional joint differential entropy of X and
Y is defined as

hα(X, Y ) :=
∫

SX,Y

fX,Y (x, y)(− log fX,Y (x, y))αdxdy

= E[−(log fX,Y (X, Y ))α], 0 < α < 1.

(7)
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Proof. For two jointly distributed continuous RVs X and Y with a joint pdf
fX,Y (x, y) and a support SX,Y ⊆ R2, the Shannon’s joint differential entropy
is defined as

h(X, Y ) := −
∫

SX,Y

fX,Y (x, y) log fX,Y (x, y)dxdy.

Considering the idea in (5) and using the operator defined in (3) (for a = −∞),
the previous equation can be rewritten as follows

hα(X, Y ) := lim
t→−1

d

dt

(
RLI1−α

−∞

[ ∫
SX,Y

e−t log fX,Y (x,y)dxdy

]
(t)

)
, 0 < α < 1.

Following the same thoughts in the proof of (5), we get (7).

Theorem 3 (The fractional conditional differential entropy)
Let X and Y be two jointly distributed continuous RVs with a joint pdf fX,Y (x, y)
and a support SX,Y ⊆ R2 such that the conditional pdf of X given Y , given by

fX/Y (x/y) = fX,Y (x, y)
fY (y) ,

is well defined for all (x, y) ∈ SX,Y , where fY (y) is the marginal pdf of Y . Then,
the fractional conditional differential entropy of X given Y is defined as

hα(X/Y ) :=
∫

SX,Y

fX,Y (x, y)(− log fX/Y (x/y))αdxdy

= E[−(log fX/Y (X/Y ))α], 0 < α < 1.

(8)

Proof. For the two RVs in Theorem 3, the Shannon’s conditional differential en-
tropy is defined as

h(X/Y ) := −
∫

SX,Y

fX,Y (x, y) log fX/Y (x/y)dxdy.

Considering the idea in (5) and using the operator defined in (3) (for a = −∞),
the previous equation can be rewritten as follows

hα(X/Y ) := lim
t→−1

d

dt

(
RLI1−α

−∞

[ ∫
SX,Y

e−t log fX/Y (x/y)dxdy

]
(t)

)
, 0 < α < 1.

Following the same thoughts in the previous proofs, we get (8).

3.3. The fractional divergence and mutual information

Theorem 4 (The fractional divergence)
Let X and Y be two continuous RVs with marginal pdfs fX(x) and fY (y), re-
spectively, such that their supports satisfy SX ⊆ SY ⊆ R. Then, the fractional
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divergence (or fractional relative entropy or fractional Kullback-Leibler distance)
between X and Y is defined as

Dα(X∥Y ) :=
∫

SX

fX(x)
(

log fX(x)
fY (x)

)α

dx

= E
[(

log fX(X)
fY (X)

)α]
, 0 < α < 1.

(9)

Proof. For the two RVs in Theorem 4, the Kullback-Leibler’s distance is defined
as

D(X∥Y ) :=
∫

SX

fX(x)
(

log fX(x)
fY (x)

)
dx.

Considering the idea in (5) and using the operator defined in (3) (for a = −∞),
the previous equation can be rewritten as follows

Dα(X∥Y ) := lim
t→−1

d

dt

(
RLI1−α

−∞

[ ∫
SX

fY (x)e−t log fX (x)
fY (y) dx

]
(t)

)
, 0 < α < 1.

Following the same thoughts in the previous proofs, we get (9).

Theorem 5 (The fractional mutual information)
Let X and Y be two jointly distributed continuous RVs with a joint pdf fX,Y (x, y)
and a support SX,Y ⊆ R2. Then, the fractional mutual information between X
and Y is defined as

Iα(X; Y ) :=
∫

SX

fX,Y (x, y)
(

log fX,Y (x, y)
fX(x)fY (y)

)α

dx

= E
[(

log fX,Y (X, Y )
fX(X)fY (Y )

)α]
, 0 < α < 1.

(10)

assuming the integral exists, where fX(x) and fY (y) are the marginal pdfs of X
and Y , respectively.
Proof. For the two RVs in Theorem 5, the Shannon’s mutual information is defined
as follows

I(X; Y ) :=
∫

SX

fX,Y (x, y)
(

log fX,Y (x, y)
fX(x)fY (y)

)
dx.

Considering the idea in (5) and using the operator defined in (3) (for a = −∞),
the previous equation can be rewritten as follows

Iα(X∥Y ) := lim
t→−1

d

dt

(
RLI1−α

−∞

[ ∫
SX

fX(x)fY (y)e−t log
fX,Y (x,y)

fX (x)fY (y) dxdy

]
(t)

)
for 0 < α < 1. Following the same thoughts in the previous proofs, we get (10).

Remark 1
Iα(X; Y ) is symmetrical in X and Y .
Remark 2
The expressions in Theorems 1-5 allow us to calculate the fractional-order infor-
mation measures for different values of α and compare them to their conventional
counterparts (i.e. when α = 1) to get further insights on their behaviours.
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4. Conclusion

In this work, we have introduced a new fractional-order differential entropy
hα(X) along with its related fractional-order information measures, which gener-
alizes the Shannon’s conventional differential entropy h(X), in the context of FC.
Some illustrative examples on the fractional entropy of some common continuous
probability distributions are given. The information measures – we have devel-
oped in this work – may find their applications in many technical fields such as
computer vision and information theory where the information measure in general
and the entropy in special, are aspects with a great importance.
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