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δµ-connectedness in a µ-proximity space

Abstract. In this paper we introduce the notion of δµ-connectedness on a µ-
proximity space. It has been proved that δµ-connectedness can be char-
acterized by δµ-continuous functions. We initiate the idea of δµ-chain and
establish some results related to this. The concepts of δµ-component and
δµ-quasi component have been introduced and their interrelation has been
studied.

1. Introduction and Preliminary Results

In topology, the notion of proximally continuous mapping is well-known in
a proximity space. Császár introduced the concept of generalized topology in [1]
and it was observed that many of the existing results for a topological space are
still valid in this generalized premise. Generalized topology was defined by Császár
as follows:
A collection µ of subsets of a set X is called a generalized topology (GT, in short)
on X if

(i) ∅ ∈ µ,
(ii) for Uα ∈ µ, α ∈ Λ (Λ being an index set),

⋃
α∈Λ Uα ∈ µ.

The pair (X, µ) is called a generalized topological space (GTS, in short). The
members of µ are called µ-open sets and their complements are µ-closed. For
a subset A of X, the union of all µ-open sets contained in A is called the µ-interior
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of A and is denoted by iµA. The intersection of all µ-closed sets of X containing
A is known as the µ-closure of A and is denoted by cµA. A GT is said to be strong
if X ∈ µ.

The notion of connectedness in a generalized topological space was studied
by Császár in [2]. In [3], Dimitrijević and Kočinac have introduced the notion of
connectedness in a proximity space. They carried on to infer about δ-component,
δ-quasi component and local δ connectedness. Various relations between those
concepts were developed and the use of proximally continuous function was a key
in those results. We look to study similar conditions for a µ-proximity space. In
this paper, we initiate a type of connectedness on a µ-proximity space [4]. After
the introductory section, we have defined the δµ-connectedness and obtain certain
results regarding it. In Section 3, the concept of δµ-component has been studied.
In the last section, the notion of δµ-quasi component is introduced and a relation
between δµ-component and δµ-quasi component is established.

Before going into the details, we first recall the definition of µ-proximity and
some results related to it.

Definition 1.1 ([4])
A binary relation δµ on the power set P(X) of a set X is called a µ-proximity on
X if δµ satisfies the following axioms:

(i) A δµ B if and only if B δµ A for all A, B ∈ P(X);
(ii) If A δµ B, A ⊆ C and B ⊆ D, then C δµ D;
(iii) {x} δµ {x} for all x ∈ X;
(iv) If A ̸ δµ B then there exists E(⊆ X) such that A ̸ δµ E and (X \ E) ̸ δµ B.

If a relation satisfies axioms (i)–(iii) then it is called a basic µ-proximity on X.

Proposition 1.2 ([4])
Let a subset A of a µ-proximity space (X, δµ) be defined to be δµ-closed if and only
if

{x} δµ A ⇒ x ∈ A.

Then the collection of complements of all δµ-closed sets so defined yields a gener-
alized topology µ = τ(δµ) on X.

Proposition 1.3 ([4])
Let (X, δµ) be a µ-proximity space and µ = τ(δµ). Then the µ-closure cµ(A) of
a set A in (X, µ) is given by cµ(A) = {x : {x} δµ A}.

Lemma 1.4 ([4])
For subsets A and B of a µ-proximity space (X, δµ),

A δµ B ⇔ cµ(A) δµ cµ(B),

where the µ-closures are taken with respect to τ(δµ).

Definition 1.5 ([6])
If (X, δµ1) and (Y, δµ2) are two µ-proximity spaces, a mapping f : X → Y is said
to be δµ-continuous if A δµ1 B implies f(A) δµ2 f(B) for A, B ⊆ X.
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2. δµ-connectedness

Definition 2.1
A µ-proximity space (X, δµ) is said to be δµ-connected if it cannot be expressed as
the union of two non-empty subsets of X that are not δµ-related. A subset Y of
X is said to be a δµ-connected subset of X if it cannot be expressed as the union
of two non-empty subsets of X that are not δµ-related.

We know that, by defining a proximity δ as

A δ B ⇔ A ∩ B ̸= ∅,

where A, B ⊆ X, we get the discrete proximity on X, [5]. Of course, the cor-
responding topology generated by δ is the discrete topology on X. Since every
proximity space is a µ-proximity space[details can be found in [4], Proposition
2.12], we have (X, δ) as the discrete µ-proximity space. As per our requirement,
here we consider the discrete µ-proximity on the two-point set {0, 1} and denote
the discrete µ-proximity space ({0, 1}, δ) by Xd henceforth.

In a µ-proximity space (X, δµ), two non-empty subsets A and B of X are said
to be δµ-separated, if A, B are not δµ related, i.e. A ̸ δµ B.

Theorem 2.2
A µ-proximity space (X, δµ) is δµ-connected if and only if every δµ-continuous
function f on X to Xd is constant.

Proof. Let (X, δµ) be δµ-connected and f : X → Xd be a δµ-continuous function.
If possible, let f be not constant. Then f−1({0}) ̸= ∅ and f−1({1}) ̸= ∅. Also
{0} ̸ δ {1} which implies f−1({0}) ̸ δµ f−1({1}) [since f is δµ-continuous]. Again
X = f−1({0}) ∪ f−1({1}), which implies X is not δµ-connected, a contradiction.
Therefore, f must be constant.

Conversely, if X is not δµ-connected then there exist two non-empty subsets
A, B of X such that X = A ∪ B with A ̸ δµ B. Define F : X → Xd by

F (x) =
{

0, x ∈ A,

1, x ∈ B.

Since, A ̸ δµ B implies A ∩ B = ∅ [from (iii) and (ii) of Definition 1.1], therefore,
F is well-defined. Let C, D ⊆ X and CδµD.

We claim that F (C) δ F (D). In fact, if F (C) ̸ δ F (D) then F (C) ∩ F (D) = ∅
[since, Xd is discrete]. Therefore, without loss of generality, let F (C) = {0} and
F (D) = {1} which implies C ⊆ A and D ⊆ B. Since C δµ D, by (ii) of Definition
1.1, we get A δµ B, a contradiction.

Therefore, C δµ D ⇒ F (C) δ F (D), so F is δµ-continuous, but not constant.
This gives the desired result.

Theorem 2.3
A µ-proximity space (X, δµ) is δµ-connected if and only if for any non-empty proper
subset A of X, A δµ (X \ A).
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Proof. Let (X, δµ) be a δµ-connected µ-proximity space and ∅ ̸= A ⊂ X. It is
evident that A δµ (X \ A), otherwise X = A ∪ (X \ A) and X \ A is also a non-
empty proper subset of X which implies X is not δµ-connected, a contradiction.

Conversely, let (X, δµ) be not δµ-connected. So there exist non-empty subsets
A, B of X such that X = A ∪ B and A ̸ δµ B. Since A and B are δµ-separated,
A ∩ B = ∅ which implies B = X \ A. Hence A ̸ δµ (X \ A). This gives the desired
result.

Proposition 2.4
If (X, δµ) is a µ-proximity space and C is a non-empty δµ-connected subset of
X which is contained in the union of two δµ-separated subsets of X, then C is
contained in one of the subsets.
Proof. Let C be a δµ-connected subset of X and C ⊆ A ∪ B with A ̸ δµ B, where
A, B ⊆ X. If possible, let A∩C ̸= ∅ and B ∩C ̸= ∅. Obviously, (A∩C) ̸ δµ (B ∩C)
[otherwise by (ii) of Definition 1.1, A δµ B]. Also, (A ∩ C) ∪ (B ∩ C) = C, which
implies C is not δµ-connected, a contradiction.

Therefore, either A ∩ C = ∅ or B ∩ C = ∅, i.e. either C ⊆ A or C ⊆ B.

Theorem 2.5
In a µ-proximity space (X, δµ), the µ-closure of a δµ-connected subset is δµ-con-
nected.
Proof. Let A be a δµ-connected subset of X. Let cµ(A) = P ∪ Q and P ̸ δµ Q,
where P, Q are non-empty subsets of X. Since A ⊆ P ∪ Q, by Proposition 2.4,
A is contained either in P or in Q. Without loss of generality, let A ⊆ P , which
implies cµ(A) ⊆ cµ(P ).

Now P ̸ δµ Q ⇒ cµ(P ) ̸ δµ cµ(Q) [by Lemma 1.4] and so cµ(P ) ∩ cµ(Q) = ∅.
Therefore, cµ(A)∩cµ(Q) = ∅ which implies cµ(A)∩Q = ∅ and so Q = ∅. Therefore,
it is not possible to express cµ(A) as the union of two δµ-separated sets. Hence
cµ(A) is δµ-connected.

Theorem 2.6
Let (X, δµ) be a δµ-connected µ-proximity space and let f : X → Y be an onto, δµ-
continuous function to another µ-proximity space (Y, δ′

µ). Then Y is δ′
µ-connected.

Proof. If possible, let Y be not δµ-connected. So there exist non-empty subsets
C and D of Y such that Y = C ∪ D and C ̸ δ′

µ D. Since f is δµ-continuous,
f−1(C) ̸ δµ f−1(D). Again, X = f−1(Y ) = f−1(C) ∪ f−1(D), with f−1(C) ̸= ∅
and f−1(D) ̸= ∅ [since f is onto and both C and D are non-empty], which implies
X is not δµ-connected, a contradiction. Therefore, Y is δ′

µ-connected.

Remark 2.7
If (X, δµ) is a µ-proximity space and Y ⊆ X, then we define a relation δY

µ on the
subsets of Y in the following manner

A δY
µ B ⇔ A δµ B, where A, B ⊆ Y.

It can be easily checked that (Y, δY
µ ) is a µ-proximity space. Moreover, the gener-

alized topology generated by δY
µ , i.e. τ(δY

µ ), is the generalized subspace topology
induced by τ(δµ) on Y .
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Theorem 2.8
In a µ-proximity space (X, δµ), suppose {Aλ : λ ∈ Λ} is a family of δµ-connected
subspaces of X. If there exists a λ′ ∈ Λ such that Aλ′ δµ Aλ for all λ ∈ Λ, then⋃

λ∈Λ Aλ is δµ-connected.

Proof. Let A, B ⊆ X and
⋃

λ∈ΛAλ = A ∪ B with A ̸ δµ B. We show that either
A = ∅ or B = ∅. Clearly, Aλ′ ⊆ A ∪ B, so by Proposition 2.4, Aλ′ ⊆ A (without
loss of generality).

Claim: for all λ ∈ Λ, Aλ ⊆ A. In fact, if for any λ∗ ∈ Λ, Aλ∗ ⊆ B then since
Aλ′ δµ Aλ∗ we get A δµ B [by (ii) of Definition 1.1]. Therefore, for all λ ∈ Λ,
Aλ ⊆ A, which implies B = ∅ (as A ∩ B = ∅). So,

⋃
λ∈Λ Aλ is δµ-connected.

Theorem 2.9
For a µ-proximity space (X, δµ) the following are equivalent

(i) X is δµ-connected.
(ii) Every δµ-continuous function on X to Xd is constant.
(iii) For a non-empty proper subset A of X, A δµ (X \ A).

Proof. (i) ⇒ (ii). Proved earlier.
(ii) ⇒ (iii). Let A ̸= ∅ and A ⊂ X. If possible, let A ̸ δµ (X \ A). We define

a function f : X → Xd by

f(x) =
{

1 for x ∈ A,

0 for x /∈ A.

For P, Q ⊆ X with P δµ Q we claim that f(P ) δ f(Q), where δ denotes the
discrete proximity on Xd. If not, let f(P ) ̸ δ f(Q) which implies, without loss
of generality, f(P ) = {1} and f(Q) = {0}. Now, P ⊆ A and Q ⊆ (X \ A), so
Aδ(X \ A), a contradiction. Therefore, f(P ) δ f(Q) and so f is δµ-continuous,
which contradicts (ii). Hence A δµ (X \ A).

(iii) ⇒ (i). Straightforward.

Definition 2.10
A δµ-continuous function f from a µ-proximity space (X, δµ) to a µ-proximity
space (Y, δ′

µ) is said to be δµ-monotone if for each y ∈ Y the set f−1({y}) is
δµ-connected in X.

We write the set f−1({y}) as f−1(y).

Definition 2.11
A δµ-continuous function f from a µ-proximity space (X, δµ) to a µ-proximity
space (Y, δ′

µ) is called a δµ-quotient map if for each C, D ⊆ Y ,

C δ′
µ D ⇔ f−1(C) δµ f−1(D).

Proposition 2.12
(X, δµ) and (Y, δ′

µ) are µ-proximity spaces and C is a δµ-connected set in Y . If
f : (X, δµ) → (Y, δ′

µ) is a δµ-monotone and δµ-quotient function, then the set
f−1(C) is δµ-connected in X.
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Proof. If possible, let f−1(C) be not δµ-connected. So there exist non-empty δµ-
separated subsets of X, say A and B, such that f−1(C) = A ∪ B. Since f is
δµ-monotone, for each y ∈ C, f−1(y) is a δµ-connected subset of X. Therefore, for
each y ∈ C, f−1(y) is contained either in A or in B, by Proposition 2.4. Consider
the sets CA = {y ∈ C : f−1(y) ⊆ A} and CB = {y ∈ C : f−1(y) ⊆ B}.
Clearly, f−1(CA) = A and f−1(CB) = B, also C = CA ∪ CB . Again, f is a δµ-
quotient map, so f−1(CA) ̸ δµ f−1(CB) ⇒ CA ̸ δ′

µ CB ⇒ C is not δµ-connected,
a contradiction. Therefore, f−1(C) is δµ-connected.

Definition 2.13
A finite collection of subsets A1, A2, . . . , An of a µ-proximity space X is said to be
a δµ-chain if Ai δµ Ai+1 for each i ∈ 1, 2, . . . , n − 1.

A family F of subsets of X is said to be δµ-chained if for any two elements
A, B ∈ F , there exist finitely many elements of C1, C2, . . . , Cn in F such that
C = {A, C1, C2, . . . , Cn, B} is a δµ-chain. In such a case, we say that C joins A and
B via the relation δµ.

Proposition 2.14
If A1, A2, . . . , An is a δµ-chain in a µ-proximity space X and each Ai is δµ-
connected, where i ∈ {1, 2, . . . , n}, then

⋃n
i=1 Ai is δµ-connected.

Proof. Let there exist two non-empty δµ-separated subsets C and D of X such that⋃n
i=1 Ai = C ∪ D. Since each Ai is δµ-connected, each of those sets is contained

either in C or in D, by Proposition 2.4.
We claim, without loss of generality, that Ai ⊆ C for all i ∈ {1, 2, . . . , n}. In

fact, let Ai ⊆ C and Aj ⊆ D with i ̸= j and i < j. Since Ai δµ Ai+1 we must
have Ai+1 ⊆ C. Otherwise if Ai+1 ⊆ D then, by (ii) of Definition 1.1, C δµ D,
a contradiction to the assumption. So for Ai ⊆ C we have Ai+1 ⊆ C. Continuing
this process we get Aj ⊆ C. Therefore, Ai ⊆ C for each i ∈ {1, 2, . . . , n} which
implies D = ∅. Hence

⋃n
i=1 Ai is δµ-connected.

Proposition 2.15
Suppose (X, δµ) is a µ-proximity space and F = {Aλ : λ ∈ Λ} is a δµ-chained
family of δµ-connected subsets of X. Then

⋃
λ∈Λ Aλ is δµ-connected.

Proof. Let U and V be two non-empty δµ-separated sets in (X, δµ) such that⋃
λ∈Λ Aλ = U ∪ V .

We claim that for all λ ∈ Λ either Aλ ⊆ U or Aλ ⊆ V . If possible, let there
exist λ1, λ2 ∈ Λ such that Aλ1 ⊆ U and Aλ2 ⊆ V . Since F is a δµ-chained family,
there exists a δµ-chain, say {Aα1 , Aα2 , . . . , Aαn

}, where Aαi
∈ F , i ∈ {1, 2, . . . , n}

with Aα1 = Aλ1 and Aαn
= Aλ2 , that joins Aλ1 and Aλ2 via the relation δµ.

We set A =
⋃n

i=1 Aαi
. Observe that by Proposition 2.14 A is δµ-connected.

Again

A =
n⋃

i=1
Aαi

⊆
⋃

λ∈Λ

Aλ = U ∪ V.

Therefore, by Proposition 2.4, either A ⊆ U or A ⊆ V . Thus, Aλ1 and Aλ2 both
are contained either in U or in V , a contradiction. Hence our claim is justified.
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Without loss of generality, let Aλ ⊆ U for all λ ∈ Λ, then V = ∅, as U ∩V = ∅.
Hence

⋃
λ∈Λ Aλ is δµ-connected.

Definition 2.16
A cover C of a µ-proximity space X is said to be a δµ-cover if for A, B ⊆ X with
A δµ B there exists a set U ∈ C such that A ∩ U ̸= ∅ and B ∩ U ̸= ∅.

Theorem 2.17
Every δµ-cover of a δµ-connected µ-proximity space is a δµ-chained family.

Proof. Let C = {Uα : α ∈ Λ} be a δµ-cover of a δµ-connected µ-proximity space
(X, δµ). If possible, let there exist Uα1 , Uα2 ∈ C such that there does not exist any
δµ-chain in C that joins Uα1 and Uα2 .

We define a set Uα ∈ C to have property P if Uα and Uα1 are contained in
some δµ-chain consisting of the elements of C.

Let us consider two sets defined by C1 = {Uα ∈ C : Uα has property P} and
C2 = {Uα′ ∈ C : Uα′ does not have property P}. Clearly, the collection C1 is
non-empty as Uα1 ∈ C1.

We claim that C2 is empty. If possible, let C2 ̸= ∅. We set A =
⋃

Uα∈C1
Uα

and B =
⋃

Uα′ ∈C2
Uα′ . Clearly, X = A ∪ B and A, B are non-empty subsets of

X. We assert that A ̸ δµ B. If not, let A δµ B, then there exists U ∈ C such that
A ∩ U ̸= ∅ and B ∩ U ̸= ∅, which implies there exist UA

α ∈ C1 and UB
α ∈ C2 such

that UA
α ∩ U ̸= ∅ and UB

α ∩ U ̸= ∅.
Now, UA

α has property P. So there exists a δµ-chain {U1, U2, . . . , Un}, where
each Ui ∈ C for i ∈ {1, 2, . . . , n}, that joins UA

α with Uα1 . Again, UA
α ∩ U ̸= ∅

implies UA
α δµ U . Therefore the δµ-chain {U1, U2, . . . , Un, UA

α } joins the sets U
and Uα1 . Hence the set U has property P.

Furthermore, UB
α ∩ U ̸= ∅ implies U δµ UB

α . Extending the δµ-chain as

{U1, U2, . . . , Un, UA
α , U}

we get that it joins the sets Uα1 and UB
α . Therefore, UB

α has property P, a con-
tradiction.

Hence the sets A and B are δµ-separated, but this implies X is not δµ-
connected, a contradiction. Therefore, our claim is justified and C2 = ∅ which
implies C1 = C.

Now for any two sets Uα, Uβ ∈ C, both Uα and Uβ have property P. Let
{A1, A2, . . . , An} and {B1, B2, . . . , Bm} be the δµ-chains that join Uα with Uα1

and Uα1 with Uβ , where each Ai, Bj ∈ C, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}. Con-
sider the δµ-chain {A1, A2, . . . , An, Uα1 , B1, B2, . . . , Bm}, clearly this chain joins
Uα with Uβ . Hence, C is a δµ-chained family.

3. δµ-component

Definition 3.1
A maximal δµ-connected subset, i.e. a δµ-connected subset which is not properly
contained in any larger δµ-connected subset of X of a µ-proximity space X, is
called a δµ-component of X.



[36] D. Dey, D. Mandal and M. N. Mukherjee

For a point x ∈ X, Cδµ
(x) denotes the δµ-component of X, containing x.

Proposition 3.2
In a µ-proximity space (X, δµ),

Cδµ(x) =
⋃

{Ax : Ax is a δµ-connected set containing x}.

Proof. Follows from Definition 3.1 and Theorem 2.8.

Theorem 3.3
In a µ-proximity space (X, δµ), for two distinct points x, y ∈ X, either Cδµ

(x) =
Cδµ

(y) or Cδµ
(x) ̸ δµ Cδµ

(y).

Proof. Case 1. If Cδµ
(x) ̸ δµ Cδµ

(y), then there is nothing to prove.
Case 2. If Cδµ(x) δµ Cδµ(y), then the set Cδµ(x) ∪ Cδµ(y) is δµ-connected

[by Theorem 2.8]. Since Cδµ(x) and Cδµ(y) are the maximal δµ-connected sets
containing x and y respectively, we have Cδµ

(x) = Cδµ
(x)∪Cδµ

(y) = Cδµ
(y). This

gives the desired result.

Corollary 3.4
A µ-proximity space (X, δµ) is the union of its δµ-components which are δµ-
separated.

Proof. Follows from Theorem 3.3.

Proposition 3.5
In a µ-proximity space (X, δµ), δµ-components are µ-closed.

Proof. Let A be a δµ-component of X. Since cµ(A) is δµ-connected [by Theorem
2.5] and A ⊆ cµ(A), we must have A = cµ(A). Hence A is δµ-closed.

Proposition 3.6
Suppose (X, δµ) and (Y, δ′

µ) are two µ-proximity spaces. f : X → Y is a δµ-
monotone function and f is δµ-quotient function onto Y . Then C is a δ′

µ-component
in Y if and only if f−1(C) is a δµ-component in X.

Proof. Let C be a δ′
µ-component in Y . By Proposition 2.12, f−1(C) is δµ-

connected in X. Let D be a δµ-connected subset of X such that f−1(C) ⊆ D.
Now, f(f−1(C)) ⊆ f(D) ⇒ C ⊆ f(D). Since f is a δµ-quotient map, f is
δµ-continuous. Now, by Theorem 2.6, f(D) is δµ-connected. Again, C is a δµ-
component, so C = f(D) which implies f−1(C) = f−1(f(D)) ⊇ D. Therefore,
D = f−1(C), i.e. f−1(C) is a δµ-component.

Conversely, let f−1(C) is a δµ-component in X, where C ⊆ Y . By Theorem
2.6, f(f−1(C)) = C is a δµ-connected set in Y . Let K be a δµ-connected subset
in Y such that C ⊆ K. Now f−1(C) ⊆ f−1(K). By Proposition 2.12, f−1(K) is
δµ-connected. But f−1(C) is a δµ-component which implies f−1(C) = f−1(K) ⇒
C = K. Therefore, C is a δ′

µ-component in Y .
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4. δµ-quasi component

Let (X, δµ) be a µ-proximity space. We define a relation ρ on X in the following
way: for x, y ∈ X,

x ρ y ⇔ there do not exist any δµ-separated sets A and B such that x ∈ A,
y ∈ B and X = A ∪ B.

Theorem 4.1
ρ is an equivalence relation on X.

Proof. It is evident that ρ is reflexive and symmetric.
Let for x, y, z ∈ X, x ρ y and y ρ z, we shall show that x ρ z in order to show

that ρ is transitive. If possible, let x ̸ρ z which implies there exist δµ-separated
sets C and D such that x ∈ C, z ∈ D with X = C ∪ D. Observe that y ∈ C ∪ D
implies y ∈ C or y ∈ D. If y ∈ C then y ̸ρ z, which is not possible. Again, if
y ∈ D, then x ̸ρ y, another impossibility. Therefore ρ is transitive. This ends the
proof.

From the above theorem we observe that ρ induces a partition of X and X
can be expressed as the union of equivalence classes of ρ.

Definition 4.2
For x ∈ X, the set {y ∈ X : x ρ y} is said to be the δµ-quasi component at the
point x and is denoted by Qδµ

(x).

Theorem 4.3
In a µ-proximity space (X, δµ), δµ-quasi components are µ-closed sets in τ(δµ).

Proof. Let Qδµ
(x) be the δµ-quasi component at the point x ∈ X. Let y /∈ Qδµ

(x)
which implies x ̸ρ y, so there exist C, D ⊆ X such that x ∈ C, y ∈ D with
X = C ∪ D and C ̸ δµ D. Now

z ∈ D ⇒ x ̸ρ z ⇒ z /∈ Qδµ
(x) ⇒ D ∩ Qδµ

(x) = ∅.

Since X = C ∪ D we have Qδµ(x) ⊆ C, which implies Qδµ(x) ̸ δµ D [otherwise by
(ii) of Definition 1.1 we get C δµ D, a contradiction] and so {y} ̸ δµ Qδµ

(x). Hence
y /∈ cµ(Qδµ

(x)) [from Proposition 1.3], therefore Qδµ
(x) is µ-closed.

Theorem 4.4
In a µ-proximity space (X, δµ), Cδµ

(x) ⊆ Qδµ
(x), where x ∈ X.

Proof. Let y /∈ Qδµ(x) then x ̸ρ y which implies there exist A, B ⊆ X such that
x ∈ A, y ∈ B with X = A ∪ B and A ̸ δµ B. Now x ∈ Cδµ

(x) and

Cδµ(x) ⊆ A ∪ B ⇒ Cδµ(x) ⊆ A ⇒ y /∈ Cδµ(x).

Therefore, y /∈ Qδµ
(x) ⇒ y /∈ Cδµ

(x), hence Cδµ
(x) ⊆ Qδµ

(x).
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