

FOLIA 386

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 23 (2024)

Dipankar Dey, Dhananjoy Mandal and Manabendra Nath Mukherjee

*δµ***-connectedness in a** *µ***-proximity space**

Abstract. In this paper we introduce the notion of δ_μ -connectedness on a μ proximity space. It has been proved that δ_μ -connectedness can be characterized by δ_{μ} -continuous functions. We initiate the idea of δ_{μ} -chain and establish some results related to this. The concepts of δ_{μ} -component and δ_{μ} -quasi component have been introduced and their interrelation has been studied.

1. Introduction and Preliminary Results

In topology, the notion of proximally continuous mapping is well-known in a proximity space. Császár introduced the concept of generalized topology in [\[1\]](#page-9-0) and it was observed that many of the existing results for a topological space are still valid in this generalized premise. Generalized topology was defined by Császár as follows:

A collection μ of subsets of a set X is called a generalized topology (GT, in short) on *X* if

(i) $\emptyset \in \mu$,

(ii) for $U_{\alpha} \in \mu$, $\alpha \in \Lambda$ (Λ being an index set), $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mu$.

The pair (X, μ) is called a generalized topological space (GTS, in short). The members of μ are called μ -open sets and their complements are μ -closed. For a subset A of X, the union of all μ -open sets contained in A is called the μ -interior

AMS (2020) Subject Classification: 54E05, 54D05.

Keywords and phrases: δ_μ -connectedness, δ_μ -components, δ_μ -quasi components, δ_μ continuity, *µ*-proximity.

ISSN: 2081-545X, e-ISSN: 2300-133X.

of *A* and is denoted by $i_{\mu}A$. The intersection of all μ -closed sets of *X* containing *A* is known as the μ -closure of *A* and is denoted by $c_{\mu}A$. A GT is said to be *strong* if $X \in \mu$.

The notion of connectedness in a generalized topological space was studied by Császár in [\[2\]](#page-9-1). In [\[3\]](#page-9-2), Dimitrijević and Kočinac have introduced the notion of connectedness in a proximity space. They carried on to infer about *δ*-component, *δ*-quasi component and local *δ* connectedness. Various relations between those concepts were developed and the use of proximally continuous function was a key in those results. We look to study similar conditions for a *µ*-proximity space. In this paper, we initiate a type of connectedness on a μ -proximity space [\[4\]](#page-9-3). After the introductory section, we have defined the δ_{μ} -connectedness and obtain certain results regarding it. In Section 3, the concept of δ_{μ} -component has been studied. In the last section, the notion of δ_{μ} -quasi component is introduced and a relation between δ_{μ} -component and δ_{μ} -quasi component is established.

Before going into the details, we first recall the definition of μ -proximity and some results related to it.

DEFINITION 1.1 $([4])$ $([4])$ $([4])$

A binary relation δ_{μ} on the power set $\mathcal{P}(X)$ of a set X is called a μ -proximity on *X* if δ_{μ} satisfies the following axioms:

- (i) *A* δ_{μ} *B* if and only if *B* δ_{μ} *A* for all $A, B \in \mathcal{P}(X);$
- (ii) If $A \delta_\mu B$, $A \subseteq C$ and $B \subseteq D$, then $C \delta_\mu D$;
- (iii) $\{x\}$ δ_μ $\{x\}$ for all $x \in X$;
- (iv) If *A* δ_{μ} *B* then there exists $E(\subseteq X)$ such that *A* δ_{μ} *E* and $(X \setminus E)$ δ_{μ} *B*.

If a relation satisfies axioms [\(i\)–](#page-1-0)[\(iii\)](#page-1-1) then it is called a *basic* μ *-proximity* on *X*.

PROPOSITION 1.2 ([\[4\]](#page-9-3))

Let a subset A of a μ -proximity space (X, δ_{μ}) be defined to be δ_{μ} -closed if and only *if*

$$
\{x\} \delta_{\mu} A \Rightarrow x \in A.
$$

Then the collection of complements of all δ _{*µ*}-closed sets so defined yields a gener*alized topology* $\mu = \tau(\delta_{\mu})$ *on X.*

PROPOSITION 1.3 ([\[4\]](#page-9-3))

Let (X, δ_μ) *be a µ-proximity space and* $\mu = \tau(\delta_\mu)$ *. Then the* μ -closure $c_\mu(A)$ of *a set A in* (X, μ) *is given by* $c_{\mu}(A) = \{x : \{x\} \delta_{\mu} \ A\}.$

Lemma 1.4 ([\[4\]](#page-9-3)) *For subsets A and B of a* μ *-proximity space* (X, δ_{μ}) *,*

$$
A \, \delta_{\mu} \, B \Leftrightarrow c_{\mu}(A) \, \delta_{\mu} \, c_{\mu}(B),
$$

where the μ -closures are taken with respect to $\tau(\delta_{\mu})$.

DEFINITION 1.5 ([\[6\]](#page-9-4))

If (X, δ_{μ_1}) and (Y, δ_{μ_2}) are two μ -proximity spaces, a mapping $f: X \to Y$ is said to be δ_{μ} -continuous if $A \ \delta_{\mu_1} B$ implies $f(A) \ \delta_{\mu_2} f(B)$ for $A, B \subseteq X$.

 δ_{μ} -connectedness in a μ -proximity space **[31] [31]**

2. *δµ***-connectedness**

DEFINITION 2.1

A μ -proximity space (X, δ_{μ}) is said to be δ_{μ} -connected if it cannot be expressed as the union of two non-empty subsets of *X* that are not δ_{μ} -related. A subset *Y* of *X* is said to be a δ_{μ} -connected subset of *X* if it cannot be expressed as the union of two non-empty subsets of *X* that are not δ_{μ} -related.

We know that, by defining a proximity δ as

$$
A \ \delta \ B \Leftrightarrow A \cap B \neq \emptyset,
$$

where $A, B \subseteq X$, we get the discrete proximity on X, [\[5\]](#page-9-5). Of course, the corresponding topology generated by δ is the discrete topology on X. Since every proximity space is a μ -proximity space[details can be found in [\[4\]](#page-9-3), Proposition 2.12], we have (X, δ) as the discrete μ -proximity space. As per our requirement, here we consider the discrete μ -proximity on the two-point set $\{0,1\}$ and denote the discrete μ -proximity space $({0, 1}, \delta)$ by X_d henceforth.

In a μ -proximity space (X, δ_{μ}) , two non-empty subsets *A* and *B* of *X* are said to be δ_{μ} -separated, if A, B are not δ_{μ} related, i.e. $A \not{S}_{\mu} B$.

THEOREM 2.2

A µ-proximity space (X, δ_μ) *is* δ_μ -connected *if and only if every* δ_μ -continuous *function f on X to X^d is constant.*

Proof. Let (X, δ_μ) be δ_μ -connected and $f: X \to X_d$ be a δ_μ -continuous function. If possible, let *f* be not constant. Then $f^{-1}(\{0\}) \neq \emptyset$ and $f^{-1}(\{1\}) \neq \emptyset$. Also {0} δ {1} which implies $f^{-1}(\{0\})$ δ_μ $f^{-1}(\{1\})$ [since f is δ_μ -continuous]. Again $X = f^{-1}(\{0\}) \cup f^{-1}(\{1\}),$ which implies *X* is not δ_μ -connected, a contradiction. Therefore, *f* must be constant.

Conversely, if *X* is not δ_{μ} -connected then there exist two non-empty subsets *A, B* of *X* such that $X = A \cup B$ with $A \notin_{\mu} B$. Define $F: X \to X_d$ by

$$
F(x) = \begin{cases} 0, & x \in A, \\ 1, & x \in B. \end{cases}
$$

Since, *A* δ_{μ} *B* implies $A \cap B = \emptyset$ [from [\(iii\)](#page-1-1) and [\(ii\)](#page-1-2) of Definition [1.1\]](#page-1-3), therefore, *F* is well-defined. Let $C, D \subseteq X$ and $C\delta_{\mu}D$.

We claim that $F(C) \delta F(D)$. In fact, if $F(C) \delta F(D)$ then $F(C) \cap F(D) = \emptyset$ [since, X_d is discrete]. Therefore, without loss of generality, let $F(C) = \{0\}$ and *F*(*D*) = {1} which implies *C* ⊆ *A* and *D* ⊆ *B*. Since *C* δ_{μ} *D*, by [\(ii\)](#page-1-2) of Definition [1.1,](#page-1-3) we get *A* δ_{μ} *B*, a contradiction.

Therefore, $C \delta_\mu D \Rightarrow F(C) \delta F(D)$, so F is δ_μ -continuous, but not constant. This gives the desired result.

THEOREM 2.3

 $A \mu$ -proximity space (X, δ_u) is δ_u -connected if and only if for any non-empty proper *subset A of X*, *A* δ_{μ} (*X* \ *A*).

Proof. Let (X, δ_μ) be a δ_μ -connected μ -proximity space and $\emptyset \neq A \subset X$. It is evident that *A* δ_{μ} (*X* \ *A*), otherwise $X = A \cup (X \setminus A)$ and $X \setminus A$ is also a nonempty proper subset of *X* which implies *X* is not δ_{μ} -connected, a contradiction.

Conversely, let (X, δ_μ) be not δ_μ -connected. So there exist non-empty subsets *A, B* of *X* such that $X = A \cup B$ and $A \notin B$, *B*. Since *A* and *B* are δ_{μ} -separated, $A \cap B = \emptyset$ which implies $B = X \setminus A$. Hence $A \not{S}_{\mu} (X \setminus A)$. This gives the desired result.

PROPOSITION 2.4

If (X, δ_μ) *is a µ-proximity space and C is a non-empty* δ_μ -connected subset of *X* which is contained in the union of two δ_{μ} -separated subsets of X, then C is *contained in one of the subsets.*

Proof. Let *C* be a δ_{μ} -connected subset of *X* and $C \subseteq A \cup B$ with $A \not{S}_{\mu} B$, where $A, B \subseteq X$. If possible, let $A \cap C \neq \emptyset$ and $B \cap C \neq \emptyset$. Obviously, $(A \cap C) \not{}_{\mu} (B \cap C)$ [otherwise by (ii) of Definition [1.1,](#page-1-3) *A* δ_{μ} *B*]. Also, $(A \cap C) \cup (B \cap C) = C$, which implies *C* is not δ_{μ} -connected, a contradiction.

Therefore, either $A \cap C = \emptyset$ or $B \cap C = \emptyset$, i.e. either $C \subseteq A$ or $C \subseteq B$.

THEOREM 2.5

In a µ-proximity space (X, δ_u) *, the µ*-closure of a δ_u -connected subset is δ_u -con*nected.*

Proof. Let *A* be a δ_{μ} -connected subset of *X*. Let $c_{\mu}(A) = P \cup Q$ and $P \notin Q$, where P, Q are non-empty subsets of *X*. Since $A \subseteq P \cup Q$, by Proposition [2.4,](#page-3-0) *A* is contained either in *P* or in *Q*. Without loss of generality, let $A \subseteq P$, which implies $c_{\mu}(A) \subseteq c_{\mu}(P)$.

Now $P \cancel{\delta}_{\mu} Q \Rightarrow c_{\mu}(P) \cancel{\delta}_{\mu} c_{\mu}(Q)$ [by Lemma [1.4\]](#page-1-4) and so $c_{\mu}(P) \cap c_{\mu}(Q) = \emptyset$. Therefore, $c_{\mu}(A) \cap c_{\mu}(Q) = \emptyset$ which implies $c_{\mu}(A) \cap Q = \emptyset$ and so $Q = \emptyset$. Therefore, it is not possible to express $c_{\mu}(A)$ as the union of two δ_{μ} -separated sets. Hence $c_{\mu}(A)$ is δ_{μ} -connected.

THEOREM 2.6

Let (X, δ_μ) be a δ_μ -connected μ -proximity space and let $f: X \to Y$ be an onto, δ_μ *continuous function to another* μ -proximity space (Y, δ'_{μ}) *. Then* Y *is* δ'_{μ} -connected.

Proof. If possible, let *Y* be not δ_{μ} -connected. So there exist non-empty subsets *C* and *D* of *Y* such that $Y = C \cup D$ and $C \notin_{\mu}^{\prime} D$. Since *f* is δ_{μ} -continuous, $f^{-1}(C) \not g_{\mu} f^{-1}(D)$. Again, $X = f^{-1}(Y) = f^{-1}(C) \cup f^{-1}(D)$, with $f^{-1}(C) \neq \emptyset$ and $f^{-1}(D) \neq \emptyset$ [since f is onto and both C and D are non-empty], which implies *X* is not δ_{μ} -connected, a contradiction. Therefore, *Y* is δ'_{μ} -connected.

REMARK 2.7

If (X, δ_μ) is a *µ*-proximity space and $Y \subseteq X$, then we define a relation δ_μ^Y on the subsets of *Y* in the following manner

$$
A \delta^Y_\mu B \Leftrightarrow A \delta_\mu B
$$
, where $A, B \subseteq Y$.

It can be easily checked that (Y, δ^Y_μ) is a μ -proximity space. Moreover, the generalized topology generated by δ^Y_μ , i.e. $\tau(\delta^Y_\mu)$, is the generalized subspace topology induced by $\tau(\delta_{\mu})$ on *Y*.

δµ-connectedness in a *µ*-proximity space **[33]**

THEOREM 2.8

In a µ-proximity space (X, δ_μ) *, suppose* $\{A_\lambda : \lambda \in \Lambda\}$ *is a family of* δ_μ -connected *subspaces of X. If there exists a* $\lambda' \in \Lambda$ *such that* $A_{\lambda'}$ δ_{μ} A_{λ} *for all* $\lambda \in \Lambda$ *, then* $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ *is* δ_{μ} -connected.

Proof. Let $A, B \subseteq X$ and $\bigcup \lambda \in \Lambda A_{\lambda} = A \cup B$ with $A \not{S}_{\mu} B$. We show that either *A* = ∅ or *B* = ∅. Clearly, $A_{\lambda'}$ ⊆ $A \cup B$, so by Proposition [2.4,](#page-3-0) $A_{\lambda'}$ ⊆ A (without loss of generality).

Claim: for all $\lambda \in \Lambda$, $A_{\lambda} \subseteq A$. In fact, if for any $\lambda^* \in \Lambda$, $A_{\lambda^*} \subseteq B$ then since *A*_{λ ' *δ*_{*µ*} *A*_{λ}^{*} we get *A δ*_{*µ*} *B* [by [\(ii\)](#page-1-2) of Definition [1.1\]](#page-1-3). Therefore, for all $\lambda \in \Lambda$,} $A_{\lambda} \subseteq A$, which implies $B = \emptyset$ (as $A \cap B = \emptyset$). So, $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

THEOREM 2.9

For a μ *-proximity space* (X, δ_{μ}) *the following are equivalent*

- (i) *X is* δ_μ -connected.
- (ii) *Every* δ_{μ} -continuous function on *X* to X_d is constant.
- (iii) *For a non-empty proper subset A of X*, *A* δ_{μ} (*X* \ *A*).

Proof. [\(i\)](#page-4-0) \Rightarrow [\(ii\).](#page-4-1) Proved earlier.

[\(ii\)](#page-4-1) \Rightarrow [\(iii\).](#page-4-2) Let $A \neq \emptyset$ and $A \subset X$. If possible, let $A \not\in_{\mu} (X \setminus A)$. We define a function $f: X \to X_d$ by

$$
f(x) = \begin{cases} 1 & \text{for } x \in A, \\ 0 & \text{for } x \notin A. \end{cases}
$$

For $P, Q \subseteq X$ with $P \delta_\mu Q$ we claim that $f(P) \delta f(Q)$, where δ denotes the discrete proximity on X_d . If not, let $f(P) \not\delta f(Q)$ which implies, without loss of generality, $f(P) = \{1\}$ and $f(Q) = \{0\}$. Now, $P \subseteq A$ and $Q \subseteq (X \setminus A)$, so $A\delta(X \setminus A)$, a contradiction. Therefore, $f(P) \delta f(Q)$ and so f is δ_{μ} -continuous, which contradicts [\(ii\).](#page-4-1) Hence $A \delta_\mu (X \setminus A)$.

 $(iii) \Rightarrow (i)$ $(iii) \Rightarrow (i)$. Straightforward.

DEFINITION 2.10

A δ_{μ} -continuous function f from a μ -proximity space (X, δ_{μ}) to a μ -proximity space (Y, δ'_{μ}) is said to be δ_{μ} -monotone if for each $y \in Y$ the set $f^{-1}(\{y\})$ is *δµ*-connected in *X*.

We write the set $f^{-1}(\lbrace y \rbrace)$ as $f^{-1}(y)$.

DEFINITION 2.11

A δ_{μ} -continuous function *f* from a μ -proximity space (X, δ_{μ}) to a μ -proximity space (Y, δ'_{μ}) is called a δ_{μ} -quotient map if for each $C, D \subseteq Y$,

$$
C \delta'_{\mu} D \Leftrightarrow f^{-1}(C) \delta_{\mu} f^{-1}(D).
$$

PROPOSITION 2.12

 (X, δ_μ) and (Y, δ'_μ) are μ -proximity spaces and C is a δ_μ -connected set in Y. If $f: (X, \delta_\mu) \to (Y, \delta'_\mu)$ *is a* δ_μ *-monotone and* δ_μ *-quotient function, then the set* $f^{-1}(C)$ *is* δ_{μ} -connected in X.

Proof. If possible, let $f^{-1}(C)$ be not δ_μ -connected. So there exist non-empty δ_μ separated subsets of X, say *A* and *B*, such that $f^{-1}(C) = A \cup B$. Since *f* is *δ*^{*µ*}-monotone, for each *y* ∈ *C*, $f^{-1}(y)$ is a *δ*^{*µ*}-connected subset of *X*. Therefore, for each $y \in C$, $f^{-1}(y)$ is contained either in *A* or in *B*, by Proposition [2.4.](#page-3-0) Consider the sets $C_A = \{y \in C : f^{-1}(y) \subseteq A\}$ and $C_B = \{y \in C : f^{-1}(y) \subseteq B\}.$ Clearly, $f^{-1}(C_A) = A$ and $f^{-1}(C_B) = B$, also $C = C_A \cup C_B$. Again, f is a δ_μ quotient map, so $f^{-1}(C_A)$ δ_μ $f^{-1}(C_B) \Rightarrow C_A$ δ'_μ $C_B \Rightarrow C$ is not δ_μ -connected, a contradiction. Therefore, $f^{-1}(C)$ is δ_μ -connected.

DEFINITION 2.13

A finite collection of subsets A_1, A_2, \ldots, A_n of a μ -proximity space X is said to be a δ_{μ} -chain if A_i δ_{μ} A_{i+1} for each $i \in 1, 2, \ldots, n-1$.

A family F of subsets of X is said to be δ_{μ} -chained if for any two elements $A, B \in \mathcal{F}$, there exist finitely many elements of C_1, C_2, \ldots, C_n in \mathcal{F} such that $\mathcal{C} = \{A, C_1, C_2, \ldots, C_n, B\}$ is a δ_μ -chain. In such a case, we say that $\mathcal C$ joins A and *B* via the relation δ_{μ} .

PROPOSITION 2.14

If A_1, A_2, \ldots, A_n *is a* δ_μ -chain *in a* μ -proximity space *X* and each A_i *is* δ_μ *connected, where* $i \in \{1, 2, \ldots, n\}$ *, then* $\bigcup_{i=1}^{n} A_i$ *is* δ_{μ} *-connected.*

Proof. Let there exist two non-empty δ_μ -separated subsets *C* and *D* of *X* such that $\bigcup_{i=1}^{n} A_i = C \cup D$. Since each A_i is δ_{μ} -connected, each of those sets is contained either in *C* or in *D*, by Proposition [2.4.](#page-3-0)

We claim, without loss of generality, that $A_i \subseteq C$ for all $i \in \{1, 2, \ldots, n\}$. In fact, let $A_i \subseteq C$ and $A_j \subseteq D$ with $i \neq j$ and $i < j$. Since $A_i \delta_\mu A_{i+1}$ we must have $A_{i+1} \subseteq C$. Otherwise if $A_{i+1} \subseteq D$ then, by [\(ii\)](#page-1-2) of Definition [1.1,](#page-1-3) $C \delta_{\mu} D$, a contradiction to the assumption. So for $A_i \subseteq C$ we have $A_{i+1} \subseteq C$. Continuing this process we get $A_j \subseteq C$. Therefore, $A_i \subseteq C$ for each $i \in \{1, 2, \ldots, n\}$ which implies $D = \emptyset$. Hence $\bigcup_{i=1}^{n} A_i$ is δ_{μ} -connected.

PROPOSITION 2.15

Suppose (X, δ_μ) *is a* μ -proximity space and $\mathcal{F} = \{A_\lambda : \lambda \in \Lambda\}$ *is a* δ_μ -chained *family of* δ_{μ} -connected subsets of X. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ *is* δ_{μ} -connected.

Proof. Let *U* and *V* be two non-empty δ_u -separated sets in (X, δ_u) such that $\bigcup_{\lambda \in \Lambda} A_{\lambda} = U \cup V.$

We claim that for all $\lambda \in \Lambda$ either $A_{\lambda} \subseteq U$ or $A_{\lambda} \subseteq V$. If possible, let there exist $\lambda_1, \lambda_2 \in \Lambda$ such that $A_{\lambda_1} \subseteq U$ and $A_{\lambda_2} \subseteq V$. Since F is a δ_μ -chained family, there exists a δ_{μ} -chain, say $\{A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_n}\}$, where $A_{\alpha_i} \in \mathcal{F}, i \in \{1, 2, \ldots, n\}$ with $A_{\alpha_1} = A_{\lambda_1}$ and $A_{\alpha_n} = A_{\lambda_2}$, that joins A_{λ_1} and A_{λ_2} via the relation δ_{μ} .

We set $A = \bigcup_{i=1}^{n} A_{\alpha_i}$. Observe that by Proposition [2.14](#page-5-0) *A* is δ_{μ} -connected. Again

$$
A = \bigcup_{i=1}^{n} A_{\alpha_i} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda} = U \cup V.
$$

Therefore, by Proposition [2.4,](#page-3-0) either $A \subseteq U$ or $A \subseteq V$. Thus, A_{λ_1} and A_{λ_2} both are contained either in *U* or in *V* , a contradiction. Hence our claim is justified.

 δ_{μ} -connectedness in a μ -proximity space **[35] [35]**

Without loss of generality, let $A_{\lambda} \subseteq U$ for all $\lambda \in \Lambda$, then $V = \emptyset$, as $U \cap V = \emptyset$. Hence $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

DEFINITION 2.16

A cover $\mathcal C$ of a μ -proximity space X is said to be a δ_{μ} -cover if for $A, B \subseteq X$ with *A* δ_{μ} *B* there exists a set $U \in \mathcal{C}$ such that $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$.

THEOREM 2.17

Every δ_{μ} -cover of a δ_{μ} -connected μ -proximity space is a δ_{μ} -chained family.

Proof. Let $\mathcal{C} = \{U_\alpha : \alpha \in \Lambda\}$ be a δ_μ -cover of a δ_μ -connected μ -proximity space (X, δ_μ) . If possible, let there exist $U_{\alpha_1}, U_{\alpha_2} \in \mathcal{C}$ such that there does not exist any δ_{μ} -chain in C that joins U_{α_1} and U_{α_2} .

We define a set $U_{\alpha} \in \mathcal{C}$ to have property **P** if U_{α} and U_{α_1} are contained in some δ_{μ} -chain consisting of the elements of C.

Let us consider two sets defined by $C_1 = \{U_\alpha \in \mathcal{C} : U_\alpha \text{ has property } \mathbf{P} \}$ and $C_2 = \{U_{\alpha'} \in \mathcal{C} : U_{\alpha'} \text{ does not have property } \mathbf{P}\}.$ Clearly, the collection C_1 is non-empty as $U_{\alpha_1} \in \mathcal{C}_1$.

We claim that C_2 is empty. If possible, let $C_2 \neq \emptyset$. We set $A = \bigcup_{U_\alpha \in C_1} U_\alpha$ and $B = \bigcup_{U_{\alpha'} \in \mathcal{C}_2} U_{\alpha'}$. Clearly, $X = A \cup B$ and A, B are non-empty subsets of *X*. We assert that *A* δ_{μ} *B*. If not, let *A* δ_{μ} *B*, then there exists $U \in \mathcal{C}$ such that $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$, which implies there exist $U^A_\alpha \in \mathcal{C}_1$ and $U^B_\alpha \in \mathcal{C}_2$ such that $U^A_\alpha \cap U \neq \emptyset$ and $U^B_\alpha \cap U \neq \emptyset$.

Now, U^A_α has property **P**. So there exists a δ_μ -chain $\{U_1, U_2, \ldots, U_n\}$, where each $U_i \in \mathcal{C}$ for $i \in \{1, 2, \ldots, n\}$, that joins U^A_α with U_{α_1} . Again, $U^A_\alpha \cap U \neq \emptyset$ implies U^A_α *δ*_{*μ*} *U*. Therefore the *δ*_{*μ*}-chain $\{U_1, U_2, \ldots, U_n, U^A_\alpha\}$ joins the sets *U* and U_{α_1} . Hence the set *U* has property **P**.

Furthermore, $U^B_\alpha \cap U \neq \emptyset$ implies $U \delta_\mu U^B_\alpha$. Extending the δ_μ -chain as

$$
\{U_1, U_2, \ldots, U_n, U_\alpha^A, U\}
$$

we get that it joins the sets U_{α_1} and U_{α}^B . Therefore, U_{α}^B has property **P**, a contradiction.

Hence the sets *A* and *B* are δ_{μ} -separated, but this implies *X* is not δ_{μ} connected, a contradiction. Therefore, our claim is justified and $C_2 = \emptyset$ which implies $C_1 = C$.

Now for any two sets $U_{\alpha}, U_{\beta} \in \mathcal{C}$, both U_{α} and U_{β} have property **P**. Let ${A_1, A_2, \ldots, A_n}$ and ${B_1, B_2, \ldots, B_m}$ be the δ_μ -chains that join U_α with U_{α_1} and U_{α_1} with U_{β} , where each $A_i, B_j \in \mathcal{C}, i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, m\}$. Consider the δ_{μ} -chain $\{A_1, A_2, \ldots, A_n, U_{\alpha_1}, B_1, B_2, \ldots, B_m\}$, clearly this chain joins *U*^{*α*} with *U*^{*β*}. Hence, *C* is a $δ$ ^{*μ*}-chained family.

3. *δµ***-component**

DEFINITION 3.1

A maximal δ_μ -connected subset, i.e. a δ_μ -connected subset which is not properly contained in any larger δ_{μ} -connected subset of *X* of a μ -proximity space *X*, is called a δ_{μ} -component of X.

For a point $x \in X$, $C_{\delta_{\mu}}(x)$ denotes the δ_{μ} -component of X, containing x.

PROPOSITION 3.2 *In a* μ *-proximity space* (X, δ_{μ}) ,

 $C_{\delta_{\mu}}(x) = \bigcup \{A_x : A_x \text{ is a } \delta_{\mu} \text{-connected set containing } x\}.$

Proof. Follows from Definition [3.1](#page-6-0) and Theorem [2.8.](#page-3-1)

THEOREM 3.3

In a μ -proximity space (X, δ_{μ}) , for two distinct points $x, y \in X$, either $C_{\delta_{\mu}}(x) =$ $C_{\delta_{\mu}}(y)$ *or* $C_{\delta_{\mu}}(x)$ δ_{μ} $C_{\delta_{\mu}}(y)$.

Proof. CASE 1. If $C_{\delta_{\mu}}(x) \not\delta_{\mu} C_{\delta_{\mu}}(y)$, then there is nothing to prove.

Case 2. If $C_{\delta_{\mu}}(x)$ δ_{μ} $C_{\delta_{\mu}}(y)$, then the set $C_{\delta_{\mu}}(x) \cup C_{\delta_{\mu}}(y)$ is δ_{μ} -connected [by Theorem [2.8\]](#page-3-1). Since $C_{\delta_{\mu}}(x)$ and $C_{\delta_{\mu}}(y)$ are the maximal δ_{μ} -connected sets containing *x* and *y* respectively, we have $C_{\delta_{\mu}}(x) = C_{\delta_{\mu}}(x) \cup C_{\delta_{\mu}}(y) = C_{\delta_{\mu}}(y)$. This gives the desired result.

Corollary 3.4 *A µ*-proximity space (X, δ_u) *is the union of its* δ_u -components which are δ_u *separated.*

Proof. Follows from Theorem [3.3.](#page-7-0)

PROPOSITION 3.5

In a µ-proximity space (X, δ_μ) *,* δ_μ -components are μ -closed.

Proof. Let *A* be a δ_{μ} -component of *X*. Since $c_{\mu}(A)$ is δ_{μ} -connected [by Theorem [2.5\]](#page-3-2) and $A \subseteq c_{\mu}(A)$, we must have $A = c_{\mu}(A)$. Hence A is δ_{μ} -closed.

PROPOSITION 3.6

Suppose (X, δ_μ) *and* (Y, δ'_μ) *are two* μ -proximity spaces. $f: X \to Y$ *is a* δ_μ *monotone function and* f *is* δ_{μ} -quotient function onto Y . Then C is a δ'_{μ} -component *in Y if and only if* $f^{-1}(C)$ *is a* δ_μ -component in X.

Proof. Let *C* be a δ'_{μ} -component in *Y*. By Proposition [2.12,](#page-4-3) $f^{-1}(C)$ is δ_{μ} connected in *X*. Let *D* be a δ_{μ} -connected subset of *X* such that $f^{-1}(C) \subseteq D$. Now, $f(f^{-1}(C)) \subseteq f(D) \Rightarrow C \subseteq f(D)$. Since *f* is a δ_{μ} -quotient map, *f* is *δµ*-continuous. Now, by Theorem [2.6,](#page-3-3) *f*(*D*) is *δµ*-connected. Again, *C* is a *δµ*component, so $C = f(D)$ which implies $f^{-1}(C) = f^{-1}(f(D)) \supseteq D$. Therefore, $D = f^{-1}(C)$, i.e. $f^{-1}(C)$ is a δ_μ -component.

Conversely, let $f^{-1}(C)$ is a δ_{μ} -component in *X*, where $C \subseteq Y$. By Theorem [2.6,](#page-3-3) $f(f^{-1}(C)) = C$ is a δ_{μ} -connected set in *Y*. Let *K* be a δ_{μ} -connected subset in *Y* such that $C \subseteq K$. Now $f^{-1}(C) \subseteq f^{-1}(K)$. By Proposition [2.12,](#page-4-3) $f^{-1}(K)$ is δ_{μ} -connected. But $f^{-1}(C)$ is a δ_{μ} -component which implies $f^{-1}(C) = f^{-1}(K) \Rightarrow$ $C = K$. Therefore, *C* is a δ'_{μ} -component in *Y*.

δµ-connectedness in a *µ*-proximity space **[37]**

4. *δµ***-quasi component**

Let (X, δ_μ) be a μ -proximity space. We define a relation ρ on X in the following way: for $x, y \in X$,

 $x \rho y \Leftrightarrow$ there do not exist any δ_{μ} -separated sets *A* and *B* such that $x \in A$, $y \in B$ and $X = A \cup B$.

THEOREM 4.1

ρ is an equivalence relation on X.

Proof. It is evident that ρ is reflexive and symmetric.

Let for $x, y, z \in X$, $x \rho y$ and $y \rho z$, we shall show that $x \rho z$ in order to show that ρ is transitive. If possible, let *x* ϕ *z* which implies there exist δ_{μ} -separated sets *C* and *D* such that $x \in C$, $z \in D$ with $X = C \cup D$. Observe that $y \in C \cup D$ implies $y \in C$ or $y \in D$. If $y \in C$ then $y \notin z$, which is not possible. Again, if $y \in D$, then *x* ϕ *y*, another impossibility. Therefore ρ is transitive. This ends the proof.

From the above theorem we observe that ρ induces a partition of X and X can be expressed as the union of equivalence classes of *ρ*.

DEFINITION 4.2

For $x \in X$, the set $\{y \in X : x \in \rho y\}$ is said to be the δ_{μ} -quasi component at the point *x* and is denoted by $Q_{\delta_{\mu}}(x)$.

THEOREM 4.3

In a µ-proximity space (X, δ_μ) , δ_μ -quasi components are μ -closed sets in $\tau(\delta_\mu)$.

Proof. Let $Q_{\delta_{\mu}}(x)$ be the δ_{μ} -quasi component at the point $x \in X$. Let $y \notin Q_{\delta_{\mu}}(x)$ which implies $x \notin y$, so there exist $C, D \subseteq X$ such that $x \in C, y \in D$ with $X = C \cup D$ and $C \notin_{\mu} D$. Now

$$
z \in D \Rightarrow x \not\! z \Rightarrow z \notin Q_{\delta_{\mu}}(x) \Rightarrow D \cap Q_{\delta_{\mu}}(x) = \emptyset.
$$

Since $X = C \cup D$ we have $Q_{\delta_{\mu}}(x) \subseteq C$, which implies $Q_{\delta_{\mu}}(x) \not{_{\mu}} D$ [otherwise by [\(ii\)](#page-1-2) of Definition [1.1](#page-1-3) we get *C* δ_{μ} *D*, a contradiction] and so $\{y\}$ \mathcal{J}_{μ} $Q_{\delta_{\mu}}(x)$. Hence $y \notin c_{\mu}(Q_{\delta_{\mu}}(x))$ [from Proposition [1.3\]](#page-1-5), therefore $Q_{\delta_{\mu}}(x)$ is μ -closed.

THEOREM 4.4

In a μ -proximity space (X, δ_{μ}) , $C_{\delta_{\mu}}(x) \subseteq Q_{\delta_{\mu}}(x)$, where $x \in X$.

Proof. Let $y \notin Q_{\delta_{\mu}}(x)$ then $x \notin y$ which implies there exist $A, B \subseteq X$ such that $x \in A$, $y \in B$ with $X = A \cup B$ and $A \not{b}_{\mu} B$. Now $x \in C_{\delta_{\mu}}(x)$ and

$$
C_{\delta_{\mu}}(x) \subseteq A \cup B \Rightarrow C_{\delta_{\mu}}(x) \subseteq A \Rightarrow y \notin C_{\delta_{\mu}}(x).
$$

Therefore, $y \notin Q_{\delta_{\mu}}(x) \Rightarrow y \notin C_{\delta_{\mu}}(x)$, hence $C_{\delta_{\mu}}(x) \subseteq Q_{\delta_{\mu}}(x)$.

Acknowledgement. The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

- [1] Császár, Ákos. Generalized topology, generalized continuity. *Acta Math. Hungar.* 96, no. 4 (2002): 351-357. Cited on [29.](#page-0-0)
- [2] Császár, Ákos. *γ*-connected sets. *Acta Math. Hungar.* 101, no. 4 (2003): 273-279. Cited on [30.](#page-1-6)
- [3] Dimitrijević, Radoslav and Ljubiša Kočinac. On Connectedness of Proximity Spaces. *Mat. Vesnik* 39, no. 1 (1987): 27-35. Cited on [30.](#page-1-6)
- [4] Mukherjee, Manabendra Nath, Dhananjoy Mandal and Dipankar Dey. Proximity structure on generalized topological spaces. *Afr. Mat.* 30, no. 1-2 (2019): 91-100. Cited on [30](#page-1-6) and [31.](#page-2-0)
- [5] Naimpally, Somashekhar Amrith and Brian Warrack. *Proximity Spaces.* Vol. 59 of *Cambridge Tracts in Math.* London-New York: Cambridge University Press 1970. Cited on [31.](#page-2-0)
- [6] Singh, Beenu and Davinder Singh. On *µ*-Proximity Spaces. *Math. Appl. (Brno)* 11, no. 2 (2022): 181-190. Cited on [30.](#page-1-6)

Dipankar Dey Gurudas College 1/1 Suren Sarkar Road Kolkata-700054 India E-mail: dipankar.maths@gurudas.education

Dhananjoy Mandal Department of Pure Mathematics University of Calcutta 35 Ballygunge Circular Road Kolkata-700019 India E-mail: dmandal.cu@gmail.com

Manabendra Nath Mukherjee Department of Pure Mathematics University of Calcutta 35 Ballygunge Circular Road Kolkata-700019 India E-mail: mukherjeemn@yahoo.co.in

Received: January 11, 2024; final version: May 17, 2024; available online: July 8, 2024.