

FOLIA 386

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 23 (2024)

Dipankar Dey, Dhananjoy Mandal and Manabendra Nath Mukherjee

 δ_{μ} -connectedness in a μ -proximity space

Abstract. In this paper we introduce the notion of δ_{μ} -connectedness on a μ -proximity space. It has been proved that δ_{μ} -connectedness can be characterized by δ_{μ} -continuous functions. We initiate the idea of δ_{μ} -chain and establish some results related to this. The concepts of δ_{μ} -component and δ_{μ} -quasi component have been introduced and their interrelation has been studied.

1. Introduction and Preliminary Results

In topology, the notion of proximally continuous mapping is well-known in a proximity space. Császár introduced the concept of generalized topology in [1] and it was observed that many of the existing results for a topological space are still valid in this generalized premise. Generalized topology was defined by Császár as follows:

A collection μ of subsets of a set X is called a generalized topology (GT, in short) on X if

(i) $\emptyset \in \mu$,

(ii) for $U_{\alpha} \in \mu$, $\alpha \in \Lambda$ (Λ being an index set), $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mu$.

The pair (X, μ) is called a generalized topological space (GTS, in short). The members of μ are called μ -open sets and their complements are μ -closed. For a subset A of X, the union of all μ -open sets contained in A is called the μ -interior

AMS (2020) Subject Classification: 54E05, 54D05.

Keywords and phrases: δ_{μ} -connectedness, δ_{μ} -components, δ_{μ} -quasi components, δ_{μ} -continuity, μ -proximity.

ISSN: 2081-545X, e-ISSN: 2300-133X.

of A and is denoted by $i_{\mu}A$. The intersection of all μ -closed sets of X containing A is known as the μ -closure of A and is denoted by $c_{\mu}A$. A GT is said to be *strong* if $X \in \mu$.

The notion of connectedness in a generalized topological space was studied by Császár in [2]. In [3], Dimitrijević and Kočinac have introduced the notion of connectedness in a proximity space. They carried on to infer about δ -component, δ -quasi component and local δ connectedness. Various relations between those concepts were developed and the use of proximally continuous function was a key in those results. We look to study similar conditions for a μ -proximity space. In this paper, we initiate a type of connectedness on a μ -proximity space [4]. After the introductory section, we have defined the δ_{μ} -connectedness and obtain certain results regarding it. In Section 3, the concept of δ_{μ} -component has been studied. In the last section, the notion of δ_{μ} -quasi component is introduced and a relation between δ_{μ} -component and δ_{μ} -quasi component is established.

Before going into the details, we first recall the definition of μ -proximity and some results related to it.

Definition 1.1 ([4])

A binary relation δ_{μ} on the power set $\mathcal{P}(X)$ of a set X is called a μ -proximity on X if δ_{μ} satisfies the following axioms:

- (i) $A \ \delta_{\mu} B$ if and only if $B \ \delta_{\mu} A$ for all $A, B \in \mathcal{P}(X)$;
- (ii) If $A \delta_{\mu} B$, $A \subseteq C$ and $B \subseteq D$, then $C \delta_{\mu} D$;
- (iii) $\{x\} \delta_{\mu} \{x\}$ for all $x \in X$;
- (iv) If $A \not \otimes_{\mu} B$ then there exists $E(\subseteq X)$ such that $A \not \otimes_{\mu} E$ and $(X \setminus E) \not \otimes_{\mu} B$.

If a relation satisfies axioms (i)–(iii) then it is called a *basic* μ -proximity on X.

Proposition 1.2 ([4])

Let a subset A of a μ -proximity space (X, δ_{μ}) be defined to be δ_{μ} -closed if and only if

$$\{x\} \ \delta_{\mu} \ A \Rightarrow x \in A.$$

Then the collection of complements of all δ_{μ} -closed sets so defined yields a generalized topology $\mu = \tau(\delta_{\mu})$ on X.

Proposition 1.3 ([4])

Let (X, δ_{μ}) be a μ -proximity space and $\mu = \tau(\delta_{\mu})$. Then the μ -closure $c_{\mu}(A)$ of a set A in (X, μ) is given by $c_{\mu}(A) = \{x : \{x\} \delta_{\mu} A\}.$

LEMMA 1.4 ([4]) For subsets A and B of a μ -proximity space (X, δ_{μ}) ,

$$A \ \delta_{\mu} \ B \Leftrightarrow c_{\mu}(A) \ \delta_{\mu} \ c_{\mu}(B),$$

where the μ -closures are taken with respect to $\tau(\delta_{\mu})$.

Definition 1.5 ([6])

If (X, δ_{μ_1}) and (Y, δ_{μ_2}) are two μ -proximity spaces, a mapping $f: X \to Y$ is said to be δ_{μ} -continuous if $A \ \delta_{\mu_1} B$ implies $f(A) \ \delta_{\mu_2} \ f(B)$ for $A, B \subseteq X$.

 δ_{μ} -connectedness in a μ -proximity space

2. δ_{μ} -connectedness

Definition 2.1

A μ -proximity space (X, δ_{μ}) is said to be δ_{μ} -connected if it cannot be expressed as the union of two non-empty subsets of X that are not δ_{μ} -related. A subset Y of X is said to be a δ_{μ} -connected subset of X if it cannot be expressed as the union of two non-empty subsets of X that are not δ_{μ} -related.

We know that, by defining a proximity δ as

$$A \ \delta \ B \Leftrightarrow A \cap B \neq \emptyset,$$

where $A, B \subseteq X$, we get the discrete proximity on X, [5]. Of course, the corresponding topology generated by δ is the discrete topology on X. Since every proximity space is a μ -proximity space[details can be found in [4], Proposition 2.12], we have (X, δ) as the discrete μ -proximity space. As per our requirement, here we consider the discrete μ -proximity on the two-point set $\{0, 1\}$ and denote the discrete μ -proximity space $(\{0, 1\}, \delta)$ by X_d henceforth.

In a μ -proximity space (X, δ_{μ}) , two non-empty subsets A and B of X are said to be δ_{μ} -separated, if A, B are not δ_{μ} related, i.e. $A \not = B$.

Theorem 2.2

A μ -proximity space (X, δ_{μ}) is δ_{μ} -connected if and only if every δ_{μ} -continuous function f on X to X_d is constant.

Proof. Let (X, δ_{μ}) be δ_{μ} -connected and $f: X \to X_d$ be a δ_{μ} -continuous function. If possible, let f be not constant. Then $f^{-1}(\{0\}) \neq \emptyset$ and $f^{-1}(\{1\}) \neq \emptyset$. Also $\{0\} \not = \{1\}$ which implies $f^{-1}(\{0\}) \not = f^{-1}(\{1\})$ [since f is δ_{μ} -continuous]. Again $X = f^{-1}(\{0\}) \cup f^{-1}(\{1\})$, which implies X is not δ_{μ} -connected, a contradiction. Therefore, f must be constant.

Conversely, if X is not δ_{μ} -connected then there exist two non-empty subsets A, B of X such that $X = A \cup B$ with $A \not \otimes_{\mu} B$. Define $F: X \to X_d$ by

$$F(x) = \begin{cases} 0, & x \in A, \\ 1, & x \in B. \end{cases}$$

Since, $A \not \otimes_{\mu} B$ implies $A \cap B = \emptyset$ [from (iii) and (ii) of Definition 1.1], therefore, F is well-defined. Let $C, D \subseteq X$ and $C \delta_{\mu} D$.

We claim that $F(C) \delta F(D)$. In fact, if $F(C) \delta F(D)$ then $F(C) \cap F(D) = \emptyset$ [since, X_d is discrete]. Therefore, without loss of generality, let $F(C) = \{0\}$ and $F(D) = \{1\}$ which implies $C \subseteq A$ and $D \subseteq B$. Since $C \delta_{\mu} D$, by (ii) of Definition 1.1, we get $A \delta_{\mu} B$, a contradiction.

Therefore, $C \ \delta_{\mu} \ D \Rightarrow F(C) \ \delta \ F(D)$, so F is δ_{μ} -continuous, but not constant. This gives the desired result.

Theorem 2.3

A μ -proximity space (X, δ_{μ}) is δ_{μ} -connected if and only if for any non-empty proper subset A of X, A δ_{μ} $(X \setminus A)$.

Proof. Let (X, δ_{μ}) be a δ_{μ} -connected μ -proximity space and $\emptyset \neq A \subset X$. It is evident that $A \ \delta_{\mu} \ (X \setminus A)$, otherwise $X = A \cup (X \setminus A)$ and $X \setminus A$ is also a nonempty proper subset of X which implies X is not δ_{μ} -connected, a contradiction.

Conversely, let (X, δ_{μ}) be not δ_{μ} -connected. So there exist non-empty subsets A, B of X such that $X = A \cup B$ and $A \not \delta_{\mu} B$. Since A and B are δ_{μ} -separated, $A \cap B = \emptyset$ which implies $B = X \setminus A$. Hence $A \not \delta_{\mu} (X \setminus A)$. This gives the desired result.

Proposition 2.4

If (X, δ_{μ}) is a μ -proximity space and C is a non-empty δ_{μ} -connected subset of X which is contained in the union of two δ_{μ} -separated subsets of X, then C is contained in one of the subsets.

Proof. Let C be a δ_{μ} -connected subset of X and $C \subseteq A \cup B$ with $A \not = B$, where $A, B \subseteq X$. If possible, let $A \cap C \neq \emptyset$ and $B \cap C \neq \emptyset$. Obviously, $(A \cap C) \not = B$, where $(B \cap C)$ [otherwise by (ii) of Definition 1.1, $A \delta_{\mu} B$]. Also, $(A \cap C) \cup (B \cap C) = C$, which implies C is not δ_{μ} -connected, a contradiction.

Therefore, either $A \cap C = \emptyset$ or $B \cap C = \emptyset$, i.e. either $C \subseteq A$ or $C \subseteq B$.

Theorem 2.5

In a μ -proximity space (X, δ_{μ}) , the μ -closure of a δ_{μ} -connected subset is δ_{μ} -connected.

Proof. Let A be a δ_{μ} -connected subset of X. Let $c_{\mu}(A) = P \cup Q$ and $P \not = Q$, where P, Q are non-empty subsets of X. Since $A \subseteq P \cup Q$, by Proposition 2.4, A is contained either in P or in Q. Without loss of generality, let $A \subseteq P$, which implies $c_{\mu}(A) \subseteq c_{\mu}(P)$.

Now $P \not = c_{\mu}(P) \not = c_{\mu}(Q)$ [by Lemma 1.4] and so $c_{\mu}(P) \cap c_{\mu}(Q) = \emptyset$. Therefore, $c_{\mu}(A) \cap c_{\mu}(Q) = \emptyset$ which implies $c_{\mu}(A) \cap Q = \emptyset$ and so $Q = \emptyset$. Therefore, it is not possible to express $c_{\mu}(A)$ as the union of two δ_{μ} -separated sets. Hence $c_{\mu}(A)$ is δ_{μ} -connected.

Theorem 2.6

Let (X, δ_{μ}) be a δ_{μ} -connected μ -proximity space and let $f: X \to Y$ be an onto, δ_{μ} continuous function to another μ -proximity space (Y, δ'_{μ}) . Then Y is δ'_{μ} -connected.

Proof. If possible, let Y be not δ_{μ} -connected. So there exist non-empty subsets C and D of Y such that $Y = C \cup D$ and $C \not \otimes_{\mu}' D$. Since f is δ_{μ} -continuous, $f^{-1}(C) \not \otimes_{\mu} f^{-1}(D)$. Again, $X = f^{-1}(Y) = f^{-1}(C) \cup f^{-1}(D)$, with $f^{-1}(C) \neq \emptyset$ and $f^{-1}(D) \neq \emptyset$ [since f is onto and both C and D are non-empty], which implies X is not δ_{μ} -connected, a contradiction. Therefore, Y is δ'_{μ} -connected.

Remark 2.7

If (X, δ_{μ}) is a μ -proximity space and $Y \subseteq X$, then we define a relation δ_{μ}^{Y} on the subsets of Y in the following manner

$$A \ \delta^{Y}_{\mu} \ B \Leftrightarrow A \ \delta_{\mu} \ B$$
, where $A, B \subseteq Y$.

It can be easily checked that (Y, δ^Y_{μ}) is a μ -proximity space. Moreover, the generalized topology generated by δ^Y_{μ} , i.e. $\tau(\delta^Y_{\mu})$, is the generalized subspace topology induced by $\tau(\delta_{\mu})$ on Y.

 δ_{μ} -connectedness in a μ -proximity space

Theorem 2.8

In a μ -proximity space (X, δ_{μ}) , suppose $\{A_{\lambda} : \lambda \in \Lambda\}$ is a family of δ_{μ} -connected subspaces of X. If there exists a $\lambda' \in \Lambda$ such that $A_{\lambda'} \delta_{\mu} A_{\lambda}$ for all $\lambda \in \Lambda$, then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

Proof. Let $A, B \subseteq X$ and $\bigcup_{\lambda \in \Lambda} A_{\lambda} = A \cup B$ with $A \not \otimes_{\mu} B$. We show that either $A = \emptyset$ or $B = \emptyset$. Clearly, $A_{\lambda'} \subseteq A \cup B$, so by Proposition 2.4, $A_{\lambda'} \subseteq A$ (without loss of generality).

Claim: for all $\lambda \in \Lambda$, $A_{\lambda} \subseteq A$. In fact, if for any $\lambda^* \in \Lambda$, $A_{\lambda^*} \subseteq B$ then since $A_{\lambda'} \ \delta_{\mu} \ A_{\lambda^*}$ we get $A \ \delta_{\mu} \ B$ [by (ii) of Definition 1.1]. Therefore, for all $\lambda \in \Lambda$, $A_{\lambda} \subseteq A$, which implies $B = \emptyset$ (as $A \cap B = \emptyset$). So, $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

Theorem 2.9

For a μ -proximity space (X, δ_{μ}) the following are equivalent

- (i) X is δ_{μ} -connected.
- (ii) Every δ_{μ} -continuous function on X to X_d is constant.
- (iii) For a non-empty proper subset A of X, A δ_{μ} $(X \setminus A)$.

Proof. (i) \Rightarrow (ii). Proved earlier.

(ii) \Rightarrow (iii). Let $A \neq \emptyset$ and $A \subset X$. If possible, let $A \not \otimes_{\mu} (X \setminus A)$. We define a function $f: X \to X_d$ by

$$f(x) = \begin{cases} 1 & \text{for } x \in A, \\ 0 & \text{for } x \notin A. \end{cases}$$

For $P, Q \subseteq X$ with $P \ \delta_{\mu} Q$ we claim that $f(P) \ \delta \ f(Q)$, where δ denotes the discrete proximity on X_d . If not, let $f(P) \ \delta \ f(Q)$ which implies, without loss of generality, $f(P) = \{1\}$ and $f(Q) = \{0\}$. Now, $P \subseteq A$ and $Q \subseteq (X \setminus A)$, so $A\delta(X \setminus A)$, a contradiction. Therefore, $f(P) \ \delta \ f(Q)$ and so f is δ_{μ} -continuous, which contradicts (ii). Hence $A \ \delta_{\mu} (X \setminus A)$.

(iii) \Rightarrow (i). Straightforward.

Definition 2.10

A δ_{μ} -continuous function f from a μ -proximity space (X, δ_{μ}) to a μ -proximity space (Y, δ'_{μ}) is said to be δ_{μ} -monotone if for each $y \in Y$ the set $f^{-1}(\{y\})$ is δ_{μ} -connected in X.

We write the set $f^{-1}(\{y\})$ as $f^{-1}(y)$.

Definition 2.11

A δ_{μ} -continuous function f from a μ -proximity space (X, δ_{μ}) to a μ -proximity space (Y, δ'_{μ}) is called a δ_{μ} -quotient map if for each $C, D \subseteq Y$,

$$C \ \delta'_{\mu} \ D \Leftrightarrow f^{-1}(C) \ \delta_{\mu} \ f^{-1}(D).$$

Proposition 2.12

 (X, δ_{μ}) and (Y, δ'_{μ}) are μ -proximity spaces and C is a δ_{μ} -connected set in Y. If $f: (X, \delta_{\mu}) \to (Y, \delta'_{\mu})$ is a δ_{μ} -monotone and δ_{μ} -quotient function, then the set $f^{-1}(C)$ is δ_{μ} -connected in X.

Proof. If possible, let $f^{-1}(C)$ be not δ_{μ} -connected. So there exist non-empty δ_{μ} separated subsets of X, say A and B, such that $f^{-1}(C) = A \cup B$. Since f is δ_{μ} -monotone, for each $y \in C$, $f^{-1}(y)$ is a δ_{μ} -connected subset of X. Therefore, for each $y \in C$, $f^{-1}(y)$ is contained either in A or in B, by Proposition 2.4. Consider the sets $C_A = \{y \in C : f^{-1}(y) \subseteq A\}$ and $C_B = \{y \in C : f^{-1}(y) \subseteq B\}$. Clearly, $f^{-1}(C_A) = A$ and $f^{-1}(C_B) = B$, also $C = C_A \cup C_B$. Again, f is a δ_{μ} quotient map, so $f^{-1}(C_A) \not = f^{-1}(C_B) \Rightarrow C_A \not = f^{-1}(C_B) \Rightarrow C$ is not δ_{μ} -connected, a contradiction. Therefore, $f^{-1}(C)$ is δ_{μ} -connected.

Definition 2.13

A finite collection of subsets A_1, A_2, \ldots, A_n of a μ -proximity space X is said to be a δ_{μ} -chain if $A_i \ \delta_{\mu} \ A_{i+1}$ for each $i \in 1, 2, \ldots, n-1$.

A family \mathcal{F} of subsets of X is said to be δ_{μ} -chained if for any two elements $A, B \in \mathcal{F}$, there exist finitely many elements of C_1, C_2, \ldots, C_n in \mathcal{F} such that $\mathcal{C} = \{A, C_1, C_2, \ldots, C_n, B\}$ is a δ_{μ} -chain. In such a case, we say that \mathcal{C} joins A and B via the relation δ_{μ} .

Proposition 2.14

If A_1, A_2, \ldots, A_n is a δ_{μ} -chain in a μ -proximity space X and each A_i is δ_{μ} connected, where $i \in \{1, 2, \ldots, n\}$, then $\bigcup_{i=1}^n A_i$ is δ_{μ} -connected.

Proof. Let there exist two non-empty δ_{μ} -separated subsets C and D of X such that $\bigcup_{i=1}^{n} A_i = C \cup D$. Since each A_i is δ_{μ} -connected, each of those sets is contained either in C or in D, by Proposition 2.4.

We claim, without loss of generality, that $A_i \subseteq C$ for all $i \in \{1, 2, ..., n\}$. In fact, let $A_i \subseteq C$ and $A_j \subseteq D$ with $i \neq j$ and i < j. Since $A_i \delta_{\mu} A_{i+1}$ we must have $A_{i+1} \subseteq C$. Otherwise if $A_{i+1} \subseteq D$ then, by (ii) of Definition 1.1, $C \delta_{\mu} D$, a contradiction to the assumption. So for $A_i \subseteq C$ we have $A_{i+1} \subseteq C$. Continuing this process we get $A_j \subseteq C$. Therefore, $A_i \subseteq C$ for each $i \in \{1, 2, ..., n\}$ which implies $D = \emptyset$. Hence $\bigcup_{i=1}^n A_i$ is δ_{μ} -connected.

Proposition 2.15

Suppose (X, δ_{μ}) is a μ -proximity space and $\mathcal{F} = \{A_{\lambda} : \lambda \in \Lambda\}$ is a δ_{μ} -chained family of δ_{μ} -connected subsets of X. Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

Proof. Let U and V be two non-empty δ_{μ} -separated sets in (X, δ_{μ}) such that $\bigcup_{\lambda \in \Lambda} A_{\lambda} = U \cup V$.

We claim that for all $\lambda \in \Lambda$ either $A_{\lambda} \subseteq U$ or $A_{\lambda} \subseteq V$. If possible, let there exist $\lambda_1, \lambda_2 \in \Lambda$ such that $A_{\lambda_1} \subseteq U$ and $A_{\lambda_2} \subseteq V$. Since \mathcal{F} is a δ_{μ} -chained family, there exists a δ_{μ} -chain, say $\{A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_n}\}$, where $A_{\alpha_i} \in \mathcal{F}, i \in \{1, 2, \ldots, n\}$ with $A_{\alpha_1} = A_{\lambda_1}$ and $A_{\alpha_n} = A_{\lambda_2}$, that joins A_{λ_1} and A_{λ_2} via the relation δ_{μ} .

with $A_{\alpha_1} = A_{\lambda_1}$ and $A_{\alpha_n} = A_{\lambda_2}$, that joins A_{λ_1} and A_{λ_2} via the relation δ_{μ} . We set $A = \bigcup_{i=1}^n A_{\alpha_i}$. Observe that by Proposition 2.14 A is δ_{μ} -connected. Again

$$A = \bigcup_{i=1}^{n} A_{\alpha_i} \subseteq \bigcup_{\lambda \in \Lambda} A_\lambda = U \cup V.$$

Therefore, by Proposition 2.4, either $A \subseteq U$ or $A \subseteq V$. Thus, A_{λ_1} and A_{λ_2} both are contained either in U or in V, a contradiction. Hence our claim is justified.

[34]

Without loss of generality, let $A_{\lambda} \subseteq U$ for all $\lambda \in \Lambda$, then $V = \emptyset$, as $U \cap V = \emptyset$. Hence $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is δ_{μ} -connected.

Definition 2.16

A cover \mathcal{C} of a μ -proximity space X is said to be a δ_{μ} -cover if for $A, B \subseteq X$ with $A \delta_{\mu} B$ there exists a set $U \in \mathcal{C}$ such that $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$.

Theorem 2.17

Every δ_{μ} -cover of a δ_{μ} -connected μ -proximity space is a δ_{μ} -chained family.

Proof. Let $\mathcal{C} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a δ_{μ} -cover of a δ_{μ} -connected μ -proximity space (X, δ_{μ}) . If possible, let there exist $U_{\alpha_1}, U_{\alpha_2} \in \mathcal{C}$ such that there does not exist any δ_{μ} -chain in \mathcal{C} that joins U_{α_1} and U_{α_2} .

We define a set $U_{\alpha} \in \mathcal{C}$ to have property **P** if U_{α} and U_{α_1} are contained in some δ_{μ} -chain consisting of the elements of \mathcal{C} .

Let us consider two sets defined by $C_1 = \{U_\alpha \in \mathcal{C} : U_\alpha \text{ has property } \mathbf{P}\}$ and $C_2 = \{U_{\alpha'} \in \mathcal{C} : U_{\alpha'} \text{ does not have property } \mathbf{P}\}$. Clearly, the collection C_1 is non-empty as $U_{\alpha_1} \in C_1$.

We claim that \mathcal{C}_2 is empty. If possible, let $\mathcal{C}_2 \neq \emptyset$. We set $A = \bigcup_{U_\alpha \in \mathcal{C}_1} U_\alpha$ and $B = \bigcup_{U_{\alpha'} \in \mathcal{C}_2} U_{\alpha'}$. Clearly, $X = A \cup B$ and A, B are non-empty subsets of X. We assert that $A \not \otimes_{\mu} B$. If not, let $A \not \otimes_{\mu} B$, then there exists $U \in \mathcal{C}$ such that $A \cap U \neq \emptyset$ and $B \cap U \neq \emptyset$, which implies there exist $U_\alpha^A \in \mathcal{C}_1$ and $U_\alpha^B \in \mathcal{C}_2$ such that $U_\alpha^A \cap U \neq \emptyset$ and $U_\alpha^B \cap U \neq \emptyset$.

Now, U_{α}^{A} has property **P**. So there exists a δ_{μ} -chain $\{U_{1}, U_{2}, \ldots, U_{n}\}$, where each $U_{i} \in \mathcal{C}$ for $i \in \{1, 2, \ldots, n\}$, that joins U_{α}^{A} with $U_{\alpha_{1}}$. Again, $U_{\alpha}^{A} \cap U \neq \emptyset$ implies $U_{\alpha}^{A} \delta_{\mu} U$. Therefore the δ_{μ} -chain $\{U_{1}, U_{2}, \ldots, U_{n}, U_{\alpha}^{A}\}$ joins the sets Uand $U_{\alpha_{1}}$. Hence the set U has property **P**.

Furthermore, $U^B_{\alpha} \cap U \neq \emptyset$ implies $U \ \delta_{\mu} \ U^B_{\alpha}$. Extending the δ_{μ} -chain as

$$\{U_1, U_2, \ldots, U_n, U_\alpha^A, U\}$$

we get that it joins the sets U_{α_1} and U_{α}^B . Therefore, U_{α}^B has property **P**, a contradiction.

Hence the sets A and B are δ_{μ} -separated, but this implies X is not δ_{μ} connected, a contradiction. Therefore, our claim is justified and $C_2 = \emptyset$ which
implies $C_1 = C$.

Now for any two sets $U_{\alpha}, U_{\beta} \in \mathcal{C}$, both U_{α} and U_{β} have property **P**. Let $\{A_1, A_2, \ldots, A_n\}$ and $\{B_1, B_2, \ldots, B_m\}$ be the δ_{μ} -chains that join U_{α} with U_{α_1} and U_{α_1} with U_{β} , where each $A_i, B_j \in \mathcal{C}, i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, m\}$. Consider the δ_{μ} -chain $\{A_1, A_2, \ldots, A_n, U_{\alpha_1}, B_1, B_2, \ldots, B_m\}$, clearly this chain joins U_{α} with U_{β} . Hence, \mathcal{C} is a δ_{μ} -chained family.

3. δ_{μ} -component

Definition 3.1

A maximal δ_{μ} -connected subset, i.e. a δ_{μ} -connected subset which is not properly contained in any larger δ_{μ} -connected subset of X of a μ -proximity space X, is called a δ_{μ} -component of X.

For a point $x \in X$, $C_{\delta_{\mu}}(x)$ denotes the δ_{μ} -component of X, containing x.

PROPOSITION 3.2 In a μ -proximity space (X, δ_{μ}) ,

 $C_{\delta_{\mu}}(x) = \bigcup \{A_x : A_x \text{ is a } \delta_{\mu} \text{-connected set containing } x\}.$

Proof. Follows from Definition 3.1 and Theorem 2.8.

Theorem 3.3

In a μ -proximity space (X, δ_{μ}) , for two distinct points $x, y \in X$, either $C_{\delta_{\mu}}(x) = C_{\delta_{\mu}}(y)$ or $C_{\delta_{\mu}}(x) \not \otimes_{\mu} C_{\delta_{\mu}}(y)$.

Proof. CASE 1. If $C_{\delta_{\mu}}(x) \not \otimes_{\mu} C_{\delta_{\mu}}(y)$, then there is nothing to prove.

CASE 2. If $C_{\delta_{\mu}}(x) \ \delta_{\mu} \ C_{\delta_{\mu}}(y)$, then the set $C_{\delta_{\mu}}(x) \cup C_{\delta_{\mu}}(y)$ is δ_{μ} -connected [by Theorem 2.8]. Since $C_{\delta_{\mu}}(x)$ and $C_{\delta_{\mu}}(y)$ are the maximal δ_{μ} -connected sets containing x and y respectively, we have $C_{\delta_{\mu}}(x) = C_{\delta_{\mu}}(x) \cup C_{\delta_{\mu}}(y) = C_{\delta_{\mu}}(y)$. This gives the desired result.

COROLLARY 3.4 $A \ \mu$ -proximity space (X, δ_{μ}) is the union of its δ_{μ} -components which are δ_{μ} separated.

Proof. Follows from Theorem 3.3.

Proposition 3.5

In a μ -proximity space $(X, \delta_{\mu}), \delta_{\mu}$ -components are μ -closed.

Proof. Let A be a δ_{μ} -component of X. Since $c_{\mu}(A)$ is δ_{μ} -connected [by Theorem 2.5] and $A \subseteq c_{\mu}(A)$, we must have $A = c_{\mu}(A)$. Hence A is δ_{μ} -closed.

Proposition 3.6

Suppose (X, δ_{μ}) and (Y, δ'_{μ}) are two μ -proximity spaces. $f: X \to Y$ is a δ_{μ} monotone function and f is δ_{μ} -quotient function onto Y. Then C is a δ'_{μ} -component
in Y if and only if $f^{-1}(C)$ is a δ_{μ} -component in X.

Proof. Let C be a δ'_{μ} -component in Y. By Proposition 2.12, $f^{-1}(C)$ is δ_{μ} connected in X. Let D be a δ_{μ} -connected subset of X such that $f^{-1}(C) \subseteq D$. Now, $f(f^{-1}(C)) \subseteq f(D) \Rightarrow C \subseteq f(D)$. Since f is a δ_{μ} -quotient map, f is δ_{μ} -continuous. Now, by Theorem 2.6, f(D) is δ_{μ} -connected. Again, C is a δ_{μ} component, so C = f(D) which implies $f^{-1}(C) = f^{-1}(f(D)) \supseteq D$. Therefore, $D = f^{-1}(C)$, i.e. $f^{-1}(C)$ is a δ_{μ} -component.

Conversely, let $f^{-1}(C)$ is a δ_{μ} -component in X, where $C \subseteq Y$. By Theorem 2.6, $f(f^{-1}(C)) = C$ is a δ_{μ} -connected set in Y. Let K be a δ_{μ} -connected subset in Y such that $C \subseteq K$. Now $f^{-1}(C) \subseteq f^{-1}(K)$. By Proposition 2.12, $f^{-1}(K)$ is δ_{μ} -connected. But $f^{-1}(C)$ is a δ_{μ} -component which implies $f^{-1}(C) = f^{-1}(K) \Rightarrow C = K$. Therefore, C is a δ'_{μ} -component in Y.

[36]

 δ_{μ} -connectedness in a μ -proximity space

4. δ_{μ} -quasi component

Let (X, δ_{μ}) be a μ -proximity space. We define a relation ρ on X in the following way: for $x, y \in X$,

 $x \ \rho \ y \Leftrightarrow$ there do not exist any δ_{μ} -separated sets A and B such that $x \in A$, $y \in B$ and $X = A \cup B$.

Theorem 4.1

 ρ is an equivalence relation on X.

Proof. It is evident that ρ is reflexive and symmetric.

Let for $x, y, z \in X$, $x \rho y$ and $y \rho z$, we shall show that $x \rho z$ in order to show that ρ is transitive. If possible, let $x \not \rho z$ which implies there exist δ_{μ} -separated sets C and D such that $x \in C$, $z \in D$ with $X = C \cup D$. Observe that $y \in C \cup D$ implies $y \in C$ or $y \in D$. If $y \in C$ then $y \not \rho z$, which is not possible. Again, if $y \in D$, then $x \not \rho y$, another impossibility. Therefore ρ is transitive. This ends the proof.

From the above theorem we observe that ρ induces a partition of X and X can be expressed as the union of equivalence classes of ρ .

Definition 4.2

For $x \in X$, the set $\{y \in X : x \rho y\}$ is said to be the δ_{μ} -quasi component at the point x and is denoted by $Q_{\delta_{\mu}}(x)$.

Theorem 4.3

In a μ -proximity space (X, δ_{μ}) , δ_{μ} -quasi components are μ -closed sets in $\tau(\delta_{\mu})$.

Proof. Let $Q_{\delta_{\mu}}(x)$ be the δ_{μ} -quasi component at the point $x \in X$. Let $y \notin Q_{\delta_{\mu}}(x)$ which implies $x \not o y$, so there exist $C, D \subseteq X$ such that $x \in C, y \in D$ with $X = C \cup D$ and $C \not o_{\mu} D$. Now

$$z \in D \Rightarrow x \not o z \Rightarrow z \notin Q_{\delta_{\mu}}(x) \Rightarrow D \cap Q_{\delta_{\mu}}(x) = \emptyset.$$

Since $X = C \cup D$ we have $Q_{\delta_{\mu}}(x) \subseteq C$, which implies $Q_{\delta_{\mu}}(x) \not \otimes_{\mu} D$ [otherwise by (ii) of Definition 1.1 we get $C \delta_{\mu} D$, a contradiction] and so $\{y\} \not \otimes_{\mu} Q_{\delta_{\mu}}(x)$. Hence $y \notin c_{\mu}(Q_{\delta_{\mu}}(x))$ [from Proposition 1.3], therefore $Q_{\delta_{\mu}}(x)$ is μ -closed.

Theorem 4.4

In a μ -proximity space $(X, \delta_{\mu}), C_{\delta_{\mu}}(x) \subseteq Q_{\delta_{\mu}}(x), \text{ where } x \in X.$

Proof. Let $y \notin Q_{\delta_{\mu}}(x)$ then $x \not o y$ which implies there exist $A, B \subseteq X$ such that $x \in A, y \in B$ with $X = A \cup B$ and $A \not o_{\mu} B$. Now $x \in C_{\delta_{\mu}}(x)$ and

$$C_{\delta_{\mu}}(x) \subseteq A \cup B \Rightarrow C_{\delta_{\mu}}(x) \subseteq A \Rightarrow y \notin C_{\delta_{\mu}}(x).$$

Therefore, $y \notin Q_{\delta_{\mu}}(x) \Rightarrow y \notin C_{\delta_{\mu}}(x)$, hence $C_{\delta_{\mu}}(x) \subseteq Q_{\delta_{\mu}}(x)$.

Acknowledgement. The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.

References

- Császár, Ákos. Generalized topology, generalized continuity. Acta Math. Hungar. 96, no. 4 (2002): 351-357. Cited on 29.
- [2] Császár, Ákos. γ-connected sets. Acta Math. Hungar. 101, no. 4 (2003): 273-279. Cited on 30.
- [3] Dimitrijević, Radoslav and Ljubiša Kočinac. On Connectedness of Proximity Spaces. Mat. Vesnik 39, no. 1 (1987): 27-35. Cited on 30.
- [4] Mukherjee, Manabendra Nath, Dhananjoy Mandal and Dipankar Dey. Proximity structure on generalized topological spaces. Afr. Mat. 30, no. 1-2 (2019): 91-100. Cited on 30 and 31.
- [5] Naimpally, Somashekhar Amrith and Brian Warrack. Proximity Spaces. Vol. 59 of Cambridge Tracts in Math. London-New York: Cambridge University Press 1970.
 Cited on 31.
- [6] Singh, Beenu and Davinder Singh. On μ-Proximity Spaces. Math. Appl. (Brno) 11, no. 2 (2022): 181-190. Cited on 30.

Dipankar Dey Gurudas College 1/1 Suren Sarkar Road Kolkata-700054 India E-mail: dipankar.maths@gurudas.education

Dhananjoy Mandal Department of Pure Mathematics University of Calcutta 35 Ballygunge Circular Road Kolkata-700019 India E-mail: dmandal.cu@gmail.com

Manabendra Nath Mukherjee Department of Pure Mathematics University of Calcutta 35 Ballygunge Circular Road Kolkata-700019 India E-mail: mukherjeemn@yahoo.co.in

Received: January 11, 2024; final version: May 17, 2024; available online: July 8, 2024.

[38]