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Abstract. The homotopy type of the complement manifold of a complexified
toric arrangement has been investigated by d’Antonio and Delucchi in a pa-
per that shows the minimality of such topological space. In this work we
associate to a given toric arrangement a matrix that represents the arrange-
ment over the integers. Then, we consider the family of toric arrangements
for which this matrix has maximal rank. Our goal is to prove, by means of
basic linear algebra arguments, that the complement manifold of the toric
arrangements that belong to this family is diffeomorphic to that of centered
toric arrangements and thus it is a minimal topological space, too.

Introduction

Toric arrangements are a well studied class of hypersurface arrangements that
appear in many branches of mathematics such as algebraic geometry and topology
as well as combinatorics. Following the seminal works of Lefschetz [11] and Deligne
[9], toric arrangements provide a generalization of hyperplane arrangements in the
context of the study of the complements of normal crossing divisors in smooth
projective varieties. A very rich area of research focuses on the description of the
combinatorial and homotopic invariants of these arrangements.

The Betti numbers of the complement manifold of a toric arrangement were
first computed by Looijenga in [13] using several facts from sheaf theory. After-
wards, a presentation of the complex cohomology ring has been given in [7].

Several authors such as Brändén, D’Adderio, Lenz and Moci explored in the
series of papers [1], [3], [12] and [14] the very rich combinatorial structure of toric

AMS (2010) Subject Classification: 05E99, 15A21, 54F65.
Keywords and phrases: Toric arrangements, minimal topological spaces, torsion-free coho-

mology.
ISSN: 2081-545X, e-ISSN: 2300-133X.



[40] Elia Saini

arrangements and their deep relationship with arithmetic matroids. The central
question of describing the homotopy type of the complement manifold of a toric
arrangements was first teackled by Moci and Settepanella in [15]. Later, d’Antonio
and Delucchi in the works [4] and [5] exploited the toric complex introduced in
[15] to describe the fundamental group and to prove a minimality result for those
toric arrangements that restricts to a real arrangement. A direct consequence of
this minimality result is the torsion-freeness of the integer cohomology of this class
of arrangements.

In the works of Randell [18] and Dimca and Papadima [10] it is proved that the
complement manifold of a hyperplane arrangement is always minimal. A similar
result does not hold in the context of arbitrary hypersurfaces. Indeed, it is enough
to consider the complement of the plane cusp as shown in [18]. Thus, the interest
in studying the homotopy type of the complement manifold of a toric arrangement
arises in the quest for a better understanding of those hypersurface arrangements
for which these minimality results hold.

Finally, improving on the study of the toric complex and the poset of layers,
Callegaro and Delucchi exhibited in [2] a presentation of the integer cohomology
of the complement manifold of centered toric arrangements. In order to describe
those algebraic and topological invariants that are combinatorially determined,
Pagaria provided in [17] an example of two toric arrangements with the same
poset of layers but with different integer cohomologies, while De Concini and
Gaiffi showed in [6] that the rational cohomology ring of toric arrangements is
combinatorial.

In this work we provide a description of a wider class of toric arrangements
for which the minimality results previously described hold. This class consists of
those toric arrangements that have an associated matrix of maximal rank. Using
techniques from basic linear algebra, we are going to build a sequence of diffeo-
morphic changes of coordinates that transform these arrangements into centered
ones, enabling us to apply the results on complexified arrangements developed by
d’Antonio and Delucchi in [5]. In particular, this implies that the integer cohomol-
ogy of any of these toric arrangements is torsion-free. As far as we know, examples
of toric arrangements with non-minimal complement manifold are not available in
literature.
Overview. Section 1 provides some basic definitions and results on toric arrange-
ments as well as complexified and centered arrangements, while Section 2 is de-
voted to the proof of our result on toric arrangements that have an associated
matrix of maximal rank.

1. Basics

The purpose of this section is to recall some basic definitions and results about
toric arrangements and complexified arrangements, in order to fix notations and
set up the frame for the subsequent part of this work. For a general theory of
toric arrangements we refer to the paper [7] and the survey [8], while for a detailed
study of the homotopy type of the complement manifold of complexified toric
arrangements we point to the article [5].
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Moreover, to better understand the inner and surprising connections between
toric arrangements, partition functions and box splines we point out the work of
De Concini and Procesi [8] where all these topics are summarized.

1.1. Toric arrangements

A toric arrangement in (C∗)n is a finite collection A = {H1, . . . , Hm} of sub-
spaces of (C∗)n, called subtori, of the form

Hi = {(z1, . . . , zn) ∈ (C∗)n : z
pi,1
1 · · · zpi,n

n = αi},

where pi,j ∈ Z and αi ∈ C∗ as 1 ≤ i ≤ m and 1 ≤ j ≤ n. The complement
manifold M(A) is the complement of the union of the subtori Hi in (C∗)n, that
is, the topological space

M(A) = (C∗)n \
m⋃

i=1
Hi.

The matrix associated to the toric arrangement A is the integer matrix of m rows
and n columns M̃A ∈ Mm,n(Z) defined by setting

M̃A =

 p1,1 · · · p1,n

...
...

...
pm,1 · · · pm,n


Note 1.1
A square integer matrix is unimodular if its determinant equals 1 or −1. In this
case, a basic result in linear algebra ensures us that the inverse matrix still has
integer entries.

1.2. Complexified arrangements

A toric arrangement A = {H1, . . . , Hm} in (C∗)n is complexified if it restricts
to a real arrangement, that is, if αi ∈ S1 for all i = 1, . . . , m while it is centered if
all the αi’s equal 1. Clearly, a centered toric arrangement is complexified, too. A
topological space X is minimal if it is homotopically equivalent to a CW complex
with exactly bk cells in dimension k, where bk denotes the k-th Betti number of X.
The minimality of the complement manifold of a complexified toric arrangement
has been proved by d’Antonio and Delucchi in the following theorem, that is the
basement on which our work is funded.

Theorem 1.1 ([5], Corollay 6.10)
Let A = {H1, . . . , Hm} be a toric arrangement in (C∗)n. If A is complexified, then
the complement manifold M(A) is a minimal topological space.
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2. Results

The aim of this section is to prove the minimality of the complement manifold
of a toric arrangement with associated matrix that has maximal rank. Our goal
is to extend to this wider class of toric arrangements the ideas described in [2,
Section 7.2] also presented by Pagaria in a series of conference talks. To do this
we are going to perform a sequence of changes of coordinates that transform the
given toric arrangement into a centered one (compare Section 1.2) so that we are
allowed to apply Theorem 1.1.

Theorem 2.1
Let n ≥ m ≥ 1 and let A = {H1, . . . , Hm} be a toric arrangement in (C∗)n with
associated matrix M̃A. If M̃A has rank m, then there exists a centered toric ar-
rangement B = {T1, . . . , Tm} in (C∗)n such that the complement manifolds M(A)
and M(B) are diffeomorphic.

Thus, Theorem 1.1 implies that the complement manifold of these toric arrange-
ments is a minimal topological space.

Corollary 2.1
Let n ≥ m ≥ 1 and let A = {H1, . . . , Hm} be a toric arrangement in (C∗)n with
associated matrix M̃A. If M̃A has rank m, then the complement manifold M(A)
is a minimal topological space.

Moreover, with the same arguments of [5, Corollary 14] it follows that the com-
plement manifold of these toric arrangements is torsion-free, too.

Corollary 2.2
Let n ≥ m ≥ 1 and let A = {H1, . . . , Hm} be a toric arrangement in (C∗)n with as-
sociated matrix M̃A. If M̃A has rank m, then the cohomology groups Hk(M(A),Z)
are torsion-free.

Proof of Theorem 2.1. Step 1. Up to permuting coordinates in (C∗)n we can as-
sume that the first m columns of the matrix M̃A form a m × m minor MA of
maximal rank. Combining Gaussian elimination and Euclidean integer division,
[16, Theorem II.2] ensures us that there exist a unimodular matrix HA such that
MAHA is an upper triangular matrix. Since HA ∈ Mm,m(Z) is unimodular, from
Note 1.1 we know that its inverse KA still has integer entries. Let us denote the
entries of HA and KA by hi,j and ki,j , respectively. Here, i stands for the row
index and j for the column index.
Step 2. Let z1, . . . , zn be coordinates in (C∗)n. For 1 ≤ i ≤ n set

ti =
{

z
ki,1
1 · · · z

ki,m
m , if 1 ≤ i ≤ m,

zi, if m + 1 ≤ i ≤ n.
(1)

This defines a change of coordinates (z1, . . . , zn) 7→ (t1, . . . , tn) in (C∗)n with
inverse given componentwise by

zi =
{

t
hi,1
1 · · · t

hi,m
m , if 1 ≤ i ≤ m,

ti, if m + 1 ≤ i ≤ n.
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The change of coordinates defined in (1) transforms the toric arrangement A =
{H1, . . . , Hm} with subtori

Hi = {(z1, . . . , zn) ∈ (C∗)n : z
pi,1
1 · · · zpi,n

n = αi}

into the toric arrangement C = {K1, . . . , Km} with subtori

Ki = {(t1, . . . , tn) ∈ (C∗)n : tdi
i t

ai,i+1
i+1 · · · tai,m

m t
pi,m+1
m+1 · · · tpi,n

n = αi}.

To see this, let (z1, . . . , zn) be a point of (C∗)n that belongs to the subtorus Hi.
Therefore, its coordinates fulfill condition

z
pi,1
1 · · · zpi,n

n = αi.

Exploiting the change of coordinates given by (1) the previous condition is then
equivalent to

tdi
i t

ai,i+1
i+1 · · · tai,m

m t
pi,m+1
m+1 · · · tpi,n

n = αi,

where ai,s = pi,1k1,s + . . . + pi,mkm,s for 1 ≤ i ≤ m and i + 1 ≤ s ≤ m. Indeed,
since from the first step of our proof

MAHA =


d1 a1,2 · · · · · · a1,m

d2 a2,3 · · · a2,m

. . .
...

dm−1 am−1,m

dm


is an upper triangular matrix, we have

z
pi,1
1 · · · z

pi,n
n = αi

⇕(
t
h1,1
1 · · · t

h1,m
m

)pi,1 · · ·
(
t
hm,1
1 · · · t

hm,m
m

)pi,m
t
pi,m+1
m+1 · · · t

pi,n
n = αi

⇕
t
pi,1h1,1+...+pi,mhm,1
1 · · · t

pi,1h1,m+...+pi,mhm,m
m t

pi,m+1
m+1 · · · t

pi,n
n = αi

⇕

t
(MA)i(HA)1

1 · · · t
(MA)i(HA)m

m t
pi,m+1
m+1 · · · t

pi,n
n = αi

⇕
tdi
i t

ai,i+1
i+1 · · · t

ai,m
m t

pi,m+1
m+1 · · · t

pi,n
n = αi.

Here (MA)i and (HA)l stand for the i-th row and the l-th column of the matrices
MA and HA, respectively.
Step 3. Let us consider the toric arrangement C = {K1, . . . , Km} and let t1, . . . , tm

be coordinates in (C∗)n. For 1 ≤ i ≤ n set

t(1)i =
{

ti, if i ̸= m,

tmγ−1
m , if i = m,

(2)
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where γm is a dm-th root of αm. Thus, (t1, . . . , tn) 7→ (t(1)1, . . . , t(1)n) defines a
change of coordinates in (C∗)n with inverse given componentwise by

ti =
{

t(1)i if, i ̸= m,

t(1)mγm, if i = m

that transforms the toric arrangement C = {K1, . . . , Km} into the toric arrange-
ment C(1) = {K(1)1, . . . , K(1)m}, where K(1)i are subtori of the form

K(1)i =
{

tdi

(1)it
ai,i+1
(1)i+1 · · · t

ai,m

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = α(1)i

}
with

α(1)i =
{

αiγ
−ai,m
m , if 1 ≤ i ≤ m − 1,

1 if, i = m.

In order to prove this, let (t1, . . . , tn) be a point of (C∗)n that belongs to the
subtorus Ki. Then, its coordinates satisfy condition

tdi
i t

ai,i+1
i+1 · · · tai,m

m t
pi,m+1
m+1 · · · tpi,n

n = αi.

Thanks to the change of coordinates defined by (2) this is equivalent to

tdi

(1)it
ai,i+1
(1)i+1 · · · t

ai,m

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = α(1)i.

To see this we have to distinguish between two cases. If 1 ≤ i ≤ m − 1 we have

tdi
i t

ai,i+1
i+1 · · · t

ai,m
m t

pi,m+1
m+1 · · · t

pi,n
n = αi

⇕
tdi

(1)it
ai,i+1
(1)i+1 · · · t

ai,m−1
(1)m−1(t(1)mγm)ai,mt

pi,m+1
(1)m+1 · · · t

pi,n

(1)n = αi

⇕
tdi

(1)it
ai,i+1
(1)i+1 · · · t

ai,m

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = αiγ
−ai,m
m

⇕
tdi

(1)it
ai,i+1
(1)i+1 · · · t

ai,m

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = α(1)i

and similarly, if i = m we have

tdm
m t

pi,m+1
m+1 · · · t

pi,n
n = αm

⇕
(t(1)mγm)dmt

pi,m+1
(1)m+1 · · · t

pi,n

(1)n = αm

⇕
tdm

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = αm

αm

⇕
tdm

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = 1
⇕

tdm

(1)mt
pi,m+1
(1)m+1 · · · t

pi,n

(1)n = α(1)m.
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Exploiting the triangular structure of the matrix MAHA, for k = 2, . . . , m we
can recursively build a sequence of changes of coordinates (t(k−1)1, . . . , t(k−1)n) 7→
(t(k)1, . . . , t(k)n) in (C∗)n defined componentwise by

t(k)i =
{

t(k−1)i if, i ̸= m − k + 1,
t(k−1)m−k+1γ−1

m−k+1, if i = m − k + 1

that transform the toric arrangement C(k−1) = {K(k−1)1, . . . , K(k−1)m} into the
toric arrangement C(k) = {K(k)1, . . . , K(k)m} where K(k)i are subtori of the form

K(k)i =
{

tdi

(k)it
ai,i+1
(k)i+1 · · · t

ai,m

(k)mt
pi,m+1
(k)m+1 · · · t

pi,n

(k)n = α(k)i

}
with

α(k)i =
{

α(k−1)iγ
−ai,m−k+1
m−k+1 , if 1 ≤ i ≤ m − k + 1,

1, if m − k + 1 ≤ i ≤ m.

Again, here γm−k+1 is a dm−k+1-th root of α(k−1)m−k+1.
Step 4. The toric arrangement C(m) is then centered (compare Section 1.2). The
sequence of diffeomorphic changes of coordinates in (C∗)n that map the toric
arrangement A into the toric arrangement C(m) induces by restriction a diffeomor-
phism between the complement manifolds M(A) and M(C(m)). Hence, placing
Ti = K(m)i as 1 ≤ i ≤ m and setting B = {T1, . . . , Tm}, our statement follows.

Note 2.1
The diffeomorphisms (t(k−1)1, . . . , t(k−1)n) 7→ (t(k)1, . . . , t(k)1) defined in the third
step of the proof of Theorem 2.1 are not canonical. Indeed, they depend on the
recursive choice of the complex roots γm, . . . , γ1. However, the diffeomorphism
type of the complement manifold M(A) is uniquely determined.
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