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Abstract. These notes were prepared for the Lefschetz Preparatory School, a
graduate summer course held in Krakow, May 6–10, 2024. They present the
story of the algebraic Lefschetz properties from their origin in algebraic ge-
ometry to some recent developments in commutative algebra. The common
thread of the notes is a bias towards topics surrounding the algebraic Lef-
schetz properties that have a topological flavor. These range from the Hard
Lefschetz Theorem for cohomology rings to commutative algebraic analogues
of these rings, namely artinian Gorenstein rings, and topologically motivated
operations among such rings.

1. Introduction

The topic of these notes is the algebraic Lefschetz properties, which are ab-
stractions of the important Hard Lefschetz Theorem from complex geometry. Sec-
tion 2 explains the topological context of this result. Section 4 introduces the
algebraic Lefschetz properties and their relevance to commutative algebra. Sec-
tion 5 establishes a correspondence between the strong Lefschetz property and an
action of the Lie group sl2. Section 6 focuses on the class of Gorenstein rings
and their construction via Macaulay’s inverse system. Sections 5.3 and 7 investi-
gate how various constructions of new rings from old interact with the Lefschetz
properties.

These notes are deeply influenced by the monograph [13] by T. Harima, T. Ma-
eno, H. Morita, Y. Numata, A. Wachi and J. Watanabe. This reference contains
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a parallel description of many topics in these notes except for section 7, which de-
scribes more recent developments based on [19]. The treatment of earlier chapters,
while deeply influenced by [13], reflects the author’s mathematical taste.

2. Cohomology rings and the Hard Lefschetz Theorem

This section gives an introduction to the origins of the algebraic Lefschetz
properties. The motivation for this topic comes from algebraic topology, so we
will spend some time looking at how the Lefschetz property arises there.

2.1. Cohomology rings

Let F be a vector space and let X be a topological space (such as projective
space Pn or the n-dimensional sphere Sn). We recall the notion of cohomology of
X with coefficients in F.

First, one can think of X as being made out of simple cells (or at least one can
approximate X in this manner). This endows X with a cell complex (CW-complex)
structure.

Example 2.1 (CW structures on sphere)
The 2-dimensional sphere S2 can be obtained by taking a point (0-dimensional
cell) and gluing a 2-dimensional disc onto it along its entire boundary. So the
CW-structure of S2 is

S2 = pt + 2-dimensional disc.

More generally one can do the same for the n-dimensional sphere Sn:

Sn = pt + n-dimensional disc.

There is another, less economical way to give the sphere a CW-structure. For
S2 one takes two 0-dimensional cells, connects them using two line segments (1-
dimensional cells) to form a circle S1. Then one can glue two 2-dimensional discs
via their boundaries to the circle to form S2. Similarly, there is a CW-structure
on Sn with two cells in each dimension summarized by

Sn =2× pt + 2× 1-dimensional disc + 2× 2-dimensional disc
+ · · ·+ 2× n-dimensional disc.

Example 2.2 (CW structure on the real projective space)
Consider first Pn

R. It can be written as Sn/{±1}. If we take a CW structure on
Sn with two cells in each dimension, then the action of −1 swaps the cells, thus
they become identified in the quotient. Due to this Pn

R has a CW structure with
one cell in each dimension.

Pn
R = pt + 1-dimensional cell + · · ·+ n-dimensional cell.

Next consider Pn
C. This has a cell in every even (real) dimension:

Pn
C = pt + 2-dimensional cell + · · ·+ 2n-dimensional cell.



Lefschetz properties through a topological lens [9]

Proceeding towards homology, we define a chain complex C•(X) by letting
Cn(X) be the F-vector space generated by the n-dimensional cells of X. There
are so-called boundary maps1, which fit into the following sequence

C•(X) : 0← F#0-cells ← F#1-cells ← · · · ← F# dim(X)-cells ← 0.

There is also a dual version called the cochain complex of X with coefficients in R

C•(X) = Hom(C•(X),F) : 0→ F#0-cells ∂1→ F#1-cells ∂2→ · · · ∂n→ F# dim(X)-cells → 0.

Definition 2.3
The cohomology groups of X are defined as

Hi(X,F) = Hi (C•(X)) = Ker ∂i/ Im ∂i−1.

Example 2.4
Based on Example 2.1 we have the following chain complexes, which lead to easy
computations of the corresponding cohomology groups.

C•(Sn) : 0→ F→ 0→ 0→ . . .→ F→ 0

Hi(Sn,F) =
{
F, i = 0, n,

0, otherwise,

C•(Pn
C) : 0→ F→ 0→ F→ 0→ F→ . . .→ F→ 0

Hi(Pn
C, R) =

{
F, i = even,

0, i = odd.

The special property of these cohomology groups that allows us to study them
using tools from ring theory is that they can be assembled into a graded ring.

Definition 2.5
The cohomology ring of X is

H•(X,F) =
⊕
i≥0

Hi(X,F).

To study multiplication on this ring we need to define a map called the cup product

Hm(X,F)×Hn(X,F)→ Hm+n(X,F).

For this recall the Künneth isomorphism: for two topological spaces X and Y if
one of X or Y has torsion-free homology (this holds when working over a field
F) and has finitely many cells in each dimension, there is an isomorphism µ :
H•(X × Y,F) ∼= H•(X,F)⊗F H•(Y,F). The composite with the diagonal map

H•(X,F)⊗F H•(X,F)
∼=→ H•(X ×X,F) ∆∗

→ H•(X,F)

defines the cup product by x ∪ y = ∆∗µ(x ⊗ y). The cup product is not com-
mutative, but it is what we call graded commutative. This means that the ring is
graded so that

1We will not describe the boundary maps here.
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if x ∈ Hm(X,F), |x| = m denotes the cohomological degree of x,

and any elements x, y in this ring satisfy

x ∪ y = (−1)|x||y|y ∪ x. (2.1)

Note that in a graded commutative ring even degree elements commute with all
other elements, while odd degree elements anti-commute with other odd degree
elements.

Example 2.6 (Cohomology ring of a sphere)
From Example 2.4 we have

H•(Sn,F) = F⊕ F.

Set 1 and e to be the basis of H0(Sn,F) and Hn(Sn,F) as F-vector spaces,
respectively. Then 1 is the multiplicative identity of the ring H•(Sn,F) and
e2 = e ∪ e ∈ H2n(Sn,F) = 0, so

H•(Sn,F) = F[e]/(e2) with |e| = n.

Example 2.7 (Cohomology ring of a torus)
Applying the Künneth formula to the torus T n = S1× · · · ×S1 gives for elements
e1, . . . , en with |ei| = 1,

H•(T n,F) = F[e1]/(e2
1)⊗F F[e2]/(e2

2)⊗F F[en]/(e2
n) =

∧
F
⟨e1, . . . , en⟩.

Note that the tensor product above is taken in the category of graded-commutative
algebras which implies that eiej = −ejei as expected since |ei| = |ej | = 1. If the
characteristic of F is not equal to 2 then this implies e2

i = 0 for all i. The ring
above, denoted

∧
F⟨e1, . . . , en⟩, is called an exterior algebra. As an F-vector space,

a basis of the exterior algebra is given by all the square-free monomials in the
variables e1, . . . , en.

Example 2.8 (Cohomology ring of projective space)
From Example 2.4 we have H•(Pn

C,F) = F ⊕ F ⊕ · · · ⊕ F with n summands in
degrees 0, 2, . . . , 2n. Set x to be the generator of H2(Pn

C,F). It turns out then
that xi ̸= 0 ∈ H2i(Pn

C,F) for 1 ≤ i ≤ n, so xi generates H2i(Pn
C,F). Moreover,

xn+1 = 0 since H2n+2(Pn
C,F) = 0. Thus we have

H•(Pn
C,F) = F[x]/(xn+1) with |x| = 2.

We can apply the Künneth formula to compute

H•(Pd1
C × Pd2

C × · · · × Pdn

C ,F)
∼=F[x1]/(xd1+1)⊗F F[x2]/(xd2+1)⊗F · · · ⊗F F[xn]/(xdn+1)
∼=F[x1, . . . , xn]/(xd1+1

1 , . . . , xdn+1
n ) with |xi| = 2.
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2.2. The Hard Lefschetz Theorem

Solomon Lefschetz (1888–1972) was a prominent mathematician who did fun-
damental work on algebraic topology, its applications to algebraic geometry, and
the theory of non-linear ordinary differential equations. His career, including tran-
sitions from industry to mathematics and from working in Nebraska and Kansas
to Princeton University is beautifully summarized in his own words in [22]. He
was also a great supporter of mathematics in developing countries, helping train
a great number of Mexican mathematicians. Lefschetz understood that cohomol-
ogy rings can be used to study questions in algebraic geometry. Speaking about
his work Lefschetz states:

“The harpoon of algebraic topology was planted in the body of the whale
of algebraic geometry."

We now come to the main result that we have been building up to. Let
X be an algebraic subvariety of P n

C and let H denote a general hyperplane in
P n
C . Then X ∩ H is a subvariety of X of real codimension two and thus, by

a, standard construction in algebraic geometry, represents a cohomology class
L ∈ H2(X,R) called the class of a hyperplane section. In more detail, L is an F-
linear homomorphism that takes a dimension 2 subvariety of X (or a 2-dimensional
cell of X if we view this as a CW-complex), intersects it with H and returns the
number of points of intersection. This function is then extended F-linearly.

Theorem 2.9 (Hard Lefschetz Theorem)
Let X be a smooth irreducible complex projective variety of complex dimension
n (real dimension 2n), H•(X) = H•(X,R), and let L ∈ H2(X,R) be the class
of a general hyperplane section. Then for 0 ≤ i ≤ n the following maps are
isomorphisms

Li : Hn−i(X)→ Hn+i(X), where Li(x) = L ∪ · · · ∪ L︸ ︷︷ ︸
Li

∪x.

Remark 2.10
The Hard Lefschetz theorem holds for H•(X,F), where F is any field of charac-
teristic zero (not just R), but the conclusion of the theorem is false in positive
characteristic.

The theorem above was first stated by Lefschetz in [21], but his proof was not
entirely rigorous. The first complete proof of Theorem 2.9 was given by Hodge
[16]. The standard proof given nowadays uses the representation theory of the Lie
algebra sl2(C) and is due to Chern [4]. Lefschetz’s original proof was only recently
made rigorous by Deligne [6], who extended it to positive characteristic.

Example 2.11 (The Hard Lefschetz theorem in action)
See Example 2.8 for context. For H•(P n

C ) = F[x]/(xn+1) the class of a hyperplane
is L = x (recall that |x| = 2) and it gives whenever i ≡ n (mod 2) isomorphisms

Hn−i(P n
C ) = x

n−i
2 F ×xi

−−→ Hn+i(P n
C ) = x

n+i
2 F

x
n−i

2 y 7→ xi(x
n−i

2 y) = x
n+i

2 y.
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Cohomology rings of n-dimensional complex projective varieties X with coef-
ficients in a field F satisfy the following properties:

(1) H•(X,F) is a graded commutative ring2 in the sense of (2.1). Its even
part A := H2•(X,F) =

⊕
i≥0 H2i(X,F) is a commutative graded ring as

defined in the next chapter. We can re-grade this ring by setting |x| = i if
x ∈ H2i(X,F). With this convention we have |L| = 1.

(2) H•(X,F) and A are finite dimensional F-vector spaces (so A is an artinian
ring cf. Definition 3.8).

(3) H•(X,F) and A satisfy Poincaré duality (hence A is a Gorenstein ring
cf. Proposition 3.11).

The main goal of these notes is to demonstrate how one may hope to extend
the Hard Lefschetz theorem (and some weaker versions thereof) to arbitrary rings
which may not necessarily be cohomology rings, but satisfy at least some of the
properties above. Thus we are motivated by the following question.

Question 2.12
Which commutative graded rings A that are artinian or both artinian and Goren-
stein also satisfy the conclusion of the Hard Lefschetz theorem?

3. Classes of graded rings

From now on all rings will be commutative unless specified otherwise.

3.1. Artinian algebras

Definition 3.1 (Graded ring)
A commutative ring A is an (N-)graded ring provided it decomposes as

A =
⊕
i≥0

Ai

with Ai abelian groups such that for all i, j ∈ N AiAj ⊆ Ai+j (a ∈ Ai, b ∈ Aj ⇒
ab ∈ Ai+j).

From now on we restrict to graded rings A with A0 = F a field. I will refer
to these as F-algebras. Note that in particular such a ring A and each of its
homogeneous components Ai are F vector spaces.

An N-graded ring A has a unique homogeneous maximal ideal, namely

m =
⊕
i≥1

Ai.

2It is worth cautioning that the phrase graded commutative ring has a very different meaning
from commutative graded ring. In the former odd degree elements anti-commute while in the
latter all elements commute regardless of their degree.
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Example 3.2
A = F[x1, . . . , xn] is the fundamental example of a graded ring with Ai = the set
of homogeneous polynomials of degree i. Note that the degree of xi is allowed to
be an arbitrary positive integer.

Exercise 3.3
Show that if A is a commutative, Noetherian, graded F-algebra then dimF Ai is
finite for each i.

Definition 3.4 (Hilbert function)
The Hilbert function of a Noetherian graded F-algebra A is the function

hA : N→ N, hA(i) = dimF Ai.

The Hilbert series of A is the power series HA(t) =
∑

i≥0 hA(i)ti.

Exercise 3.5
Prove that the Hilbert function of the polynomial ring R = F[x1, . . . , xn] is given
by

hR(i) =
(

n + i− 1
i

)
for all i ≥ 0

and the Hilbert series is
HR(t) = 1

(1− t)n
.

Example 3.6
The Hilbert function of the truncated polynomial ring A = F[x1,...,xn]

(x1,...,xn)d is given by

hA(i) =
{(

n+i−1
i

)
, if 0 ≤ i < d,

0, if i ≥ d.

Thus HA(t) =
∑d−1

i=0
(

n+i−1
i

)
ti.

Example 3.7
Consider a field F and let A = F[x, y, z]/(x2, y2, z2). Clearly, A is a finite dimen-
sional F-vector space with basis given by the monomials {1, x, y, z, xy, yz, xz, xyz}.
We see that the elements of A have only four possible degrees 0, 1, 2, 3 and moreover

A0 = SpanF{1} ∼= F⇒ hA(0) = 1,

A1 = SpanF{x, y, z} ∼= F3 ⇒ hA(1) = 3,

A2 = SpanF{xy, yz, xz} ∼= F3 ⇒ hA(2) = 3,

A3 = SpanF{xyz} ∼= F⇒ hA(3) = 1,

Ai = 0 for all i ≥ 4⇒ hA(i) = 0 for all i ≥ 4.

Thus HA(t) = 1 + 3t + 3t2 + t3.

In Examples 3.6 and 3.7 the Hilbert series was in fact a polynomial, equiva-
lently the Hilbert function was eventually equal to zero. We now define a class of
graded rings which satisfy this property.
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Definition 3.8 (Artinian ring)
A (local or) graded F-algebra A with (homogeneous) maximal ideal m is artinian
if any of the following equivalent conditions holds.

(a) A is finite dimensional as a F-vector space.
(b) A has Krull dimension zero.
(c) md = 0 for some (hence all sufficiently large) integers d ≥ 1. If A is graded

this can be restated as Ad = 0 for sufficiently large integers d ≥ 1.
(d) A satisfies the descending chain condition on ideals.
(e) There exists a descending sequence of ideals

A = a0 ⊇ a1 ⊇ a2 ⊇ · · · ⊇ aℓ = 0 such that ai−1/ai
∼= F.

Such a sequence of ideals is called a composition series.

Moreover, if R = F[x1, . . . , xn] is a polynomial ring and A = R/I for some
homogeneous ideal I of R then the conditions above are also equivalent to

(f) For each 0 ≤ i ≤ n there is some integer pi such that xpi

i ∈ I.
(g) If F is algebraically closed, another equivalent condition is that the vanish-

ing locus of I in projective space is empty.

3.2. Artinian Gorenstein rings and complete intersections

Definition 3.9 (Socle)
For a graded artinian F algebra the maximal integer d such that Ad ̸= 0 is called
the maximal socle degree of A. The socle of A is the ideal

(0 :A m) = {x ∈ A | xy = 0 forall y ∈ m}.

There is always a containment Ad ⊆ (0 :A m), where d denotes the maximal socle
degree of A. When the converse holds, namely (0 :A m) ⊆ Ad, then A is called
a level algebra. This condition means that the socle is concentrated in a single
degree.

Definition 3.10 (Artinian Gorenstein ring)
A graded F-algebra is artinian Gorenstein (AG) if its socle is a one dimensional
F-vector space.

An equivalent characterization of AG algebras is given by the following propo-
sition.

Proposition 3.11 (Poincaré duality)
A graded F-algebra A of maximal socle degree d is AG if and only if for each
nonzero element asoc of Ad there exists an F-vector space homomorphism

∫
A

:
A→ F called an orientation, satisfying the following properties:

(1) if b ∈ Ai for some i < d then
∫

A
b = 0,

(2) the orientation induces an isomorphism Ad
∼= F such that

∫
A

asoc = 1,
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(3) for each 0 ≤ i ≤ d and each element a ∈ Ai there exists a unique element
b ∈ Ad−i so that

∫
A

ab = 1.

In Section 7.2 we will use the notation asoc implicitly to mean fixing the unique
orientation on A that satisfies

∫
A

asoc = 1.

Example 3.12
Continuing with Example 3.7, the socle is (0 :A m) = SpanF{xyz}, a 1-dimensional
F-vector space. This shows that A is Gorenstein. Take the orientation on A to be
specified by

∫
A

xyz = 1. We see that the F-basis elements {1, x, y, z, xy, yz, xz, xyz}
of A form pairs with respect to the given orientation in the following manner∫

A

1 · xyz = 1,∫
A

x · yz = 1,∫
A

y · xz = 1,∫
A

z · xy = 1.

Exercise 3.13
Show that the following is an artinian Gorenstein ring

R = F[x, y, z]
(xy, xz, yz, x2 − y2, x2 − z2) .

Exercise 3.14
Prove that if A is a graded AG algebra of maximum socle degree d then hA(i) =
hA(d − i) for each 0 ≤ i ≤ d. This is usually stated by saying AG algebras have
symmetric Hilbert function.

Definition 3.15
A graded artinian F-algebra is a complete intersection (CI) if A = R/I, where
R = F[x1, . . . , xn] and I = (f1, . . . , fn), that is, I is a homogeneous ideal generated
by as many elements as there are variables in R.

Example 3.16
The rings A = F[x1, . . . , xn]/(xd1

1 , . . . , xdn
n ), where d1, . . . , dn ≥ 1 are integers, are

called monomial complete intersections.

Exercise 3.17
Prove that the rings in Example 3.16 are the only artinian Gorenstein rings of the
form R/I, where R = F[x1, . . . , xn] and I is an ideal generated by monomials.

All CI rings are Gorenstein, but not all Gorenstein rings are CI, as exemplified
by the ring in Exercise 3.13.
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4. The Lefschetz properties

4.1. Weak Lefschetz property and consequences

Definition 4.1 (Weak Lefschetz property)
Let A =

⊕c
i=0 Ai be a graded artinian F-algebra. We say that A has the weak

Lefschetz property (WLP) if there exists an element L ∈ A1 such that for 0 ≤ i ≤
c− 1 each of the multiplication maps

×L : Ai → Ai+1, x 7→ Lx is injective or surjective.

We call L with this property a weak Lefschetz element. The WLP says that ×L
has the maximum possible rank, which is referred to as full rank.

Definition 4.2
The non-weak Lefschetz locus of a graded artinian F-algebra A is the set (more
accurately the algebraic set)

NLLw(A) = {(a1, . . . , an) ∈ Fn | L = a1x1 + · · ·+ anxn

not a weak Lefschetz element on A}.

Exercise 4.3 (Equivalent WLP statements)
Prove that for an artinian graded F-algebra A the following are equivalent:

(1) L ∈ A1 is a weak Lefschetz element for A.
(2) For all 0 ≤ i ≤ c− 1 the map ×L : Ai → Ai+1 has rank min{hA(i), hA(i +

1)}.
(3) For all 0 ≤ i ≤ c− 1 dimF([(L)]i+1) = min{hA(i), hA(i + 1)}.
(4) For all 0 ≤ i ≤ c− 1 dimF([A/(L)]i+1) = max{0, hA(i + 1)− hA(i)}.
(5) For all 0 ≤ i ≤ c− 1 dimF([0 :A L]i) = max{0, hA(i)− hA(i + 1)}.

Exercise 4.4
Show that the non-weak Lefschetz locus is a Zariski closed set.

Example 4.5
Take A = C[x, y]/(x2, y2) with the standard grading |x| = |y| = 1 and L = x + y.
Then the multiplication map ×L gives the following matrices with respect to the
monomial bases {1}, {x, y} and {xy}:

map matrix rank injective/surjective

A0 → A1

[
1
1

]
1 injective

A1 → A2
[
1 1

]
1 surjective

Ai → Ai+1, i ≥ 2
[
0
]

0 surjective

We conclude that A has the WLP and x + y is a Lefschetz element on A.
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Example 4.6 (Dependence on characteristic)
Take A = F[x, y, z]/(x2, y2, z2) with the standard grading |x| = |y| = 1 and
L = ax + by + cz. Then the multiplication map ×L is represented by the following
matrices with respect to the monomial bases 1 for A0, {x, y, z} for A1, {xy, xz, yz}
for A2, and xyz for A3:

×L : A0 → A1 M =

a
b
c

, injective unless a = b = c = 0,

×L : A1 → A2 M =

b a 0
c 0 a
0 c b

, det(M) = −2abc,

×L : A2 → A3 M =
[
a b c

]
, surjective unless a = b = c = 0.

The map ×L : A1 → A2 has full rank if and only if char(F) ̸= 2 and a ̸= 0,
b ̸= 0, c ̸= 0. We conclude that A has the WLP if and only if char(F) ̸= 2 because
in that case L = x + y + z is a weak Lefschetz element.

The non-(weak) Lefschetz locus of A in this example is

NLLw(A)
={(a, b, c) ∈ F3 | L = ax + by + cz is not a weak Lefschetz element on A}
=V (abc) = {(a, b, c) ∈ F3 | a = 0 or b = 0 or c = 0}
= the union of the three coordinate planes in F3.

Definition 4.7
A sequence of numbers h1, . . . , hc is called unimodal if there is an integer j such
that

h1 ≤ h2 ≤ · · · ≤ hj ≥ hj+1 ≥ · · · ≥ hc.

Lemma 4.8
If B is a standard graded F-algebra and Bj = 0 for some j ∈ N then Bi = 0 for
all i ≥ j.

Proof. B standard graded means that B = F[B1] = F[x1, . . . , xn]/I, where x1, . . .,
xn are an F-basis for B1, which means |x1| = · · · = |xn| = 1, and I is a homoge-
neous ideal.

Then it follows that Bi = SpanF{Bi−jBj} = SpanF{0} = 0 for any i ≥ j.

Proposition 4.9
Suppose that A is a standard graded artinian algebra over a field F. If A has the
weak Lefschetz property then A has a unimodal Hilbert function.

Proof. Let j be the smallest integer such that dimF Aj > dimF Aj+1 and let L be
a Lefschetz element on A. Then ×L : Aj → Aj+1 is surjective, i.e. LAj = Aj+1.
Now consider the cokernel A/(L) of the map A

×L−→ A. We have that (A/(L))j+1 =
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Aj+1/LAj = 0, so by the previous Lemma [A/(L)]i = 0 for i ≥ j + 1. This means
that ×L : Ai → Ai+1 is surjective for i ≥ j and so we have

h0(A) ≤ h1(A) ≤ · · · ≤ hj(A) > hj+1(A) ≥ hj+2(A) ≥ · · · ≥ hc(A).

The proof above yields:

Corollary 4.10
For a standard graded artinian algebra A with the weak Lefschetz property there
exists j ∈ N such that the multiplication maps by a weak Lefschetz element ×L :
Ai → Ai+1 are injective for i < j after which they become surjective for i ≥ j.

Example 4.11 (Dependence on grading)
We will see in Example 4.18 that the algebra A = F [x, y]/(x2, y2) with |x| = |y| = 1
has WLP. The ring A is standard graded and has unimodal Hilbert function 1, 2, 1.

Take B = C[x, y]/(x2, y2) with |x| = 1, |y| = 3. Then B is a graded algebra
with nonunimodal Hilbert function 1, 1, 0, 1, 1, but x is a weak Lefschetz element
on B.

Take C = C[x, y]/(x2, y2) with |x| = 1, |y| = 2. Then C has a unimodal
Hilbert function 1, 1, 1, 1 but does not have the WLP because the only degree
one elements are multiples of x, which do not have maximal rank with respect to
multiplication from degree one to degree two.

4.2. Strong Lefschetz property and consequences

Definition 4.12 (Strong Lefschetz property)
Let A =

⊕c
i=1 Ai be a graded artinian F-algebra. We say that A has the strong

Lefschetz property (SLP) if there exists an element L ∈ A1 such that for all 1 ≤
d ≤ c and 0 ≤ i ≤ c− d each of the multiplication maps

×Ld : Ai → Ai+d, x 7→ Ldx is injective or surjective.

We call L with this property a strong Lefschetz element.

Remark 4.13
An element L ∈ A1 is strong Lefschetz on A if and only if for all 1 ≤ d ≤ c and
0 ≤ i ≤ c− d the maps ×Ld : Ai → Ai+d have rank min{hA(i), hA(d + i)}.

Definition 4.14
The non-strong Lefschetz locus of a graded artinian F-algebra A is the set (more
accurately the algebraic set)

NLLs(A) = {(a1, . . . , an) ∈ Fn |L = a1x1 + · · ·+ anxn

not a strong Lefschetz element on A}.

Remark 4.15
The non-strong Lefschetz locus is a Zariski closed set.
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Remark 4.16 (SLP ⇒ WLP)
If A satisfies SLP then A satisfies WLP (the d = 1 case).

The following exercise shows this implication is not reversible.

Exercise 4.17
Let F be a field of characteristic zero and let

A = F[x, y, z]
(x3, y3, z3, (x + y + z)3) .

(1) Find the Hilbert function of A.
(2) Prove that A satisfies WLP but not SLP.

Hint: One can use a computer algebra system such as Macaulay2 [12] to prove that
an algebra satisfies WLP or SLP by finding a linear form that conforms to the
respective definition. Usually such form is found by trial and picking at random
from the set of linear forms. Macaulay2 has a function random() which is helpful
in this regard.

One can also prove that an algebra does or does not satisfy WLP or SLP by
working over an extension of the coefficient field F of A. In the example above,
one would work over the filed extension K = F(a, b, c), defined in Macaulay2 as
K=frac(QQ[a,b,c]). To compute the rank of multiplication by L = ax + by + cz
and its powers on the artinian algebra A′ = K ⊗F A in Macaulay2 for F = Q use
the criteria in Exercise 4.3 to express the desired ranks in terms of the Hilbert
function of cyclic modules A′/(Lj).

Example 4.18 (Dependence on characteristic)
Take A = F[x, y]/(x2, y2) with the standard grading |x| = |y| = 1 and L = ax+by.
Then the multiplication map ×L2 gives the following matrices with respect to the
monomial bases {1}, {x, y} and {xy}:

map matrix rank injective/ surjective

A0 → A2
[
2ab

] {
1, char(F) ̸= 2,

0, char(F) = 2,

{
bijective, char(F) ̸= 2,

none, char(F) = 2,

Ai → Ai+2, i ≥ 1
[
0
]

0 surj

If char(F) ̸= 2 we conclude that A has the SLP and ax + by where a ̸= 0, b ̸= 0
is a Lefschetz element on A. The non-(strong) Lefschetz locus is the union of the
coordinate axes in F2,

NLLs(A) = V (ab) = {(a, b) ∈ F2 | a = 0 or b = 0}.

However A does not have the SLP if char(F) = 2 so in that case NLLs(A) = F2.

The SLP for artinian algebras with non-standard grading was studied in [14].
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Proposition 4.19
Let A be a (not necessarily standard) graded artinian F-algebra which satisfies the
SLP. Then A has unimodal Hilbert function.

Proof. Suppose that the Hilbert function of A is not unimodal. Then there are
integers k < l < m such that dimF Ak > dimF Al < dimF Am. Recall the rank
of a composite map is bounded above by the ranks of its components. Hence the
multiplication map×Lm−k : Ak → Am cannot have full rank for any linear element
L ∈ A because it is the composition of ×Lm−l : Al → Am and ×Ll−k : Al → Ak,
each of which have rank strictly less than min{dimF Ak, dimF Am}. Thus A cannot
have the SLP.

Definition 4.20
Let A =

⊕c
i=1 Ai be a graded artinian F-algebra. We say that A has the strong

Lefschetz property in the narrow sense (SLPn) if there exists an element L ∈ A1
such that the multiplication maps ×Lc−2i : Ai → Ac−i, x 7→ Lc−2ix are bijections
for all 0 ≤ i ≤ ⌈c/2⌉.

Remark 4.21
SLP in the narrow sense is the closest property to the conclusion of the Hard
Lefschez Theorem 2.9.

Definition 4.22
We say that a graded artinian algebra A =

⊕c
i=1 Ai of maximum socle degree c

has a symmetric Hilbert function if hA(i) = hA(c− i) for 0 ≤ i ≤ ⌈c/2⌉.

Proposition 4.23
If a graded artinian F-algebra A has the strong Lefschetz property in the narrow
sense, then the Hilbert function of A is unimodal and symmetric. Moreover we
have the equivalence: A has SLP and symmetric Hilbert function if and only if A
has SLP in the narrow sense.

Proof. (⇐) The fact that SLP in the narrow sense implies symmetric Hilbert func-
tion follows from the definition because the bijections give dimF Ai = dimF Ac−i.

The fact that SLP in the narrow sense implies SLP can be noticed by con-
sidering ×Ld : Ai → Ai+d. For each such d, i there exists j = c − i − d such
that:

• if i ≤ (c− d)/2 then j = c− i− d ≥ i and (×Ld) ◦ (×Lj−i) = ×Lc−2i is a
bijection implies that ×Ld is surjective, hence has full rank,
• if i > (c − d)/2 then c − 2i < d and (×Ld−(c−2i)) ◦ (×Ld) = ×Lc−2i is a

bijection implies that ×Ld is injective, hence full rank.

(⇒) The fact that SLP + symmetric Hilbert function implies SLPn is clear
from the definitions.

Example 4.24
The standard graded algebra F[x, y]/(x2, xy, ya) with a > 3 has non-symmetric
Hilbert function 1, 2, 1a−2 (here 1a−2 means 1 repeated a− 2 times). Notice that
A has the SLP because L = x + y is a strong Lefschetz element. However, A does
not satisfy SLPn because its Hilbert function is not symmetric.
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4.3. Stanley’s Theorem

The most famous theorem in the area of investigation of the algebraic Lefschetz
properties, and also the theorem which started this, is the following:

Theorem 4.25 (Stanley’s theorem)
If char(F) = 0, then all monomial complete intersections, i.e. F-algebras of the
form

A = F[x1, . . . , xn]
(xd1

1 , . . . , xdn
n )

with d1, . . . , dn ∈ N have the SLP.

Proof. Recall that H•(Pd−1
C ,F) = F[x]/(xd), so by Künneth we have

H•(Pd1−1
C × Pd2−1

C × · · · × Pdn−1
C ,F)

= F[x]1/(xd1
1 )⊗F F[x2]/(xd2

2 )⊗F · · · ⊗F F[xn]/(xdn
n ) = A.

Since X = Pd1−1
C ×Pd2−1

C ×· · ·×Pdn−1
C is an irreducible complex projective variety,

the Hard Lefschetz theorem says that A has SLP in the narrow sense which implies
that A has SLP.

Alternate proofs of this theorem have been given by Watanabe in [33] using
representation theory, by Reid, Roberts and Roitman in [29] with algebraic meth-
ods, also by Lindsey [23] and by Herzog and Popescu [15]. We will give a different
proof of Stanley’s theorem later in these notes in Corollary 5.22.

Exercise 4.26
With help from a computer make conjectures regarding the WLP and SLP for
monomial complete intersections in positive characteristics. A characterization is
known for SLP, but not for WLP. See [5, 27] for related work.

4.4. Combinatorial applications

The following discussion of a spectacular application of SLP is taken from [32].
A polytope is a convex body in Euclidean space which is bounded and has

finitely many vertices. Let P be a d-dimensional simplicial convex polytope with
fi i-dimensional faces, 0 < i < d− 1. We call the vector f(P) = (f0, . . . , fd−1) the
f -vector of P.The problem of obtaining information about such vectors goes back
to Descartes and Euler. In 1971 McMullen [26] gave a remarkable condition on a
vector (f0, . . . , fd−1) which he conjectured was equivalent to being the f -vector of
some polytope.

To describe this condition, define a new vector h(P) = (h0, . . . , hd), called the
h-vector of P, by

hi =
i∑

j=0

(
d− j

d− i

)
(−1)i−jfj−1,

where we set f−1 = 1. McMullen’s conditions, though he did not realize it, turn
out to be equivalent to hi = hd−i for all i together with the existence of a standard
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graded commutative algebra A with A0 = F and hA(i) = hi − hi−1 for 1 ≤ i <
⌊d/2⌋.

Stanley [31] constructed from P a d-dimensional complex projective toric va-
riety X(P) for which dimC H2i(X(P)) = hi. Although X(P) need not be smooth,
its singularities are sufficiently nice that the hard Lefschetz theorem continues to
hold. Namely, X(P) locally looks like Cn/G, where G is a finite group of linear
transformations. Taking A = H∗(X(P))/(L) with degrees scaled by 1/2, where L
is the class of a hyperplane section, the necessity of McMullen’s condition follows
from Exercise 4.3(4). Sufficiency was proved about the same time by Billera and
Lee [3].

5. Lefschetz property via representation theory of sl2

5.1. The Lie algebra sl2 and its representations

Some of the exercises in this section are taken from [30].
Throughout this section let F be an algebraically closed field of characteristic

zero.

Definition 5.1
A Lie algebra is a vector space g equipped with a bilinear operator [−,−] : g×g→ g
satisfying the following two conditions:

• [x, y] = −[y, x],
• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The bilinear operator [−,−] is called the bracket product, or simply the bracket.
The second identity in the definition is called the Jacobi identity.

Remark 5.2
Any associative algebra has a Lie algebra structure with the bracket product de-
fined by commutator [x, y] = xy − yx. Associativity implies the Jacobi identity.

The set of n × n matrices Mn(F) forms a Lie algebra since it is associative.
This Lie algebra is denoted by gln(F).

Definition 5.3
Since the set of matrices of trace zero is closed under the bracket of gln(F) (because
tr(AB) = tr(BA) for any matrices A, B), it forms a Lie subalgebra

sln(F) = {M ∈ gln(F) | tr(M) = 0}.

Example 5.4 (The Lie algebra sl2(F))
In the case where n = 2, sl2(F) is three-dimensional, with basis

E =
[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
.

The three elements E, H, F are called the sl2-triple.
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These elements satisfy the following three relations, which we call the funda-
mental relations:

[E, F ] = H, [H, E] = 2E, [H, F ] = −2F.

The algebra sl2(F) is completely determined by these relations.

We are interested in representations of sl2.

Definition 5.5 (Lie algebra representation)
Let V be an F-vector space. Then End(V ) is a Lie algebra with the bracket defined
by [f, g] = f ◦ g − g ◦ f . A representation of a Lie algebra g is vector space V
endowed with a Lie algebra homomorphism

ρ : g→ End(V ),

i.e. a vector space homomorphism which satisfies

ρ([x, y]) = [ρ(x), ρ(y)].

A representation is called irreducible if it contains no trivial (nonzero) subrep-
resentation, i.e. if W ⊊ V is such that ρ(W ) ⊆W then W = 0.

In the case of g = sl2(F), we abuse notation and call the set of elements
ρ(E), ρ(H), ρ(F ) just E, H, F and say they form an sl2-triple.

Exercise 5.6
Let F[x, y]d be the vector space of homogeneous polynomials of degree d in F[x, y].
Prove that

(1) E = x ∂
∂y , H = x ∂

∂x − y ∂
∂y , F = y ∂

∂x form an sl2-triple.

(2) Prove that the monomial xayb is an eigenvector of H with eigenvalue a−b ∈
Z. In particular the eigenvalues of H on F[x, y]d are d, d− 2, d− 4, . . . , 4−
d, 2− d,−d.

(3) Prove that a basis of F[x, y]d is yd, E(yd), E2(yd), . . . , Ed(yd).

Pictorially this can be summarized as

0 Fyd Fxyd−1 · · · Fxd−1y Fxd 0

E E E E
E

F
F F F F

We will soon see that the vector space in Exercise 5.6 is the basic building
block of all other representations of sl2.

An important result on Lie algebra representations is:

Theorem 5.7 (Weyl’s Theorem)
Any Lie algebra representation decomposes uniquely up to isomorphism as a direct
sum of irreducible representations.
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Definition 5.8 (Weight vectors)
Let ρ : sl2(F) → End(V ) be a representation. The eigenvalues of H are called
weights and the eigenvectors are called weight vectors. In particular an eigenvector
u is called a lowest weight vector if Fu = 0 and is called a highest weight vector if
Eu = 0.

Example 5.9
In the representation introduced in Exercise 5.6 the highest weight vectors are the
elements of Fxd and the lowest weight vectors are the elements of Fyd.

To justify the name of highest weight we state the following theorem:

Theorem 5.10 (Irreducible representations of sl2)
Let ρ : sl2(F) → End(V ) be an irreducible representation with dim(V ) = d + 1.
Then there exist a basis B = {v0, . . . , vd} for V such that

(1) each vi is an eigenvector for H with eigenvalue −d + 2i, i.e. Hvi = (−d +
2i)vi,

(2) Evi = vi+1 for i < d, Evd = 0,
(3) Fvi = i(d− i + 1)vi−1 for i > 0, Fv0 = 0.

In particular, the elements E, H, F ∈Md+1(F) are represented with respect to this
basis by the matrices

[E]B =


0 0 · · · 0 0
1 0 · · · 0 0
...

. . . . . .
...

...
0 0 · · · 1 0

 ,

[H]B =


−d 0 · · · 0
0 −d + 2 · · · 0
...

. . .
...

0 0 · · · d

 , (5.1)

[F ]B =


0 1 · d · · · 0 0
0 0 2(d− 1) 0 0
...

. . . . . .
...

...
0 0 · · · 0 d · 1
0 0 · · · 0 0

 . (5.2)

Exercise 5.11
Find a basis that satisfies the properties given by Theorem 5.10 for the represen-
tation F[x, y]d introduced in Exercise 5.6.

Theorem 5.10 above says in particular that there is only one representation
of sl2(F) of dimension d + 1 (up to isomorphism). A representative for this iso-
morphism class can be chosen to be the representation F[x, y]d in Exercise 5.6.
Furthermore any representation of sl2(F) has a basis consisting of weight vectors.
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This justifies the following:

Definition 5.12
Let V be a representation of sl2 and let Wλ(V ) = {v ∈ V | Hv = λv} be
the eigenspace corresponding to a weight (eigenvalue) λ for H. Then there is a
decomposition V =

⊕
λ Wλ(V ) called the weight space decomposition of V .

Remark 5.13
If V is an irreducible representation for sl2(F) and dim(V ) = n+1 then the weight
spaces are the 1-dimensional spaces W−n+2i(V ) = Fvi with vi as in Theorem 5.10.

Exercise 5.14
(1) Suppose that V is a representation of sl2 and that the eigenvalues of H on

V are 2, 1, 1, 0,−1,−1,−2. Show that the irreducible decomposition of V
is V ∼= F[x, y]2 ⊕ F[x, y]1 ⊕ F[x, y]1.

(2) Prove that if V is any representation of sl2 then its irreducible decomposi-
tion is determined by the eigenvalues of H.

Exercise 5.15
Let V be an sl2 representation and set Wk = {v ∈ V | H(v) = kv}.

(1) Show that dimF Wk = dimF W−k.
(2) Prove that Ek : W−k →Wk is an isomorphism.
(3) Show that dimF Wk+2 ≤ dimF Wk for all k ≥ 0, that is, the two sequences

. . . , dimF W4, dimF W2, dimF W0, dimF W−2, dimF W−4, . . .

. . . , dimF W3, dimF W1, dimF W−1, dimF W−3, . . .

are unimodal.

5.2. Weight space decompositions and the narrow sense of SLP

We now show that there is a close connection between artinian algebras satis-
fying SLPn and the representations of sl2.

Remark 5.16
If A is a graded artinian F-algebra and L is a linear form, then we can view A as
a F[L]-module since by the universal mapping property of polynomial rings there
exists a well defined ring homomorphism F[L] → A which maps L 7→ L. Since
F[L] is a PID and A is a module over it, the structure theorem for modules over
PIDs says that there is a module isomorphims

A ∼= F[L]/(pe1
1 )⊕ · · · ⊕ F [L]/(pek

k ),

where each pi is a prime element of F[L] (no free part since A is finite dimensional).
Since A is furthermore graded the elementary divisors pei

i must be homogeneous
elements of F[L], thus pi = L for all i. This implies that A decomposes as a direct
sum

A ∼= S(1) ⊕ · · · ⊕ S(k) with S(i) ∼= F[L]/(Lei).
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The cyclic F[L] modules S(i) are the strands of multiplication by L on A which are
essential in defining the notion of Jordan type, a finer invariant than the Lefschetz
properties. The generic Jordan type of A is the multi-set of sizes of Jordan blocks
e1, e2, . . . , es ordered decreasingly. This follows because the action of L on S(i) is
given by a single Jordan block of size ei.

Here is the connection between SLPn and the representations of sl2(F):

Corollary 5.17
The following are equivalent

(1) S is a cyclic graded F[L] module, i.e. S ∼= F[L]/(Ld) (not necessarily degree
preserving isomorphism),

(2) S ∼= F[x, y]d−1 as an irreducible representation of sl2 with Es = Ls.

Proof. This follows because both the action of L on S as well as the action of E
on F[x, y]d−1 is given by a single Jordan block matrix. Once the basis of S has
been fixed to be 1, L, L2, . . . , Ld−1, the action of H and F can be simply defined
to be the one given by the matrices displayed in Theorem 5.10.

If we put the sl2(F)-module structures on the individual strands together we
obtain:

Theorem 5.18 (SLPn via weight decomposition)
Let A be a graded artinian algebra of socle degree c and let L ∈ A1. The following
are equivalent

(1) L is a strong Lefschetz element on A in the narrow sense,
(2) A is an sl2(F)-representation with E = ×L and the weight space decom-

position of A coincides with the grading decomposition via weight(v) =
2 deg(v)− c. This means that

A =
c⊕

i=0
Ai =

c⊕
i=0

W2i−c(A), where Ai = W2i−c(A).

Proof sketch. Suppose L is a strong Lefschetz element on A in the narrow sense.
We construct an sl2(F) triple in EndF(A) as follows: let E = ×L : A → A.
Consider the Jordan decomposition of A with respect to the endomorphism E
written as A =

⊕
Vi, that is, let the subspaces Vi be the eigenspaces of the

operator E. For each Vi, let Fi, Hi : Vi → Vi to be the endomorphisms of Vi

given with respect to the basis in which E
∣∣
Vi

is in Jordan form by the matrices
in (5.1) and (5.2), respectively, where d = dim(Vi) − 1. Setting H =

⊕
Hi and

F =
⊕

Fi, one can check E, H, F is an sl2(F) triple. Furthermore, from the
properties of Jordan type one knows that the Jordan blocks of L are centered
around the middle degree of A; see [17, Proposition 2.38]. It follows that if v is an
eigenvector of weight 2k−d it is in degree (c−d)/2+k (note that c ≡ d (mod 2)).
Substituting i = (c− d)/2 + k it follows that W2i−c(A) = Ai.

Conversely, suppose A is an sl2(F)-representation with E = ×L. Then one
can use the information about the grading to verify that the Jordan blocks are
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centered around degree ⌊c/2⌋. Thus the Jordan degree type is the transpose of the
Hilbert function of A. By [13, Proposition 3.64 (2)] it follows that L is a strong
Lefschetz element on A in the narrow sense.

5.3. Tensor products

From Theorem 5.18, we can deduce how SLPn behaves when we take tensor
products. We need the following lemma.

Lemma 5.19
If F is an algebraically closed field of characteristic zero and A, A′ are associative
algebras which are representations of sl2(F) , then so is A ⊗F A′ with the action
g · (v ⊗ v′) = (gv)⊗ v′ + v ⊗ (gv′). If v, v′ are weight vectors then v ⊗ v′ is also a
weight vector with weight(v ⊗ v′) = weight(v) + weight(v′).

Proof. We show the statement about weights only: say weight(v) = λ and
weight(v′) = λ′ so that Hv = λv, Hv′ = λv′. Then

H(v ⊗ v′) = (Hv)⊗ v′ + v ⊗ (Hv′) = λv ⊗ v′ + v ⊗ λ′v′ = (λ + λ′)v ⊗ v′

shows that v ⊗ v′ is a weight vector with weight λ + λ′.

Theorem 5.20
Let F be an algebraically closed field of characteristic zero. If L is a strong Lefschetz
element in the narrow sense on A and if L′ is a strong Lefschetz element in the
narrow sense on A′ then L⊗1+1⊗L′ is a strong Lefschetz element in the narrow
sense on A⊗F A′.

Proof. By 5.18 we have that if c, c′ are the socle degrees of A, A′, respectively,
then Ai = W2i−c(A) and A′

j = W2j−c′(A′), so

A =
c⊕

i=0
Ai =

c⊕
i=0

W2i−c(A) and A′ =
c′⊕

j=0
A′

j =
c′⊕

j=0
W2j−c′(A′) (5.3)

imply

A⊗F A′ =
c,c′⊕

i=0,j=0
Ai ⊗F A′

j =
c,c′⊕

i=0,j=0
W2i−c(A)⊗F W2j−c′(A′). (5.4)

From the fact that deg(v ⊗ v′) = deg(v) + deg(v′) and (5.3) we deduce that

(A⊗F A′)k =
c⊕

i=0
Ai ⊗F A′

k−i.

Note that the maximum socle degree of A⊗F A′ is c + c′. From the identity

weight(v ⊗ v′) = weight(v) + weight(v′)
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and (5.4) we deduce that

W2k−c−c′(A⊗F A′) =
c⊕

i=0
W2i−c(A)⊗F W2(k−i)−c′(A′) =

c⊕
i=0

Ai ⊗F A′
k−i.

Comparing, we see that (A⊗F A′)k = W2k−c−c′(A⊗F A′), where the weight spaces
of A⊗F A′ correspond to the action

E(v ⊗ v′) = Ev ⊗ v′ + v ⊗ Ev′ = Lv ⊗ v′ + v ⊗ L′v′ = (L⊗ 1 + 1⊗ L′)v ⊗ v′.

Theorem 5.18 gives that L⊗1+1⊗L′ is a strong Lefschetz element on A⊗F A′.

A corollary of Theorem 5.20 is the following
Corollary 5.21 (Tensor product preserves SLPn)
If F is a field of characteristic zero and A, A′ are graded artinian F-algebras which
satisfy SLPn, then A⊗F A′ also satisfies SLPn.

From the above corollary one can easily deduce Stanley’s theorem applying
induction on the embedding dimension n.
Corollary 5.22 (Stanley’s Theorem - second proof)
If F has characteristic 0, then the algebra A = F[x1, . . . , xn]/(xd1

1 , . . . , xdn
n ) =

F[x1]/(xd1
1 )⊗F · · · ⊗F F[xn]/(xdn

n ) satisfies SLP in the narrow sense.
Remark 5.23

(1) While the symmetric unimodality of Hilbert functions is preserved under
taking tensor product, just unimodality is not. For example for

A = F[x, y, z]/(x2, xy, y2, xz, yz, z5)

with Hilbert function 1, 3, 1, 1, 1 we have that the Hilbert function of A⊗FA
is 1, 6, 11, 8, 9, 8, 3, 2, 1.

(2) While the SLPn is preserved under taking tensor product, the SLP (not in
the narrow sense) is not preserved by tensor product. In the example above
A has SLP but since its Hilbert function is not unimodal, A ⊗F A cannot
have the SLP.

The issue in part 2 of the remark is remedied by restricting to Gorenstein
algebras, which have symmetric Hilbert function. Recall that for algebras with
symmetric Hilbert function the SLP is equivalent to SLPn by Proposition 4.23.
Thus we have:
Corollary 5.24 ([25, Theorem 6.1])
If F is a field of characteristic zero and A, A′ are graded artinian Gorenstein
F-algebras which satisfy SLP, then A⊗F A′ also satisfies SLP.

6. Gorenstein rings via Macaulay inverse systems

The description of the dual ring of the polynomial ring in Section 6.1 is taken
from [7]. The material in Section 6.2 follows Eisenbud’s Commutative Algebra
book [8] and Geramita’s lectures [9, Lecture 9]. The material on Hessians in
Section 6.3 follows [25].
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6.1. The graded dual of the polynomial ring

Recall the notion of a dual for an F-vector space:

Definition 6.1
Let V be an F-vector space. Its dual is

V ∗ = HomF(V,F) = {φ : V → F | φ is F− linear},

the vector space of linear functionals on V .

Exercise 6.2
If V is a finite dimensional vector space, there is a natural isomorphism of vector
spaces V ∼= V ∗∗.

We extend this idea to construct duals of rings and modules.

Definition 6.3 (Divided power algebra)
Say R = F[x1, . . . , xn] is the polynomial ring. Let

R∗ := Homgr
F (R,F) =

⊕
i≥0

HomF(Ri,F).

We use a standard shorthand for monomials: if a = (a1, . . . , an) ∈ Zn
≥0, then

xa = xa1
1 · · ·xan

n is the corresponding monomial in R. If xa is in Rd, we write
X [a] for the functional (in R∗

d) on Rd which sends xa to 1 and all other monomials
in Rd to 0. We’ll make the convention from now on to write Xi for the duals
of the elements xi in R∗

1. As a vector space, R∗ is isomorphic to a polynomial
ring in the n variables X1, . . . , Xn. However, as we recall shortly, R∗ has the
multiplicative structure of a divided power algebra. For this reason, we call X [a] a
divided monomial and we write R∗ = F[X1, . . . , Xn]DP .

The ring R acts on R∗ by contraction, which we denote by •. That is, if xa is
a monomial in R and X [b] is a divided monomial in R∗, then

xa •X [b] =
{

X [b−a], if b ≥ a,

0, otherwise.

This action is extended linearly to all of R and R∗. This action of R on R∗ gives
a perfect pairing of vector spaces Rd × R∗

d → F for any degree d ≥ 0. Suppose U
is a subspace of Rd. We define

U⊥ = {g ∈ R∗
d | f • g = 0 for all f ∈ U}.

Macaulay [24] introduced the inverse system of an ideal I of R to be

I−1 := AnnR∗(I) = {g ∈ R∗ | f • g = 0 for all f ∈ I}.

If I is a homogeneous ideal of R then the inverse system I−1 can be constructed
degree by degree using the identification (I−1)d = I⊥

d . We return to this notion
in Definition 6.11.
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A priori, R∗ is simply a graded R-module. However, R∗ can be equipped
with a multiplication which makes it into a ring. Suppose a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Zn

≥0. The multiplication in R∗ is defined on monomials by

X [a]X [b] =
(

a + b
a

)
X [a+b],

where

a! =
N∏

i=0
ai! and

(
a + b

a

)
=

n∏
i=1

(
ai + bi

ai

)
. (6.1)

This multiplication is extended linearly to all of R∗. We see from the above
definition that if a = (a1, . . . , an) then X [a] =

∏n
i=1 X

[ai]
i .

Exercise 6.4
Now set Xa =

∏n
i=1 Xai

i , where the multiplication occurs in the divided power
algebra as defined above. Deduce from the above definition that

Xa = a!X [a]. (6.2)

Remark 6.5
In characteristic zero, a! never vanishes and so, by (6.2), R∗ is generated as an
algebra by X0, . . . , XN , just like the polynomial ring. However, in characteristic
p > 0, R∗ is infinitely generated by all the divided power monomials X

[pki ]
j for all

j = 0, . . . , N and kj ≥ 0. The exercise below justifies this last assertion.

Exercise 6.6
Prove that in characteristic p for any a = (a1, . . . , an) where aj =

∑
aijpi, we

have

X [a] =
n∏

j=1

∏
i

(X [pi]
j )aij .

Hint: Use Lucas’ identity – given base p expansions a =
∑

aip
i and b =

∑
bip

i

for a, b ∈ N, then (
b

a

)
=

∞∏
i=0

(
bi

ai

)
mod p.

We now revisit the characteristic zero case. Suppose F is a field of characteristic
zero and let S = F[X1, . . . , Xn] be a polynomial ring. Consider the action of R on
S by partial differentiation, which we represent by ‘◦’. That is, if a = (a1, . . . , an) ∈
Zn

≥0, xa = xa0
1 · · ·xan

n is a monomial in R, and g ∈ S, we write

xa ◦ g = ∂ag

∂Xa

for the action of xa on g (extended linearly to all of R). In particular, if a ≤ b,
then

xa ◦Xb = b!
(b− a)!X

b−a,
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where we use the conventions in (6.1). This action gives a perfect pairing Rd×Sd →
F, and, given a homogeneous ideal I ⊂ R, we define I⊥

d and I−1 in the same way
as we do for contraction.

Since we are in characteristic zero, the map of rings Φ : S → R∗ defined by
Φ(Xi) = Xi extends to all monomials via (6.2) to give Φ(ya) = Y a = a!Y [a]. Thus
S and R∗ are isomorphic rings in view of Exercise 6.4. Moreover, if F ∈ R and
g ∈ S, then Φ(F ◦ g) = F • Φ(g) [9, Theorem 9.5], so S and R∗ are isomorphic as
R-modules.

6.2. Macaulay inverse systems

Definition 6.7 (Dualizing functor)
Let M be a finitely generated R-module. Define the dual of M to be D(M) =
HomR(M, R∗). Let f : M → N be an R-module homomorphism. Define D(f) to
be the induced R-module homomorphism

D(f) : D(N) = HomR(N, R∗)→ D(M) = HomR(M, R∗)

given by
D(f)(φ) = φ ◦ f.

This makes D into a contravariant functor in the category of finitely generated
R-modules.

Exercise 6.8
Let M be a finitely generated R-module. Recall that we defined D(M)
= HomR(M, R∗). In this exercise we also consider the set M∗ = HomF(M,F)
with its two structures induced from the R-module structure of M by setting

rϕ(x) = ϕ(r · x) for all r ∈ R, x ∈M.

Show that D(M) ∼= HomF(M,F) as R-modules, so an equivalent way to define the
dual module dual to M is M∗ (with its R-module structure).

Hint: Hom-tensor adjointness may come in handy.

We now come to a form of duality that involves the above defined functor.

Theorem 6.9 (Matlis duality)
The functor D induces an anti-equivalence of categories between

{noetherian R-modules} ↔ {artinian R-submodules of R∗}

given by sending M 7→ D(M).

Next we wish to make the meaning of D(M) more concrete in the special case
when M = R/I is a cyclic R-module.

Lemma 6.10
Suppose I is a homogeneous ideal of a polynomial ring R. We compute

D(R/I) = HomR(R/I, R∗) ∼= AnnR∗(I) = (0 :R∗ I)
= {g ∈ R∗ | f • g = 0 for all f ∈ I}.
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Definition 6.11 (Inverse system)
Suppose I is a homogeneous ideal of a polynomial ring R. The inverse system of
I is the vector space

I−1 = {g ∈ R∗ | f • g = 0 for all f ∈ I}.

Remark 6.12
Don’t let the notation deceive you! If I is an ideal of R, it does not mean that I⊥

is an ideal (or R∗-submodule) of R∗. It is just an R-module which happens to be
a subset of R∗.

Example 6.13
Concretely, say

(1) I = (x2, y3) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{XY 2, XY, Y 2, X, Y, 1} = R •XY 2

is the R-submodule of R∗ generated by XY 2.
(2) I = (x2, xy2, y3) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{XY, Y 2, X, Y, 1} = R •XY + R • Y 2

is an R-submodule of R∗ with two generators.

Next, take

Example 6.14
(1) I = (x) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{Y i | i ≥ 0}.

(2) I = (xd) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{XiY j | 0 ≤ i ≤ d− 1, j ≥ 0}
= R∗

0 ⊕R∗
1 ⊕R∗

2 ⊕ · · · ⊕R∗
d−1 ⊕ Y R∗

d−1 ⊕ Y 2R∗
d−1

⊕ · · · ⊕ Y kR∗
d−1 ⊕ · · · .

Both of the above (0 :R∗ I) are non-finitely generated R-modules. Theorem
6.9 shows that this corresponds to R/I not being artinian.

Exercise 6.15
Generalize Example 6.14 to find the inverse system of the ideal defining a point in
projective n-space and the inverse systems of all of the powers of this ideal.

We now wish to study the inverse functor involved in the Matlis duality The-
orem 6.9. In order to do this we define the inverse system of an F-subspace of
R∗.
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Definition 6.16
Let V be an F-vector subspace of the F-algebra R∗. The inverse system of V is

V ⊥ = AnnR(V ) = {f ∈ R | f ◦ v = 0 for all v ∈ V }.

We will be most interested in the case when V = Span{F} is a 1-dimensional
F-vector space and thus

F ⊥ = AnnR(F ) = {f ∈ R | f ◦ F = 0}.

Macaulay inverse system duality is a concrete version of Matlis duality The-
orem 6.9 which can be stated in terms of the inverse systems defined above as
follows:

Theorem 6.17 (Macaulay inverse system duality)
With notation as above, there are bijective correspondence between

{R−modules M ⊆ R∗} ↔ {R/I | I ⊆ R homogeneous ideal}
M 7→ R/ AnnR(M)

I⊥ = D(R/I) 7→R/I.

Furthermore, we have the additional correspondences

(a) M finitely generated ⇐⇒ R/ AnnR(M) artinian,
(b) M = R ◦ F cyclic ⇐⇒ R/ AnnR(F ) artinian Gorenstein

deg(F ) = socle degree of R/ AnnR(F ).

The value of Theorem 6.17 often lies in producing examples of artinian Goren-
stein rings.

Definition 6.18
In view of statement (b) in Theorem 6.17, the polynomial F ∈ R∗ is called a
Macaulay dual generator for R/ AnnR(F ).

Example 6.19
The artinian Gorenstein algebra with Macaulay dual generator

F = X2 + Y 2 + Z2

is the ring of Exercise 6.22,

F[x, y, z]/ AnnF[x,y,z](F ) = F[x, y, z]/(x2 − y2, y2 − z2, xy, xz, yz).

Example 6.20
The artinian Gorenstein algebra with Macaulay dual generator

F = Xd1
1 · · ·Xdn

n

is the monomial complete intersection

F[x1, . . . , xn]/ AnnF[x1,...,xn](F ) = F[x1, . . . , xn]/(xd1+1
1 , . . . , xdn+1

n ).
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Definition 6.21
For a graded module M and an integer d, define M(d) to be the module M with
grading modified such that M(d)i = Md+i.

Exercise 6.22
For any homogeneous polynomial F ∈ R∗ of degree d, prove

(1) AnnR(F )⊥ = R ◦ F . This statement is an instance of Macaulay’s double
annihilator theorem.

(2) the cyclic ring A = R/ AnnR(F ) is artinian Gorenstein if and only if the
function A→ D(A)(−d), a 7→ [b 7→ (ab) ◦ F ] is an isomorphism.

Hint for (1): Start by showing the equality is true in degree d, then use the R-
module structure.
Hint for (2): Use Proposition 3.11. Prove that the function a 7→ (a • F )(0) is
an orientation on A and that A satisfies Poincaré duality with respect to this
orientation.

In view of Exercise 6.22 we can state an alternate definition of graded Gorenstein
rings.

Definition 6.23
An artinian graded ring A is Gorenstein of socle degree d if and only if A ∼=
D(A)(−d) as graded A-modules (degree preserving isomorphism).

6.3. SLP for Gorenstein rings via Hessian matrices

For this section let R = F[x1, . . . , xn] be a polynomial ring and R∗ its graded
dual. We will further assume that char(F) = 0.

In this section we use that R∗ is isomorphic to F[X1, . . . , Xn] with R-action
xi ◦ F = ∂F

∂Xi
. We will use this description for R∗.

Lemma 6.24
Let F ∈ R∗

c and let L = a1x1 + · · ·+ anxn ∈ R1. Then

Lc ◦ F = c! · F (a1, . . . , an).

Proof.

Lc ◦ F =
∑

i1+···+in=c

c!
i1! · · · in!a

i1
1 · · · ain

n xi1
1 · · ·xin

n ◦ F = c! · F (a1, . . . , an).

Definition 6.25 (Higher Hessians)
Let F ∈ R∗ be a homogeneous polynomial and let B = {b1, . . . , bs} ⊆ Rd be a
finite set of homogeneous polynomials of degree d ≥ 0. We call

Hessd
B(F ) = [bibj ◦ F ]1≤i,j≤s and hessd

B(F ) = det Hessd
B(F )

the d-th Hessian matrix and the d-th Hessian determinant of F with respect to
B, respectively.
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Remark 6.26
If B = {x1, . . . xn} then

Hess1
B(F ) = [xixjF ]1≤i,j≤n =

[
∂F

∂Xi∂Xj

]
1≤i,j≤n

is the classical Hessian of F .

Hessians are useful in establishing the SLP for artinian Gorenstein rings.

Theorem 6.27 (Hessian criterion for SLP [25])
Assume F is a field of characteristic zero. Let A be a graded artinian Gorenstein
ring with Macaulay dual generator F ∈ R∗

c . Then A has the SLP if and only if

hessi
Bi

(F ) ̸= 0 for 0 ≤ i ≤ ⌊ c2⌋

where Bi is some (equivalently, any) basis of Ai.

Proof. From the hypothesis and Theorem 6.17 we have that A = R/ AnnR(F ) has
socle degree d = deg(F ).

Since A is Gorenstein, A has symmetric Hilbert function, so by Proposition
4.23 A has SLP if and only if A has SLP in the narrow sense, i.e. there exists
L ∈ A1 such that for any 0 ≤ i ≤ ⌊d

2⌋ the multiplication maps Lc−2i : Ai → Ac−i

are vector space isomorphisms. Say L = a1x1 + · · ·+ anxn.
Recall that the isomorphism A ∼= D(A)(−c) = (R ◦F )(−c), a 7→ a ◦F induces

vector space isomorphisms Ac−i
∼= A∗

i also defined by a 7→ [b 7→ b ◦ (a ◦ F )
= (ba) ◦F ]; see Exercise 6.22. This isomorphism is denoted −◦F in the sequence
displayed below. The composite map

Ti : Ai
×Lc−2i

−→ Ac−i
−◦F−→ A∗

i

is an isomorphism if and only if multiplication by Lc−2i is an isomorphism. Let
Bi be a basis for Ai and let B∗

i be its dual, which is a basis for A∗
i . The matrix

[t(i)
jk ]for Ti with respect to these bases is defined as follows

Ti(bj) =
s∑

k=1
t
(i)
jk b∗

k.

Hence we compute

t
(i)
jk = Ti(bj)(bk) = (Lc−2ibj)∗(bk) = (Lc−2ibjbk) ◦ F = Lc−2i ◦ (bjbk ◦ F ).

Using Lemma 6.24 the formula above becomes

t
(i)
jk = (c− 2i)!(bjbk ◦ F )(a1, . . . , an).

Thus Ti is an isomorphism for some L ∈ R1 if and only if

hessi
Bi

F (a1, . . . , an) = det [bibj ◦ F (a1, . . . , an)]1≤i,j≤s ̸= 0.

Overall the SLP holds if and only if for 0 ≤ i ≤ ⌊ c
2⌋ the hessian determinant

hessi
Bi

F does not vanish identically.
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Example 6.28
Say F = X2 + Y 2 + Z2. Then with respect to the standard monomial basis for
each Ri

hess0(F ) = F,

hess1(F ) = det

2 0 0
0 2 0
0 0 2

 = 8,

hessi(F ) = 0 for i ≥ 2.

This shows the algebra in Exercise 3.13 has SLP in characteristic zero.

Example 6.29 (H. Ikeda [20])
Let G = XY W 3 + X3ZW + Y 3Z2. Then A = R/ AnnR(G) has Hilbert function
(1, 4, 10, 10, 4, 1) and a basis for A1 is B1 = {x, y, z, w} whereas a basis for A2 is
B2 = {x2, xy, xz, xw, y2, yz, yw, z2, zw, w2}. Furthermore

hess0(G) = G,

hess1
B1

(G) = det


6XZW W 3 3X2W 3X2Z + 3Y W 2

W 3 6Y Z2 6Y 2Z 3XW 2

3X2W 6Y 2Z 2Y 3 X3

3X2Z + 3Y W 2 3XW 2 X3 6XY W

 ̸= 0,

hess2
B2

(G) = det



0 0 6 W 6 z 0 0 0 0 6 X 0
0 0 0 0 0 0 0 0 0 6 W

6 W 0 0 6 X 0 0 0 0 0 0
6 Z 0 6 X 0 0 0 6 W 0 0 6 Y
0 0 0 0 0 12 Z 0 12 Y 0 0
0 0 0 0 12 Z 12 Y 0 0 0 0
0 0 0 6 W 0 0 0 0 0 6 X
0 0 0 0 12 Y 0 0 0 0 0

6 X 0 0 0 0 0 0 0 0 0
0 6 W 0 6 Y 0 0 6 X 0 0 0


= 0.

We conclude that the map L : A2 → A3 fails to have maximum rank for all L ∈ A1.
However the map L3 : A1 → A4 does have maximum rank.

Exercise 6.30 (R. Gondim [10])
Let x1, . . . , xn and u1, . . . , um be two sets of indeterminates with n ≥ m ≥ 2. Let
fi ∈ F[x1, . . . , xn]k and gi ∈ F[u1, . . . , um]e for 1 ≤ i ≤ s be linearly independent
forms with 1 ≤ k < e. If s >

(
m−1+k

k

)
, then

F = f1g1 + · · ·+ fsgs

is called a Perazzo form and A = F[x1, . . . , xn, u1, . . . , um] is called a Perazzo
algebra.

(1) Show that hessk(F ) = 0 and so A does not have SLP.
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(2) Make conjectures regarding the Hilbert functions of Perazzo algebras.
(3) Make conjectures regarding the WLP for Perazzo algebras.
(4) Do there exist two Perazzo algebras A and B having the same Hilbert

function so that A has WLP and B does not?

Some answers to (2) and (3) can be found in [1]. Part (4) is an open problem
suggested by Lisa Nicklasson.

Corollary 6.31
Let F ∈ F[X1, . . . , Xn], G ∈ F[Y1, . . . , Ym] be homogeneous polynomials of the same
degree. Then A = F[x1, . . . , xn]/ AnnR(F ) and B = F[y1, . . . , ym]/ AnnR(G) have
SLP if and only if

C = F[x1, . . . , xn, y1, . . . , ym]/ AnnR(F + G) satisfies SLP.

Proof. It turns out that for 1 ≤ i < deg(F ) a basis β of Ci is given by the union
of a basis β′ of Ai and a basis β′′ of Bi (for a proof of this refer to Proposition 7.8
and (7.1)) and hence the hessians of F + G look like

Hessi(F + G) =
[
bibj(F + G)

]
bi,bj∈β

=
[
b′

ib
′
j(F ) 0
0 b′′

i b′′
j (F )

]
b′

i
,b′

j
∈β′,b′′

i
,b′′

j
∈β′′

=
[
Hessi(F ) 0

0 Hessi(G)

]
hessi(F + G) = hessi(F ) hessi(G).

Now we see that hessi(F + G) ̸= 0 if and only if hessi(F ) ̸= 0 and hessi(G) ̸= 0,
which gives the desired conclusion.

We take the preceding example up again in the following section, generalizing
the construction that produces C from A and B in Definition 7.7.

7. Topological ring constructions and the Lefschetz properties

We have seen in Section 2 that the Lefschetz properties emerged from alge-
braic topology. Now we return to this idea implementing some constructions that
originate in topology at the ring level. The material in Section 7.1 is taken from
[18] and the material in Section 7.2 is taken from [19].

7.1. Fiber products and connected sums

We first consider the operation termed connected sum. A connected sum of
manifolds along a disc is obtained by identifying a disk in each (with opposite
orientations). One can more generally take connected sums by identifying two
homeomorphic sub-manifolds, one from each summand. If the cohomology rings
of the two summands are A and B and the cohomology ring of the common
submanifold is T , then it turns out that the cohomology ring of the connected
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sum is A#T B, a ring that we term the connected sum of A and B over T in
Definition 7.7.

To define a connected sum of rings we need a preliminary construction. Recall
that an oriented AG algebra is a pair (A,

∫
A

) with A an AG algebra and
∫

A
an

orientation as in Proposition 3.11. A choice of orientation on A also corresponds
to a choice of Macaulay dual generator.

Exercise 7.1
Every orientation on A can be written as the function

∫
A

: A → K defined by∫
A

g = (g◦F )(0) for some Macaulay dual generator F of A. The notation (g◦F )(0)
refers to evaluating the element g ◦ F of R′ at X1 = · · · = Xn = 0.

Next we discuss how the orientations of two AG algebras relate.

Definition 7.2 (Thom class)
Let (A,

∫
A

) and (T,
∫

T
) be two oriented AG K-algebras with socle degree d for

A and k for T , respectively, with d ≥ k. Let π : A → T be a graded map. By
[18, Lemma 2.1], there exists a unique homogeneous element τA ∈ Ad−k such that∫

A
(τAa) =

∫
T

(π(a)) for all a ∈ A ; we call it the Thom class for π : A→ T .

Note that the Thom class for π : A→ T depends not only on the map π, but
also on the orientations chosen for A and T .

Example 7.3
Let (A,

∫
A

) be an oriented AG K-algebra with socle degree d. Consider (K,
∫

K
)

where fK : K → K is the identity map. Then the Thom class for the canonical
projection π : A→ K is the unique element asoc ∈ Ad such that

∫
A

asoc = 1.

Exercise 7.4
Given a homomorphism π : A→ T of AG algebras having dual generators F, H of
degrees d and k, respectively, with d ≥ k, show that the Thom class of Definition
7.2 is the unique element τ of Ad−k such that τ ◦ F = H.

Definition 7.5
Given graded F-algebras A, B, and T , and graded F-algebra maps πA : A → T
and πB : B → T , the fiber product of A and B over T (with respect to πA and πB)
is the graded F-subalgebra of A⊕B,

A×T B = {(a, b) ∈ A⊕B | πA(a) = πB(b)} .

Let ρ1 : A×T B → A and ρ2 : A×T B → B be the natural projection maps. It
is well known that fiber products are pullbacks in the category of F algebras and
hence they satisfy the following universal property.

Lemma 7.6
The fiber product A×T B satisfies the following universal property: If C is another
F-algebra with maps ϕ1 : C → A and ϕ2 : C → B such that πA ◦ϕ1(c) = πB ◦ϕ2(c)
for all c ∈ C, then there is a unique F-algebra homomorphism Φ: C → A ×T B
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which makes the diagram below commute:

C

Φ

##

ϕ1

!!

ϕ2

%%

A×T B
ρ1
//

ρ2

��

A

πA

��

B
πB

// T.

By [18, Lemma 3.7] the fiber product is characterized by the following exact
sequence of vector spaces:

0→ A×T B → A⊕B
πA−πB−−−−−→ T → 0, (7.1)

whence the Hilbert function of the fiber product satisfies

HA×T B = HA + HB −HT .

Henceforth we assume that πA(τA) = πB(τB), so that (τA, τB) ∈ A×T B.

Definition 7.7
The connected sum of the oriented AG K-algebras A and B over T is the quotient
ring of the fiber product

A×T B := {(a, b) ∈ A⊕B | πA(a) = πB(b)}

by the principal ideal generated by the pair of Thom classes (τA, τB), i.e.

A#T B = (A×T B)/⟨(τA, τB)⟩.

By [18, Lemma 3.7] the connected sum is characterized by the following exact
sequence of vector spaces:

0→ T (k − d)→ A×T B → A#T B → 0.

Therefore, the Hilbert series of the connected sum satisfies

HFA#T B(t) = HFA(t) + HFB(t)− (1 + td−k)HFT (t). (7.2)

When T = F we have an easy description of the fiber product and connected
sum.

Proposition 7.8
Let R = F[x1, . . . , xn], R′ = F[y1, . . . , ym] be polynomial rings. Let

(
A = R/I,

∫
A

)
and

(
B = R′/I ′,

∫
B

)
be oriented AG algebras each with socle degree d, and let

πA : A → F and πB : B → F be the natural projection maps with Thom classes
τA ∈ Ad and τB ∈ Bd. Then the fiber product A×F B has a presentation

A×F B ∼=
F[x1, . . . , xn, y1, . . . , ym]

(xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m) + I + I ′
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and the connected sum A#FB has a presentation

A#FB ∼=
F[x1, . . . , xn, y1, . . . , ym]

(xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m) + I + I ′ + (τA + τB) .

In particular, if A and B are standard graded then so are A×F B and A#FB.

Example 7.9 (Standard graded fiber product and connected sum)
Let A = F[x, y]/(x2, y4) and B = F[u, v]/(u3, v3) each with the standard grading
deg(x) = deg(y) = deg(u) = deg(v) = 1. Let T = F[z]/(z2), and define maps
πA : A → T , πA(x) = z, πA(y) = 0 and πB : B → T , πB(u) = z, πB(v) = 0.
Then the fiber product A×T B is generated as an algebra by elements z1 = (y, 0),
z2 = (x, u), and z3 = (0, v), all having degree one. One can check that it has the
following presentation:

A×T B = F[z1, z2, z3]
⟨z4

1 , z3
2 , z3

3 , z1z3, z1z2
2⟩

. (7.3)

The Hilbert function of the fiber product is

H(A×T B) =(1, 3, 5, 4, 2)
=(1, 2, 2, 2, 1) + (1, 2, 3, 2, 1)− (1, 1, 0, 0, 0)
=H(A) + H(B)−H(T ).

Fix orientations on A, B, and T by
∫

A
: xy3 7→ 1,

∫
B

: u2v2 7→ 1, and
∫

T
: z 7→

1, respectively. Then the Thom classes for πA : A → T and πB : B → T are,
respectively, τA = y3, τB = uv2. Note that πA(τA) = 0 = πB(τB), hence (τA, τB) ∈
A×T B, and in terms of (7.3) we have (τA, τB) = z3

1 + z2z2
3 . Therefore we see that

A#T B = F[z1, z2, z3]
⟨z4

1 , z3
2 , z3

3 , z1z3, z1z2
2 , z3

1 + z2z2
3⟩

.

The Hilbert function of the connected sum is

H(A#T B) =(1, 3, 5, 3, 1)
=(1, 2, 2, 2, 1) + (1, 2, 3, 2, 1)− (1, 1, 0, 0, 0)− (0, 0, 0, 1, 1)
=H(A) + H(B)−H(T )−H(T )[3],

where H(T )[3] is the Hilbert function of T (−3).

However, if T ̸= F the presentation of the connected sum and fiber product
can be complicated and they need not be standard graded.

Example 7.10 (Non-standard graded fiber product and connected sum)
Let

A = F[x]/(x4), B = F[u, v]/(u3, v2), T = F[z]/(z2),

have Hilbert functions H(A) = (1, 1, 1, 1) and H(B) = (1, 2, 2, 1). Define maps
πA : A→ T , πA(x) = z and πB : B → T , πB(u) = z, πB(v) = 0. Then the fibered
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product has the presentation

A×T B = F[z1, z2, z3]
(z4

1 , z2
2 , z2

3 , z1z3, z2
1z2 − z2z3) , where


z1 = (x, u),
z2 = (0, v),
z3 = (0, u2).

Here z1, z2 have degree one, and z3 has degree two. We then have a presentation
for the connected sum C = A#T B = A×T B/(τ), whence

A#T B ∼=
F[z1, z2, z3]

(z4
1 , z2

2 , z2
3 , z1z3, z2

1z2 − z2z3, (z2
1 − z3) + z1z2)

∼=
F[z1, z2]

(z3
1 + z2

1z2, z2
2) .

It has Hilbert function H(C) = (1, 2, 2, 1) = H(A) + H(B) −H(T ) −H(T )[1] as
in (7.2). It is interesting to note that the connected sum A#T B has a standard
grading whereas the fibered product A×T B does not.

Finally, we have the following result which shows how the Lefschetz proper-
ties of the components influence the Lefschetz property of the fiber product and
connected sum.

Theorem 7.11
(1) If A and B are artinian Gorenstein algebras of the same socle degree that

each have the SLP, then the fiber product D = A ×F B over a field F also
has the SLP. If A and B have the standard grading, then the converse holds
as well.

(2) If A and B both have the SLP, then the connected sum C = A#FB over a
field F also has the SLP. If A and B have the standard grading, then the
converse holds as well.

(3) Let A, T be artinian Gorenstein algebras with socle degrees d, k respectively
and let πA : A→ T be a surjective ring homomorphism such that its Thom
class τA satisfies πA(τA) = 0. Let x be an indeterminate of degree one, set
B = T [x]/(xd−k+1), and define πB : B → T to be the natural projection map
satisfying πB(t) = t and πB(x) = 0. In this setup, if A and T both satisfy
the SLP, then the fiber product A ×T B also satisfies the SLP. Moreover
if the field F is algebraically closed, then the connected sum A#T B also
satisfies the SLP.

(4) Let A and B be standard graded artinian Gorenstein algebras of socle degree
d satisfying the SLP, and let T be a graded artinian Gorenstein algebra of
socle degree k, with k < ⌊d−1

2 ⌋, endowed with surjective F-algebra homo-
morphisms πA : A → T and πB : B → T . Then the resulting fiber product
A×T B and the connected sum A#T B both satisfy the WLP.

Example 7.12
Take

F = XY (XZ − Y T ) ∈ K[X, Y, Z, T ]
and set A = K[x, y, z, t]/ Ann(F ). Then

Ann(F ) = (zt, xz + yt, x2t, y2z, x2y2, x3, y3, z2, t2),
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A is a connected sum

A = K[x, y, z]/ Ann(X2Y Z)#K[x,y]/ Ann(XY )K[x, y, t]/ Ann(XY 2T ),

and the Hilbert function of A is (1, 4, 6, 4, 1). By Theorem 7.11 (4), since the sum-
mands of A are monomial complete intersections, A has WLP if the characteristic
of F is 0.

Example 7.13 ([2])
Take

F = X3Y Z −XY 3T = XY (X2Z − Y 2T ) ∈ K[X, Y, Z, T ]

and set A = K[x, y, z, t]/ Ann(F ). Then

Ann(F ) = (z2, t2, tz, x2t, y2z, x2z + y2t, y4, x2y2, x4),

A is a connected sum

A = K[x, y, z]/ Ann(X3Y Z)#K[x,y]/ Ann(XY )K[x, y, t]/ Ann(XY 3T ),

and the Hilbert function of A is (1, 4, 7, 7, 4, 1).
The Hessian matrix of F of order two is of the following form

Hess2(F ) = 6



0 y x z 0 0 0
y 0 0 x 0 0 0
x 0 0 0 0 0 0
z x 0 0 0 −y −t
0 0 0 0 0 0 −y
0 0 0 −y 0 0 −x
0 0 0 −t −y −x 0


and it has vanishing determinant. According to the Hessian criteria Theorem 6.27
A does not have WLP because in this case the second Hessian corresponds to the
multiplication map from degree 2 to degree 3. Note that the socle degrees don’t
satisfy the condition in Theorem 7.11 since 2 = k = ⌊d−1

2 ⌋ = 5−1
2 .

7.2. Cohomological blowups

The second construction is inspired by the geometric operation of blowing up
a smooth projective algebraic variety. The blow-up of such a space at a point
replaces the point with the set of all directions through the point, that is, a pro-
jective space. More generally one can blow up a subset and replace it with another
space called an exceptional divisor. The cohomology ring of the blow-up can be
determined based on the cohomology ring of the original variety (called A below),
that of the subvariety being blown up (called T below) and the way the latter sits
inside the former, specifically captured via the cohomology class of the normal
bundle of the subvariety, encoded via a polynomial fA(ξ) below.

We now explain the algebraic construction for the cohomology ring of a blowup.
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Definition 7.14 (Cohomological Blow-Up)
For oriented artinian Gorenstein algebras A and T of socle degrees d > k, respec-
tively, and surjective degree-preserving algebra map π : A → T with Thom class
τ ∈ An where n = d−k, set K = Ker(π). Given a homogeneous monic polynomial
fA(ξ) = ξn + a1ξn−1 + · · · + an ∈ A[ξ] of degree n with homogeneous elements
ai ∈ Ai for 1 ≤ i ≤ n and with an = λ · τ for some non-zero constant λ, we call
the artinian Gorenstein algebra Ã below a cohomological blow up of A along π or
BUG for short

Ã = A[ξ]
(ξ ·K, ξn + a1ξn−1 + · · ·+ λ · τ︸ ︷︷ ︸

fA(ξ)

)
.

Setting ti = π(ai) for 1 ≤ i ≤ n− 1, the AG algebra

T̃ = T [ξ]
(ξn + t1ξn−1 + · · ·+ λ · π(τ))︸ ︷︷ ︸

fT (ξ)

is called the exceptional divisor of T with parameters (t1, . . . , tn−1, λ). These al-
gebras fit in the following commutative diagram, where we refer to A as the coho-
mological blow down of Ã along π̂.

A //

π

��

Ã

π̂

��

T // T̃ .

Since T̃ is a quotient of a 1-dimensional Gorenstein ring by a non zero-divisor,
it is clear that T̃ is artinian Gorenstein. It is shown in [19] that the condition
that the last term of fA(ξ) be a scalar multiple of the Thom class τ is precisely
equivalent to Ã being AG.

Example 7.15
Let

A = F[x, y]
(x3, y3)

π→ T = F[x, y]
(x2, y) ,

where π(x) = x and π(y) = 0. Note K = Ker(π) = (x2, y). Orient A and T
with socle generators asoc = x2y2 and tsoc = x; then the Thom class of π is
τ = xy2 ∈ A3. Set fT (ξ) = ξ3 +xξ2 ∈ T [ξ] and let T̃ be the associated exceptional
divisor algebra:

T̃ = T [ξ]
(fT (ξ)) = F[x, y, ξ]

(x2, y, ξ3 + xξ2) .

Consider fA(ξ) = ξ3 + xξ2 + xy2 ∈ A[ξ]. This gives rise to the BUG

Ã = A[ξ]
(ξ ·K, fA(ξ)) = F[x, y, ξ]

(x3, y3, x2ξ, yξ, ξ3 + xξ2 + xy2)
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which has basis {
1, x, y, ξ, x2, xy, y2, xξ, ξ2, x2y, xy2, xξ2, x2y2}

and Hilbert function H(Ã) = (1, 3, 5, 3, 1). Here the socle of Ã is generated by
ãsoc = asoc = x2y2, hence Ã is Gorenstein, as expected.

We are now ready to discuss the Lefschetz properties for cohomological blow-
up algebras.

Theorem 7.16 ([19, Theorem 8.5])
Let F be an infinite field and let π : A → T be a surjective homomorphism of
graded AG F-algebras of socle degrees d > k respectively such that both A and T
have SLP. Assume that characteristic F is zero or characteristic F is p > d. Then
every cohomological blow-up algebra of A along T satisfies SLP.

The following example shows that the converse of Theorem 7.16 is not true: if
the cohomological blowup Ã has SLP it does not follow that A has SLP. In other
words, while the process of blowing up preserves SLP, the process of blowing down
does not preserve SLP, nor even WLP.

Example 7.17
As in Exercise 6.30, the following example, originally due to U. Perazzo [28], but re-
examined more recently by R. Gondim and F. Russo [11], is an artinian Gorenstein
algebra with unimodal Hilbert function which does not have SLP or WLP:

A = F[x, y, z, u, v]
Ann(XU2 + Y UV + ZV 2)

= F[x, y, z, u, v]
(x2, xy, y2, xz, yz, z2, u3, u2v, uv2, v3, xv, zu, xu− yv, zv − yu) .

Taking the quotient T of A given by the Thom class τ = u2 yields

T = F[x, y, z, u, v]
Ann(X) = F[x, y, z, u, v]

(x2, y, z, u, v)
∼=

F[x]
(x2) .

Fix a parameter λ ∈ F and define polynomials fT (ξ) ∈ T [ξ] and fA(ξ) ∈ A[ξ] by

fT (ξ) = ξ2 − λxξ and fA(ξ) = ξ2 − λxξ + u2.

Denoting the ideal of relations of A by I we obtain the cohomological blowup

Ã = F[x, y, z, u, v, ξ]
I + ξ(y, z, u, v) + (fA(ξ)) ,

which has Hilbert function H(Ã) = H(A) + H(T )[1] = (1, 6, 6, 1). Fix F-bases

Ã1 = spanF{x, y, z, u, v, ξ} and Ã2 = spanF{u2, uv, v2, yv, yu,−xξ}

and let ℓ ∈ Ã1 be a general linear form

ℓ = ax + by + cz + du + ev + fξ.



Lefschetz properties through a topological lens [45]

Then the matrix for the Lefschetz map ×ℓ : Ã1 → Ã2 and its determinant are
given by

M =


0 0 0 d 0 −f
0 0 0 e d 0
0 0 0 0 e 0
d e 0 a b 0
0 d e b c 0
−f 0 0 0 0 −(a + λf)

⇒ det(M) = f2e4.

Thus ℓ is a strong Lefschetz element for Ã if and only if e · f ̸= 0. In particular Ã
satisfies SLP and also WLP.

Surprisingly, the analogous result to Theorem 7.16 does not hold for the weak
Lefschetz property. We now give an example illustrating that blowing up does not
preserve WLP.

Exercise 7.18
Consider the following algebra

A = F[x, y, z, u, v]
Ann(XU6 + Y U4V 2 + ZU5V )

= F[x, y, z, u, v]
(yz, xz, xy, vy − uz, vx, ux− vz, u5y, u5v2, u6v, u7, v3, x2, y2, z2)

and its quotient corresponding to the Thom class τ = u3,

T = F[x, y, z, u, v]
Ann(XU3 + Y UV 2 + ZU2V )

= F[x, y, z, u, v]
(z2, yz, xz, y2, xy, vy − uz, x2, vx, ux− vz, u2y, v3, u2v2, u3v, u4) .

Consider also the cohomological blowup

Ã = F[x, y, z, u, v, ξ]
I + ξ ·K + (ξ3 − u3) , where K = Ker(A ↠ T ).

(1) Compute the Hilbert functions of A and T respectively.
(2) Show that both A and T satisfy WLP, but not SLP.
(3) Show that the BUG Ã does not satisfy WLP.

In Exercise 7.18 the Thom class of the map A → T has degree 3. This is the
minimal possible value for such an example based on the following result.

Theorem 7.19 ([19, Theorem 8.9])
Let F be an infinite field and let π : A → T be a surjective homomorphism of
graded AG F-algebras such that the difference between the socle degrees of A and
T is at most 2 and A and T both satisfy WLP. Then every cohomological blow-up
algebra of A along π satisfies WLP.
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