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Abstract. This article presents a unified framework that extends the scope of
two existing theorems on multivariate Hardy-Hilbert-type integral inequal-
ities. Key to this extension is the use of two additional adjustable param-
eters that increase flexibility and generality. The framework also has the
originality of including the incomplete lower gamma function in the inte-
gral definitions governed by a parameter. Detailed proofs are given, mainly
based on the Laplace transform, the generalized Young inequality, the gener-
alized Hölder integral inequality and changes of variables. This article thus
provides a new comprehensive foundation for future research in generalized
multivariate integral inequalities.

1. Introduction

A classic bivariate result in analysis is the Hardy-Hilbert integral inequality. It
provides a sharp upper bound for a double integral with integrands that depend on
two functions through a particular ratio product form. The upper bound is defined
by the multiplication of a constant and the norms of the two functions. A possible
statement of this inequality is given below. Let p, q > 1 such that 1/p+1/q = 1 and
f, g : (0, +∞) → (0, +∞) be two functions under some integrability assumptions.
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Then the following applies:∫
(0,+∞)2

f(t1)g(t2)
t1 + t2

dt1dt2

≤
[

π

sin(π/p)

][ ∫
(0,+∞)

fp(t)dt

]1/p[ ∫
(0,+∞)

gq(t)dt

]1/q

,

(1.1)

provided that all the integrals involved converge. The classical Hilbert integral
inequality corresponds to the special case p = 2, with the peculiarity of having
π as a constant factor. See [6, 24]. In the context of bivariate analysis, the
Hardy-Hilbert (or Hilbert) integral inequality has provided the basis for numerous
variants. A selection of key references on this topic are [1, 2, 5, 10, 12, 17, 19, 20,
21, 22, 23, 25, 26, 27]. Among them, we emphasize the variant in [12], which is
related to the main result of this study. Let p, q > 1 such that 1/p + 1/q = 1,
α > max(p − 1, q − 1) and f, g : (0, +∞) → (0, +∞) be two functions under some
integrability assumptions. Then the following applies:∫

(0,+∞)2

f(t1)g(t2)
(t1 + t2)α

dt1dt2 ≤ 1
Γ(α)

[
Γ(α − p + 1)

p

∫
(0,+∞)

tp−α−1fp(t)dt

+ Γ(α − q + 1)
q

∫
(0,+∞)

tq−α−1gq(t)dt

]1/q

,

(1.2)

where Γ(ϵ) =
∫

(0,+∞) tϵ−1e−tdt with ϵ > 0 denotes the standard gamma function,
provided that all the integrals involved converge. The originality of this result lies
in the presence of the adjustable parameter α, the sum integral expression of the
upper bound, and the consideration of special weighted integral norms of f and g.
It is extended to the multivariate case in [12]. Other multivariate variants of the
Hardy-Hilbert integral inequality can be found in [4, 7, 8, 9, 11, 13, 14, 15, 28, 29,
30].

For the purposes of this article, we present two such multivariate variants,
which are [12, Theorem 3] and [13, Theorem 2]. Possible statements are presented
below.

Theorem 1.1 ([12, Theorem 3])
Let n ∈ N\{0}, p1, . . . , pn be such that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1,

α > maxi=1,...,n(pi − 1) and f1, . . . , fn : (0, +∞) → (0, +∞) be n functions under
some integrability assumptions. Then the following applies:

∫
(0,+∞)n

∏n
i=1 fi(ti)

(
∑n

i=1 ti)α

n∏
i=1

dti ≤ 1
Γ(α)

n∑
i=1

Γ(α − pi + 1)
pi

∫
(0,+∞)

tpi−α−1fpi

i (t)dt,

provided that all the integrals involved converge. If we set n = 2, then it is reduced
to the inequality in (1.2).



A general Hardy-Hilbert-type integral inequality theorem [7]

Theorem 1.2 ([13, Theorem 2])
Let n ∈ N\{0}, p1, . . . , pn be such that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1,

α > max [0, n(1 − 2/ maxi=1,...,n pi) + 1] and f1, . . . , fn : (0, +∞) → (0, +∞) be n
functions under some integrability assumptions. Then the following applies:∫

(0,+∞)n

∏n
i=1 fi(ti)

(
∑n

i=1 ti)α

n∏
i=1

dti ≤ 1
Γ(α)

n∏
i=1

[
Γ

((
α − 1

n
− 1

)
pi + 2

)]1/pi

×
[ ∫

(0,+∞)
t[1−(α−1)/n]pi−2fpi

i (t)dt

]1/pi

,

provided that all the integrals involved converge. If we set n = 2 and α = 1, then
we get the classical Hardy-Hilbert integral inequality, as presented in (1.1).

These results are particularly interesting because they include several Hardy-
Hilbert-type integral inequalities found in the literature. They are very flexible
due to the presence of the adjustable parameter α and the n functions f1, . . . , fn.
Furthermore, they allow for n dimensions, which are often encountered in multi-
variate analysis and related applications.

In this article, we make some contributions to Theorem 1.1 and Theorem 1.2.
Specifically, we first propose an unified framework in the form of a single theorem
that extends the scope of these two results. This is done by introducing two
additional adjustable parameters, thus achieving a higher degree of flexibility. A
notable consequence of these extensions is the inclusion of the incomplete lower
gamma function in the definition of the integrals involved. One of the parameters
also modulates this particular function through a direct mathematical link. The
tunable effect of the incomplete lower gamma function is an important innovative
aspect of our extensions. The proof makes use of the generalized Young inequality,
the generalized Hölder integral inequality, the Laplace transform, suitable changes
of variables, and technical manipulations of the incomplete lower gamma function.
This result is then complemented by another theorem, which can be seen as a
functional generalization. Again for the sake of clarity and completeness, a detailed
proof is given. It is mainly based on the first theorem and suitable changes of
variables. We thus provide a comprehensive framework for generalizing existing
multivariate integral inequalities, which may inspire future studies in this area.

The rest of the article consists of three sections: Section 2 presents the main
results, along with some discussion. Section 3 is devoted to the corresponding
proofs. A conclusion is given in Section 4.

2. Results

2.1. Main theorem

The main theorem of the article is given in the statement below.
Theorem 2.1
Let n ∈ N\{0}, p1, . . . , pn be such that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1, β ≥

0, θ > 0 or "θ = +∞", and f1, . . . , fn : (0, +∞) → (0, +∞) be n functions under
some integrability assumptions (clarification of this aspect is described below).
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(a) Let α such that α > maxi=1,...,n(pi − 1). Then the following applies:∫
(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti

≤
n∑

i=1

1
pi

∫
(0,+∞)

(β + t)pi−α−1fpi

i (t)γ (α − pi + 1, θ(β + t)) dt,

(2.1)

where γ(ϵ, ζ) =
∫ ζ

0 tϵ−1e−tdt with ϵ > 0 and ζ > 0 denotes the standard
lower incomplete gamma function, provided that all the integrals involved
converge.

(b) Let α such that α > max [0, n(1 − 2/ maxi=1,...,n pi) + 1]. Then the follow-
ing applies:∫

(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti

≤
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + t

)[1−(α−1)/n]pi−2
fpi

i (t) (2.2)

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + t

))
dt

]1/pi

,

provided that all the integrals involved converge.

The proof of this theorem is given in detail in Section 3. The main novelty
is the introduction of two adjustable parameters, β and θ, and the inclusion of
the incomplete lower gamma function in the integrals involved. This gives the
theorem a high degree of flexibility, in contrast to most multivariate Hardy-Hilbert-
type integral inequalities in the literature. More essentially, as explained in the
introduction, it has the property of unifying [12, Theorem 3] and [13, Theorem 2].
Indeed, if we take β = 0 and "θ = +∞", we have

γ

(
α, θ

(
β +

n∑
i=1

ti

))
= Γ(α), β + t = t, β +

n∑
i=1

ti =
n∑

i=1
ti,

and, for any i = 1, . . . , n,

γ(α − pi + 1, θ(β + t)) = Γ(α − pi + 1),

γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + t

))
= Γ

((α − 1
n

− 1
)

pi + 2
)

and
β

n
pi + t = t.
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It follows from Theorem 2.1 that

− if α such that α > maxi=1,...,n(pi − 1),

∫
(0,+∞)n

∏n
i=1 fi(ti)

(
∑n

i=1 ti)α

n∏
i=1

dti

≤ 1
Γ(α)

n∑
i=1

1
pi

∫
(0,+∞)

tpi−α−1fpi

i (t)Γ(α − pi + 1)dt

= 1
Γ(α)

n∑
i=1

Γ(α − pi + 1)
pi

∫
(0,+∞)

tpi−α−1fpi

i (t)dt,

provided that all the integrals involved converge, which corresponds to the
inequality in [12, Theorem 3],

− if α > max[0, n(1 − 2/ maxi=1,...,n pi) + 1],

∫
(0,+∞)n

∏n
i=1 fi(ti)

(
∑n

i=1 ti)α

n∏
i=1

dti

≤ 1
Γ(α)

n∏
i=1

[ ∫
(0,+∞)

t[1−(α−1)/n]pi−2fpi

i (t)Γ
((α − 1

n
− 1

)
pi + 2

)
dt

]1/pi

= 1
Γ(α)

n∏
i=1

[
Γ

((α − 1
n

− 1
)

pi + 2
)]1/pi

×
[ ∫

(0,+∞)
t[1−(α−1)/n]pi−2fpi

i (t)dt

]1/pi

,

provided that all the integrals involved converge, which corresponds to the
inequality in [13, Theorem 2].

2.2. A functional generalization

With little effort, Theorem 2.1 can be extended to a broader framework. To
support this claim, a functional generalization is proposed in the theorem below.

Theorem 2.2
Let a ∈ R or "a = −∞", b ∈ R or "b = +∞" with b > a, n ∈ N\{0},
p1, . . . , pn be such that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1, β ≥ 0, θ > 0

or "θ = +∞", f1, . . . , fn : (a, b) → (0, +∞) be n functions and g1, . . . , gn : (a, b) →
(0, +∞) be n differentiable non-decreasing functions such that, for any i = 1, . . . , n,
limt→a gi(t) = 0 and limt→b gi(t) = +∞, under some integrability assumptions
(clarification of this aspect is described below).
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(a) Let α such that α > maxi=1,...,n(pi − 1). Then the following applies:

∫
(a,b)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 gi(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

gi(ti)
]) n∏

i=1
dti

≤
n∑

i=1

1
pi

∫
(a,b)

[β + gi(t)]pi−α−1 fpi

i (t)
[g′

i(t)]pi−1 (2.3)

× γ(α − pi + 1, θ[β + gi(t)])dt,

where γ(ϵ, ζ) =
∫ ζ

0 tϵ−1e−tdt with ϵ > 0 and ζ > 0 denotes the standard
lower incomplete gamma function, provided that all the integrals involved
converge.

(b) Let α such that α > max [0, n(1 − 2/ maxi=1,...,n pi) + 1]. Then the follow-
ing applies:

∫
(a,b)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 gi(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

gi(ti)
]) n∏

i=1
dti

≤
n∏

i=1

[ ∫
(a,b)

[β

n
pi + gi(t)

][1−(α−1)/n]pi−2 fpi

i (t)
[g′

i(t)]pi−1 (2.4)

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi + gi(t)

])
dt

]1/pi

,

provided that all the integrals involved converge.

The proof of this theorem is given in detail in Section 3. It is mainly based on
Theorem 2.1 and appropriate changes of variables. Obviously, taking gi(t) = t for
any i = 1, . . . n, Theorem 2.2 reduces to Theorem 2.1.

Three examples of applications of Theorem 2.2 are given below.

(1) If we take a = 1, "b = +∞", g1, . . . , gn : (1, +∞) → (0, +∞) defined by
gi(x) = log(x) for any i = 1, . . . , n and α such that α > maxi=1,...,n(pi −1),
then we have∫

(1,+∞)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 log(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

log(ti)
]) n∏

i=1
dti

≤
n∑

i=1

1
pi

∫
(1,+∞)

[β + log(t)]pi−α−1tpi−1fpi

i (t)

× γ (α − pi + 1, θ[β + log(t)]) dt,

provided that all the integrals involved converge.
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In addition, for α such that α > max[0, n(1 − 2/ maxi=1,...,n pi) + 1], we
have ∫

(1,+∞)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 log(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

log(ti)
]) n∏

i=1
dti

≤
n∏

i=1

[ ∫
(1,+∞)

[β

n
pi + log(t)

][1−(α−1)/n]pi−2
tpi−1fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi + log(t)

])
dt

]1/pi

,

provided that all the integrals involved converge.
(2) If we take "a = −∞", "b = +∞", g1, . . . , gn : R → (0, +∞) defined by

gi(x) = ex for any i = 1, . . . , n and α such that α > maxi=1,...,n(pi − 1),
then we have∫

Rn

∏n
i=1 fi(ti)

(β +
∑n

i=1 eti)α
γ

(
α, θ

(
β +

n∑
i=1

eti

)) n∏
i=1

dti

≤
n∑

i=1

1
pi

∫
R
(β + et)pi−α−1et(1−pi)fpi

i (t)γ(α − pi + 1, θ(β + et))dt,

provided that all the integrals involved converge.
In addition, for α such that α > max [0, n(1 − 2/ maxi=1,...,n pi) + 1], we

have ∫
Rn

∏n
i=1 fi(ti)

(β +
∑n

i=1 eti))α
γ

(
α, θ

(
β +

n∑
i=1

eti

)) n∏
i=1

dti

≤
n∏

i=1

[ ∫
R

(β

n
pi + et

)[1−(α−1)/n]pi−2
et(1−pi)fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + et

))
dt

]1/pi

,

provided that all the integrals involved converge.
(3) If we take a = 0, b = 1, g1, . . . , gn : (0, 1) → (0, +∞) defined by gi(x) =

−1/ log(x) for any i = 1, . . . , n and α such that α > maxi=1,...,n(pi − 1),
then we have∫

(0,1)n

∏n
i=1 fi(ti)

[β −
∑n

i=1 1/ log(ti)]α
γ

(
α, θ

[
β −

n∑
i=1

1
log(ti)

]) n∏
i=1

dti

≤
n∑

i=1

1
pi

∫
(0,1)

[
β − 1

log(t)

]pi−α−1
tpi−1 log2(pi−1)(t)fpi

i (t)

× γ
(

α − pi + 1, θ
[
β − 1

log(t)

])
dt,



[12] Christophe Chesneau

provided that all the integrals involved converge.
In addition, for α such that α > max [0, n(1 − 2/ maxi=1,...,n pi) + 1], we

have∫
(0,1)n

∏n
i=1 fi(ti)

[β −
∑n

i=1 1/ log(ti)]α
γ

(
α, θ

[
β −

n∑
i=1

1
log(ti)

]) n∏
i=1

dti

≤
n∏

i=1

[ ∫
(0,1)

[β

n
pi − 1

log(t)

][1−(α−1)/n]pi−2
tpi−1 log2(pi−1)(t)fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi − 1

log(t)

])
dt

]1/pi

,

provided that all the integrals involved converge.
More complex examples can be presented similarly, varying the natures of the
functions g1, . . . , gn.

The rest of the article is devoted to the proof of the two theorems.

3. Proofs of Theorems 2.1 and 2.2

Before developing the proofs, two technical lemmas must be presented. These
are the subject of the next subsection.

3.1. Two key lemmas

The lemma below can be seen as a generalization of the standard Young in-
equality.
Lemma 3.1 ([12, Lemma 2])
Let n ∈ N\{0}, a1, . . . , an be such that mini=1,...,n ai ≥ 0 and p1, . . . , pn be such
that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1. Then the following applies:

n∏
i=1

ai ≤
n∑

i=1

1
pi

api

i .

The proof proposed in [12] is by induction.
The lemma below is a possible statement of the generalized Hölder integral

inequality.
Lemma 3.2
Let n ∈ N\{0}, p1, . . . , pn be such that mini=1,...,n pi > 1 and

∑n
i=1(1/pi) = 1,

θ > 0 or "θ = +∞", and h1, . . . , hn : (0, θ) → (0, +∞) be n functions. Then the
following applies: ∫

(0,θ)

[ n∏
i=1

hi(s)
]
ds ≤

n∏
i=1

[ ∫
(0,θ)

hpi

i (s)ds

]1/pi

,

provided that all the integrals involved converge.
The historical facts and technical details of the generalized Hölder integral

inequality can be found in [3, 16].
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3.2. Proof of Theorem 2.1

The proofs of the two points have the same mathematical basis. They use
ingredients similar to those in the proofs of [12, Theorem 3] and [13, Theorem 2],
but with more theoretical developments to consider a bounded integration interval
depending on θ, i.e. (0, θ), and the parameter β.

First, let us introduce the notion of Laplace transform. For a given function
h : (0, +∞) → (0, +∞), we define the Laplace transform of h by

L(h)(s) =
∫

(0,+∞)
h(t)e−stdt

with s > 0. See [18].
Based on this, the key term of the proof of Theorem 2.1 is defined by

Υ =
∫

(0,θ)
sα−1e−βs

[ n∏
i=1

L(fi)(s)
]
ds. (3.1)

We will show that Υ is in fact equal to the common left term in equations (2.1)
and (2.2), and we will majorize it in two different ways, distinguishing the points
(a) and (b), respectively.

Using standard integral developments, we can express Υ as

Υ =
∫

(0,θ)
sα−1e−βs

[ n∏
i=1

∫
(0,+∞)

fi(t)e−stdt

]
ds

=
∫

(0,θ)
sα−1e−βs

[ n∏
i=1

∫
(0,+∞)

fi(ti)e−stidti

]
ds (3.2)

=
∫

(0,θ)

∫
(0,+∞)n

sα−1e−s(β+
∑n

i=1
ti)

[ n∏
i=1

fi(ti)
]( n∏

i=1
dti

)
ds.

Changing the order of integration by the Fubini-Tonell integral theorem (the inte-
grand is non-negative), applying the change of variables u = s (β +

∑n
i=1 ti) and

identifying the lower incomplete gamma function, we find that∫
(0,θ)

∫
(0,+∞)n

sα−1e−s(β+
∑n

i=1
ti)

[ n∏
i=1

fi(ti)
]( n∏

i=1
dti

)
ds

=
∫

(0,+∞)n

[ n∏
i=1

fi(ti)
][ ∫

(0,θ)
sα−1e−s(β+

∑n

i=1
ti)ds

] n∏
i=1

dti

=
∫

(0,+∞)n

[ n∏
i=1

fi(ti)
][ ∫

(0,θ(β+
∑n

i=1
ti))

( u

β +
∑n

i=1 ti

)α−1

× e−u 1
β +

∑n
i=1 ti

du

] n∏
i=1

dti (3.3)

=
∫

(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α

[ ∫
(0,θ(β+

∑n

i=1
ti))

uα−1e−udu

] n∏
i=1

dti
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=
∫

(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti.

Putting (3.2) and (3.3) together, we get

Υ =
∫

(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti. (3.4)

This gives us the common left term in (2.1) and (2.2). Let us now distinguish
between (a) and (b) by using different mathematical techniques to majorize Υ.

(a) The key is the expression of Υ given in (3.1). Using the inequality in Lemma
3.1 with, for any i = 1, . . . , n, ai = L(fi)(s) and s ∈ (0, θ), we obtain

n∏
i=1

L(fi)(s) ≤
n∑

i=1

1
pi

Lpi(fi)(s),

so that

Υ =
∫

(0,θ)
sα−1e−βs

[ n∏
i=1

L(fi)(s)
]
ds

≤
∫

(0,θ)
sα−1e−βs

[ n∑
i=1

1
pi

Lpi(fi)(s)
]
ds (3.5)

=
n∑

i=1

1
pi

∫
(0,θ)

sα−1e−βsLpi(fi)(s)ds.

For any i = 1, . . . , n, the classical Hölder integral inequality applied with
the parameter pi gives

Lpi(fi)(s) =
[ ∫

(0,+∞)
fi(t)e−stdt

]pi

=
[ ∫

(0,+∞)
fi(t)e−st/pie−st(1−1/pi)dt

]pi

≤
[ ∫

(0,+∞)
fpi

i (t)e−stdt

][ ∫
(0,+∞)

e−stdt

]pi−1

= s1−pi

∫
(0,+∞)

fpi

i (t)e−stdt,

(3.6)

so that ∫
(0,θ)

sα−1e−βsLpi(fi)(s)ds

≤
∫

(0,θ)
sα−1e−βss1−pi

[ ∫
(0,+∞)

fpi

i (t)e−stdt

]
ds (3.7)
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=
∫

(0,θ)

∫
(0,+∞)

sα−pifpi

i (t)e−s(β+t)dtds.

Changing the order of integration by the Fubini-Tonell integral theorem
(the integrand is non-negative), applying the change of variables v = s(β+t)
and identifying the lower incomplete gamma function, we establish that∫

(0,θ)

∫
(0,+∞)

sα−pifpi

i (t)e−s(β+t)dtds

=
∫

(0,+∞)

∫
(0,θ)

sα−pifpi

i (t)e−s(β+t)dsdt

=
∫

(0,+∞)
fpi

i (t)
[ ∫

(0,θ)
sα−pie−s(β+t)ds

]
dt

=
∫

(0,+∞)
fpi

i (t)
[ ∫

(0,θ(β+t))

( v

β + t

)α−pi

e−v 1
β + t

dv

]
dt

=
∫

(0,+∞)
(β + t)pi−α−1fpi

i (t)
[ ∫

(0,θ(β+t))
vα−pie−vdv

]
dt

=
∫

(0,+∞)
(β + t)pi−α−1fpi

i (t)γ(α − pi + 1, θ(β + t))dt.

(3.8)

Combining (3.5), (3.7), and (3.8), we get

Υ ≤
n∑

i=1

1
pi

∫
(0,+∞)

(β + t)pi−α−1fpi

i (t)γ(α − pi + 1, θ(β + t))dt. (3.9)

It follows from (3.4) and (3.9) that∫
(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti

≤
n∑

i=1

1
pi

∫
(0,+∞)

(β + t)pi−α−1fpi

i (t)γ(α − pi + 1, θ(β + t))dt,

which is the desired inequality, i.e. the one in (2.1). The proof of (a) is
achieved.

(b) A different strategy is used for (b). Based on the expression of Υ in (3.1),
a basic product manipulation gives

Υ =
∫

(0,θ)
sα−1e−βs

[ n∏
i=1

L(fi)(s)
]
ds

=
∫

(0,θ)

[ n∏
i=1

s(α−1)/ne−βs/nL(fi)(s)
]
ds.

(3.10)
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Using the inequality in Lemma 3.2 with, for any i = 1, . . . , n, hi(s) =
s(α−1)/ne−βs/nL(fi)(s) and s ∈ (0, θ), we obtain∫

(0,θ)

[ n∏
i=1

s(α−1)/ne−βs/nL(fi)(s)
]
ds

≤
n∏

i=1

[ ∫
(0,θ)

s(α−1)pi/ne−βspi/nLpi(fi)(s)ds

]1/pi

.

(3.11)

If we re-use the exact developments in (3.6), for any i = 1, . . . , n we have

Lpi(fi)(s) ≤ s1−pi

∫
(0,+∞)

fpi

i (t)e−stdt,

so that∫
(0,θ)

s(α−1)pi/ne−βspi/nLpi(fi)(s)ds

≤
∫

(0,θ)
s(α−1)pi/ne−βspi/ns1−pi

[ ∫
(0,+∞)

fpi

i (t)e−stdt

]
ds (3.12)

=
∫

(0,θ)

∫
(0,+∞)

s[(α−1)/n−1]pi+1fpi

i (t)e−s(βpi/n+t)dtds.

Changing the order of integration by the Fubini-Tonell integral theorem
(the integrand is non-negative), applying the change of variables w =
s(βpi/n + t) and identifying the lower incomplete gamma function, we find
that ∫

(0,θ)

∫
(0,+∞)

s[(α−1)/n−1]pi+1fpi

i (t)e−s(βpi/n+t)dtds

=
∫

(0,+∞)
fpi

i (t)
[ ∫

(0,θ)
s[(α−1)/n−1]pi+1e−s(βpi/n+t)ds

]
dt

=
∫

(0,+∞)
fpi

i (t)
[ ∫

(0,θ(βpi/n+t))

( w

βpi/n + t

)[(α−1)/n−1]pi+1

× e−w 1
βpi/n + t

dw

]
dt

=
∫

(0,+∞)

(β

n
pi + t

)[1−(α−1)/n]pi−2
fpi

i (t) (3.13)

×
[ ∫

(0,θ(βpi/n+t))
w[(α−1)/n−1]pi+1e−wdw

]
dt

=
∫

(0,+∞)

(β

n
pi + t

)[1−(α−1)/n]pi−2
fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + t

))
dt.
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Combining (3.10), (3.11), (3.12), and (3.13), we get

Υ ≤
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + t

)[1−(α−1)/n]pi−2
fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + t

))
dt

]1/pi

.

(3.14)

It follows from (3.4) and (3.14) that∫
(0,+∞)n

∏n
i=1 fi(ti)

(β +
∑n

i=1 ti)α
γ

(
α, θ

(
β +

n∑
i=1

ti

)) n∏
i=1

dti

≤
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + t

)[1−(α−1)/n]pi−2
fpi

i (t)

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + t

))
dt

]1/pi

,

which is the desired inequality, i.e. the one in (2.2). The proof of (b) is
concluded.

The two points having been established, the proof of Theorem 2.1 ends.

3.3. Proof of Theorem 2.2

The proofs of the points (a) and (b) have the same mathematical basis. Making
the changes of variables ui = gi(ti) for any i = 1, . . . , n, so that ti = g−1

i (ui) and
dti = 1/g′

i(g−1
i (ui)) for any i = 1, . . . , n, we get∫

(a,b)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 gi(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

gi(ti)
]) n∏

i=1
dti

=
∫

(0,+∞)n

∏n
i=1 fi(g−1

i (ui))
(β +

∑n
i=1 ui)α

γ

(
α, θ

(
β +

n∑
i=1

ui

)) n∏
i=1

1
g′

i(g
−1
i (ui))

dui (3.15)

=
∫

(0,+∞)n

∏n
i=1 ki(ui)

(β +
∑n

i=1 ui)α
γ

(
α, θ

(
β +

n∑
i=1

ui

)) n∏
i=1

dui,

where, for any i = 1, . . . , n,

ki(t) = fi(g−1
i (t))

g′
i(g

−1
i (t))

.

Let us now distinguish between (a) and (b).

(a) It follows from the point (a) of Theorem 2.1 applied to k1, . . . kn instead of
f1, . . . , fn, respectively, that
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∫
(0,+∞)n

∏n
i=1 ki(ui)

(β +
∑n

i=1 ui)α
γ

(
α, θ

(
β +

n∑
i=1

ui

)) n∏
i=1

dui

≤
n∑

i=1

1
pi

∫
(0,+∞)

(β + u)pi−α−1kpi

i (u)

× γ(α − pi + 1, θ(β + u))du (3.16)

=
n∑

i=1

1
pi

∫
(0,+∞)

(β + u)pi−α−1 fpi

i (g−1
i (u))

[g′
i(g

−1
i (u))]pi

× γ(α − pi + 1, θ(β + u))du.

Making the change of variables u = gi(t) with i = 1, . . . , n, we obtain

n∑
i=1

1
pi

∫
(0,+∞)

(β + u)pi−α−1 fpi

i (g−1
i (u))

[g′
i(g

−1
i (u))]pi

× γ(α − pi + 1, θ(β + u))du

=
n∑

i=1

1
pi

∫
(a,b)

[β + gi(t)]pi−α−1 fpi

i (t)
[g′

i(t)]pi

× γ(α − pi + 1, θ[β + gi(t)])g′
i(t)dt

=
n∑

i=1

1
pi

∫
(a,b)

[β + gi(t)]pi−α−1 fpi

i (t)
[g′

i(t)]pi−1

× γ(α − pi + 1, θ[β + gi(t)])dt.

(3.17)

Combining (3.15), (3.16) and (3.17), we get∫
(a,b)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 gi(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

gi(ti)
]) n∏

i=1
dti

≤
n∑

i=1

1
pi

∫
(a,b)

[β + gi(t)]pi−α−1 fpi

i (t)
[g′

i(t)]pi−1 γ(α − pi + 1, θ[β + gi(t)])dt,

which is the desired inequality, i.e. the one in (2.3). The proof of (a) is
completed.

(b) It follows from (b) of Theorem 2.1 applied to k1, . . . kn instead of f1, . . . , fn,
respectively, that∫

(0,+∞)n

∏n
i=1 ki(ui)

(β +
∑n

i=1 ui)α
γ

(
α, θ

(
β +

n∑
i=1

ui

)) n∏
i=1

dui

≤
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + u

)[1−(α−1)/n]pi−2
kpi

i (u)
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× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + u

))
du

]1/pi

(3.18)

=
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + u

)[1−(α−1)/n]pi−2 fpi

i (g−1
i (u))

[g′
i(g

−1
i (u))]pi

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + u

))
du

]1/pi

.

Making the change of variables u = gi(t) with i = 1, . . . , n, we obtain
n∏

i=1

[ ∫
(0,+∞)

(β

n
pi + u

)[1−(α−1)/n]pi−2 fpi

i (g−1
i (u))

[g′
i(g

−1
i (u))]pi

× γ
((α − 1

n
− 1

)
pi + 2, θ

(β

n
pi + u

))
du

]1/pi

=
n∏

i=1

[ ∫
(a,b)

[β

n
pi + gi(t)

][1−(α−1)/n]pi−2 fpi

i (t)
[g′

i(t)]pi

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi + gi(t)

])
g′

i(t)dt

]1/pi

=
n∏

i=1

[ ∫
(a,b)

[β

n
pi + gi(t)

][1−(α−1)/n]pi−2 fpi

i (t)
[g′

i(t)]pi−1

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi + gi(t)

])
dt

]1/pi

.

(3.19)

Combining (3.15), (3.18) and (3.19), we get∫
(a,b)n

∏n
i=1 fi(ti)

[β +
∑n

i=1 gi(ti)]α
γ

(
α, θ

[
β +

n∑
i=1

gi(ti)
]) n∏

i=1
dti

≤
n∏

i=1

[ ∫
(a,b)

[β

n
pi + gi(t)

][1−(α−1)/n]pi−2 fpi

i (t)
[g′

i(t)]pi−1

× γ
((α − 1

n
− 1

)
pi + 2, θ

[β

n
pi + gi(t)

])
dt

]1/pi

,

which is the desired inequality, i.e. the one in (2.4). The proof of (b) ends.

The two points having been established, the proof of Theorem 2.2 is concluded.

4. Conclusion

In conclusion, this article has presented a unified framework that significantly
extends the applicability of [12, Theorem 3] and [13, Theorem 2] by introducing
two additional adjustable parameters. An originality of this extension is the in-
clusion and modulation of the incomplete lower gamma function in the integrals
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involved. A functional version of the main theorem is also established. provid-
ing detailed proofs and comprehensive techniques, such as the generalized Young
inequality and the generalized Hölder integral inequality, this work may inspire
further development of multivariate inequalities in mathematical analysis.
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