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Geometry of £,-direct sums of normed linear spaces

Abstract. We consider £,-direct sums (1 < p < oo0) and cp-direct sums of
countably many normed spaces and find the dual of these spaces. We char-
acterize the support functionals of arbitrary elements in these spaces to char-
acterize smoothness and approximate smoothness, both locally and globally.
These results let us answer the Chmieliniski, Khurana, and Sain question
raised in [4] on the existence of a non-approximately smooth normed space
whose every element is smooth. We also characterize Birkhoff-James orthog-
onality and its pointwise symmetry in these spaces.

Introduction

The aim of the present article is to study the geometry of the normed linear
spaces constructed by taking countably infinite £, direct sums (for 1 < p < 00) of
normed linear spaces. We also consider ¢y analogues of the direct sums and find
the duals of these spaces. We further characterize the support functionals of a
non-zero element in these spaces. Consequently, we characterize smoothness and
approximate smoothness in them and answer a question about the approximate
smoothness of a space raised by Chmieliniski, Khurana, and Sain in [4]. We finish by
characterizing Birkhoff-James orthogonality and its pointwise symmetry in these
spaces. A similar analysis was done for ¢, direct sums of a pair of normed linear
spaces in [4] by Chmieliniski, Khurana, and Sain, where the support functionals and
approximate smoothness in these finite direct sums were studied. In this article,
we consider {,-direct sums of countably many normed linear spaces and study
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support functionals, approximate smoothness, Birkhoff-James orthogonality, and
its pointwise symmetry in countably infinite £,-direct sums.

Let us establish the relevant notations and terminologies to be used throughout
the article. Throughout, K will denote the field of scalars (also called the ground
field), which is either R or C. Recall the sign function on K given by sgn: K — K|

) T#0,
sgn(x) :=
gn(@) {O, z=0.

Given a normed linear space X over K, let Bx denote the closed unit ball of the
space. For any C' C X convex, we denote the collection of all extreme points of C
by Ext(C). Let X* stand for the continuous dual of the space X and define the
support functional of a non-zero element = € X to be any f € X* such that

1Al=1 flz) =]l

Let J(x) denote the collection of support functionals of a non-zero x. Clearly, J(x)
is convex and weak* compact. The diameter of J(x) for a non-zero z is denoted
by D(x). It is trivial to note that as || f|| = 1 for every f € D(z), 0 < D(z) < 2.
We also define D(X) to be the supremum of D(z) over all non-zero z, i.e.

D(z) :=diam(J(z)), D(X):=sup{D(x): x € X\ {0}}.

A non-zero element x € X is said to be smooth if it has a unique support functional.
Hence, a non-zero z is smooth if and only if D(z) = 0. A normed space X is smooth
if every non-zero element of the space is smooth, i.e. D(X) = 0.

A non-zero element x € X is called approzimately e-smooth for 0 < e < 2 if

D(x) <e.
A space X is called approximately e-smooth for 0 < e < 2 if

D(X) <e.
A non-zero point in a space or a space itself is called approzimately smooth if the
point or the space is approximately e-smooth for some 0 < € < 2 respectively. In
[4], Chmieliriski, Khurana, and Sain proved the following result pertaining to the
approximate smoothness in finite-dimensional Banach spaces, which serves as a
motivation for this work:

THEOREM 1
If X is a finite-dimensional normed linear space, then X is smooth if and only if
every non-zero element of X is approximately smooth.

In the same article, the authors raised the following two questions about pos-
sible generalizations of the above result, which we have answered negatively in our
present work.

(1) If all non-zero elements in a normed linear space are approximately smooth,
is the space approximately smooth as well?
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(2) If all finite-dimensional subspaces of a normed linear space are approxi-
mately smooth, is the space approximately smooth as well?

Given two elements z,y € X, x is defined to be Birkhoff-James orthogonal to
y [1], denoted by = L g y if

| + Ay|| > ||z|| for every scalar A.

James proved in [§] that « L p y if and only if f(y) = 0 for some support functional
f of x. In the same article, he proved that a non-zero point x € X is smooth if and
only if Birkhoff-James orthogonality is right additive at z, i.e. for any y, z € X

zlpy, xlpz = xlp(y+2).

James proved in [7] that in a normed linear space of dimension 3 or more, Birkhoff-
James orthogonality is symmetric if and only if the space is an inner product
space. However, the importance of studying the point-wise symmetry of Birkhoff-
James orthogonality in describing the geometry of normed linear spaces has been
illustrated in [3, Theorem 2.11], [19, Corollary 2.3.4]. Let us recall the following
definition in this context from [I8], which will play an important part in our present
study.

DEFINITION 2
An element z of a normed linear space X is said to be left-symmetric (resp. right-
symmetric) if

xlpy = ylpx (resp.ylpzr = z Llpy),
for every y € X.

Note that we refer to the left-symmetric and right-symmetric points of a given
normed linear space by the term point-wise symmetry of Birkhoff-James orthog-
onality. Birkhoff-James orthogonality and its pointwise symmetry have been the
focus of tremendous research aimed at understanding the geometry of a normed
space. We refer the readers to [2], [3],[5], [6], [10], [11], [12], [13], [15], [16], [L7],
[20] [19],[18], [21] for some of the prominent works in this direction.

A semi-inner product [9, Definition 1] on a K vector space V is defined to be
amap [,-]: VXV — K such that for z,y,z € V and A € K,

(1) [z,2] > 0 with equality if and only if z = 0.
(2) [z, 2]+ Ay, 2] = [z + Ay, 2]
(3) [z, ]* < [z, ][y, y]-

Clearly, if V is a semi-inner product space, then ||z| := [z, ]2 is a norm on
V. Further, a semi-inner product on a Banach space X is a map [-,-]: X x X = K
satisfying the above three properties along with [z,z] = ||z||? for every z € X.

Construction of a semi-inner product on X [9, Theorem 2] follows by choosing
a support functional f, for every y and defining

[z, y] = [lyll fy(z).

We now note down a proposition that relates the semi-inner products on a Ba-
nach space with notions of smoothness and Birkhoff-James orthogonality.
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PROPOSITION 3
A non-zero point x € X is smooth if and only if

ly,z]1 = [y, z]2  for every y € X, (0.1)
for every pair [, ‘|1, [-,-]2 of semi-inner products on X. Also, forz,y € X,z Lpy
if and only if [y, x] =0 for some semi-inner product [-,-] on X.

Proof. Observe that y — ﬁ[y, x] is a support functional of 2 and from the con-
struction of semi-inner products in [9, Theorem 2], for any f € J(z), there exists

a semi-inner product [+, ] on X such that [y, z] = ||| f(y).

Now, for every pair of semi-inner products [-,]1, [-,-]2 and x # 0, [y,x]; =
[y, x]2 if and only if HTIH[y,x]l = ﬁ[y,x]g if and only if z has a unique support
functional, i.e. = is smooth.

Again, [y, z] = 0 for some semi-inner product [-,-] on X if and only if x = 0
or ||z||f(y) = 0 for some f € J(x). Hence, by the James’ characterization of
Birkhoff-James orthogonality, [y, 2] = 0 for some semi-inner product [-,-] on X if

and only if z Lp y.
We now define a notion of pointwise symmetry of semi-inner products.

DEFINITION 4

Let 1 < p < oco. A point z € X is said to be p-left (resp.p-right) s.i.p. commuting
with y € X\ {0} if given any semi-inner product [-,-], there exists a semi-inner
product [-, -]’ such that

p—2

[y. =]

T (resp. o] =

/

ly, 7]
=y

ly, 7]
][yl

/

[l‘,y] =

A point x € X is said to be p-left (resp. p-right) s.i.p. symmetric if x is p-left
(resp. p-right) s.i.p. commuting with every y € X. Also, if x € X is said to be left
(resp. right) s.i.p. symmetric if x is 2-left (resp. 2-right) s.i.p. symmetric.

We can immediately note the following proposition relating s.i.p. symmetry
with pointwise symmetry of Birkhoff-James orthogonality.

PROPOSITION 5
If x € X is p-left (resp. right) s.i.p. symmetric, for some 1 < p < oo, then x is
a left-symmetric (resp. right-symmetric) point.

Proof. We use the fact from Proposition [3| that © L g y if and only if [y,z] =0

for some semi-inner product [-,-] on X. First assume that = € X is p-left s.i.p.-
symmetric for some 1 < p < co. Let x L g y for some y € X. If y = 0, then clearly
y Lp x. Otherwise, [y, 2] = 0 for some semi-inner product [-,-] on X. However, by

p-left s.i.p. commuting property of x with respect to y, there exists a semi-inner
product [-,-]" on X such that

p—2

ly,z] =0

ly, 7]
l=/lly

/

[$7y] =

Hence, y 1L g . The proof for the p-right symmetric case follows similarly.
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In the first section, we define the ¢)-direct sums (1 < p < co) and cop-direct
sums of normed spaces and characterize the duals of these spaces. In the second
section, we characterize the support functionals of these elements and obtain values
of diameters of any point in the space characterizing approximate smoothness
completely. We also use these results to answer a question raised by Chmielinski,
Khurana, and Sain in [4]. In the final section, we characterize Birkhoff-James
orthogonality and its pointwise symmetry in these spaces.

1. ¢,-direct sums

We now recall the definition of the ¢, direct sums of a sequence of normed
linear spaces. [22, Section 2.3.]

Throughout, X,, would denote a sequence of non-trivial (of dimension at least
one) normed linear spaces. We define the following direct sums:

DEFINITION 6
Let 1 < p < oo. Then the £,-direct sum of X,, is defined as:

Dx, = {{xn}neN e X Y el < oo}.
P

n=1

Also define:

@Xn = {{xn}neN D xn € Xy, sup ||z < oo},
0o n>1

P, = {{zn}neN L T € Xy, lim [lan]| = o}.
0

We define the norms for these spaces as follows:

DEFINITION 7
Let 1 < p < 0o. Then for {z,}neny € P X, define:
P

0o 1

P

| {ennenll = (§ ) x) .
n=1

Similarly, for {2, }nen € P X, define

I{n tnenlloo := sup [[zn-
n>1

We also define for {z,}nen € P X,
0

{zabnenlly = max .

PROPOSITION 8
Forp € [1,00]U{0}, (@Xm II - Hp) is a normed linear space. Also, it is a Banach
P

space if and only if X,, is a Banach space for every n € N.
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Proof. The first statement follows from the sub-additivity of the norms and Min-
kowski’s inequality. Also, if any {2} }ren C X, is a Cauchy sequence which is not

convergent, then defining {z*}ren C P X, as:
P

n )
k._ gk E._ )T J=T
2= {zj }bjen, 2= )
0, otherwise,

gives a Cauchy sequence in € X,, which is not convergent.

2
Now, assume all the X,, to be Banach spaces. Let

F= (k) e € DX,
p

be such that {z¥} ey is a Cauchy sequence. Then clearly as |xk|p > |2k | for every
k,n €N, {zF},cy is a Cauchy sequence in X,,. Let y,, := hm z%. Let p € [1,00).

Now fix N € N. Then for k,j > K for K sufficiently large

N 0o
Dollak —2llP <>k — P = |la* —2|fp < €.
n=1 n=1

Taking j — 0o, we get

N
D ok —yalP < € (1.1)
n=1

Hence we have

N % N % N %
(Dynnp) s(anﬁynnp) +(Z|x’;np) <ot et
n=1 n=1

n=1
Taking N — oo now yields ¥y = {yntnen € P X,. Now taking N — oo in (1.1)),
p
we get that for k > K|
lz* = yll, <.
For p = 00,0, the proof proceeds similarly.

We now characterize the dual of @ X,, for p = [1, 00) U {0}.
P

THEOREM 9
Let p = [1,00). Letqe(100]5>’uch7fhcuf1 (11:1. Forp =0, set q =1
by definition. Then the dual of @Xn 18 zsometrzcally isomorphic to EBX* with

= {fatnen € EBX* acting on EBX as

T) = Z fn(xn)a = {xn}neN € @Xn
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Proof. First let 1 < p < oo. Clearly for f = {fu}nen € EB X¥, we have by
Holder’s inequality,

o0
<Y M falllzall < 1 lgllllp,

n=1

(7n)

for any = = {x,, tnen € P X,,. Further for € > 0, find x,, € Sx, such that
P

el fl1a—t
faten) > Il = o,

whenever f,, # 0 (such an z,, is guaranteed to exist as we can find y,, € Sx, such

q—1 -
that |fn(yn)| > | fnll — ml% and now taking x,, = sgn(f(yn))yn gives the

desired inequality) and take z, = 0 otherwise. Then for y = {y,}nen given by

Lfnll®=t

Yn =T In is an element of the unit sphere of @ X,,. Further,

p

Il “fnl*( S -
Z 1fa lfn 2 Z 1114 1 27| fol|a = [ fllq —€

Hence f is a continuous functional on P X,,.
P
Now let 9 be a continuous functional on @ X,,. Then for any n € N,
P

x = P(zey), z€X,,

is a bounded linear functional on X,,. Let us denote this functional by 1, € X}.
Again consider z,, € Sx, such that

Un(@n) > ]| — —=

Then for any {c, }nen € £p, we have
Z alllen] < Zw(z cutnen ) + el entnesly < .
n=1 n=1

Hence {||¢n]|}nen € £4. The proofs for p = 1,0 cases follow similarly.

2. Geometry of £, direct sums

Again, let X,, be a given sequence of normed spaces. Since our aim is to char-
acterize the smoothness and approximate smoothness, We begin by characterizing

the support functionals of a non-zero element of @ X,,.
P
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THEOREM 10
Let p € (1,00) and let q be its conjugate. Then we have for any non-zero x =

{Zn}nen € P X, we have for any f = {futney € B X", [ € J(z) if and only if
p q

|5~

|| ||p 1fn € J(In)v (2'1)

if vn # 0 and f, = 0 otherwise.

Proof. The sufficiency follows from elementary computations. For the necessity,
observe that by Holder’s inequality

ety = 1) = 3= futn < 3 Il
(annnq) (annp) = £ llallzl-

Hence, equality must hold in the two above inequalities. From the first inequality,
we get, since f,,(zn) < ||fnllllxn] for every n € N,

(2.2)

fo(@n) = | fallllzn]  for every n € N.

Hence ﬁ € J(z,) of x, # 0. Also, from the second inequality, by the condition
of equality in Holder’s inequality, we get:

Ifall _ IA1G 1 P

lealp = ol ~ g~ Ml = e

for every n € N. Combining the two results yields (2.1)).

Recall that for any non-zero = in a normed space, D(x) := diam(J(z)). We
now find D(x) for any x € P X,,.
P

THEOREM 11
Let p € (1,00). For x = {xp}neny € PX,,
P

(Z iy (P ) 23)

qp—1 .
Proof. Let f' = {f}}nen, 2= {f>}nen € J(z). Then lell‘lfp,lf; € J(x,) when-
ever z, # 0 for i = 1,2. Hence

17— 2] < —pD .
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Hence

T f2|q—ZHf1 2] < Z””x”'l) D)

n=1

Taking supremum over f!, f2 € J(x) now yields

= (3 oy >

n=1

Again, fix € > 0. Find f}, f2 € J(x,) such that

G4

lallP 27

£ = fall* > (D(xn))? ~

Set f! = {”w"”p_lffl} for i = 1,2. Hence we have f!, f? € J(x). However,

—1
l=lz

T Z”x"” 1= 2 > (Z”ﬁ[ >Q)—e.

&7
Since € > 0 is arbitrary, (2.3 follows.

COROLLARY 12

An non-zero element © = {x, }neny € DX, is smooth if and only if x, € X, is
P
smooth whenever x,, # 0.

Recall that D(X) is defined to be sup{D(z) : = € X\ {0}}. We can, therefore,
conclude:

COROLLARY 13
Given normed linear spaces X,,,

D( a Xn) = sup D(X,,).

n>1

Proof. Clearly, if z = {x,} € @ X,, has x,, = 0 for every n # ng, then D(z) =
P
D(zy,). Hence D(P X,,) > sup,,>1 D(x,). The reverse inequality follows directly

P
from equation (2.3) of Theorem

Note that this answers the question raised by Chmielinski, Khurana, and Sain
n []: Is there a Banach space X such that D(x) < 2 for every non-zero element
x but D(X) = 27 It was shown that no finite-dimensional Banach space has this
property in [4]. Here, we show the existence of an infinite dimensional Banach
space having this property.
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PROPOSITION 14
Let X,, be a sequence of Banach spaces such that D(X,,) € (2—1,2). (For ezample,

n’
we can choose X,, to be suitable two-dimensional polygonal spaces as was shown in

Hll.) Then for any p € (1,00), for every x € @ X, D(x) < 2 but D(EBXn) =
P P

Proof. Since D(X,,) € (2 — %,2)7 for every z,, € X,,, D(z,) < 2. Hence, for any
x={x,} € PX,, by Theorem
P

(ZII?HIL” ) (lexnll ) _o

1

Thus, every non-zero element of @ X,, is approximately smooth but clearly,
P

’D(@Xn) =supD(z,) > sup2 — 1 2

n>1 n>1 n

from Corollary

The above proposition, along with Theorem ] also answers the second question
on approximate smoothness raised in [4].

COROLLARY 15
If X,, is a sequence of Banach spaces such that D(X,,) € (2 — %,2), then P X,

p
has the property that any finite-dimensional subspace of this space is approzimately
smooth but the space itself is not.

We finish this section by characterizing the support functionals of elements of
P X, and PX,.
1 0
THEOREM 16
For x = {zp}neny € BX,, [ = {fulnen € B X, is a support functional of x if
1

and only if fr € J(xy) if xn #0 and ||fnl] <1 if 2, = 0.
For x = {xp}nen € @Xm f=Afu}nen € @Xn is a support functional of

x if and only if f,, € A J(:vn) if |lznll = lzllo and fn = 0 otherwise such that
An 20, e =faflo An = 1-

Proof. We first consider the case of @ X,. Note that we have for f € J(z),
1

f@) <30 N fallllzn]l following similar computations as in (2.2)). Further, by
a similar application of Holder’s inequality for p = 1, ¢ = oo, we get

felh = £0) = 3 1allhonl < (3 leal) (509 15a1) = 1ol
n=1 n=1 n2

Hence equality must hold in all the inequalities. So, following the same argument
as in Theorem [L0} we get f,,(z,,) = || fullllzs] for every n € N and || fu|l = || f]loo
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whenever z, # 0. Hence, for x,, # 0, fu(zn) = [[falllznll = [[fllecllznll = 2],
giving f, € J(x,). Further, if ,, = 0, then || f,|| < ||fllc = 1. The converse of
course, follows by verifying f(z) = ||z|| by directly computation and noting the

fact that || f|lec = sup,,>1 [|f]| = 1, since z,, # 0 for at least one n € N.
For the case of @ X,,, we have for f support functional of z, by a similar appli-
0

cation of Holder’s inequality: [|lzlo = f(2) < 3207, [[fallllzall < llzlloll fllx = llz[lo-
Hence, as equality holds in both the inequalities, by a similar argument as before,
fn(@n) = [fallllznll for every n € N and f, = 0 if ||z,,|| < [|z]lo. Hence, setting
An = [[fall whenever z, = [lzllo, we get 32, Zjzlo A = 2 jan=fzllo Ifnll =
Yonet lfnll = Ifllh = 1. Also, fu(zn) = Ifalllznll = Anzn if za] = [z]o. So
f\c—z € J(xy,) if Ay, # 0, giving f,, € A\, J(x,) whenever ||z,|| = ||z|lo- The converse
follows by verifying f(z) = ||z| and || f|| = 1 through direct computation from the
given conditions.

We can now easily compute the value of D(z) for any non-zero z € @X,,.
1

THEOREM 17
Let x = {xy }neny € B X, be non-zero. Then
1

D(z) = SuPy,>1 D(xzy,), ifx,#0 for everyn € N,
2, otherwise.

Also for a non-zero © = {xp tnen € P Xy,
0

D) = D(zy), if ||lzkll = ||z|lo if and only if k = n,
2, otherwise.

Proof. We first consider the case of @ X,,. In the first case, if 2, = 0 for some
1
n € N, then consider f = {f,}» € @ X} support functional of x. We now have

that both f and f’ are support functionals of x where fk = f,g = fi for every
k #nand f, = h, f, = —h, for some h, € Sx:. So, 2 > D(z) > ||f - f'| >
lhn — (=hn)|] = 2. In the second case of course, for any support functional
f={futn € PBX: of z, f, € J(z,) giving

D(z)= sup |f —glloo= sup sup|[fn —gnll

fr9€J(z) fr9€J(z) n21
= sup || fn— gnll =sup D(x,).
fr,gn€J(xn) n>1
In the case of @X,, if ||x,]| = |lzkl]] = ||z|o, then for any f, € J(z,) and
0

fe € J(xzk), fnen and frep are support functionals of z giving 2 < D(z) <
| fren — frekll = 1 full + 1 fell = 2. If ||zk]] = ||z]lo if and only if k¥ = n, then the
only support functionals of z are of the form fe, for f € J(z,). Hence

D)= sup [[F=G| = sup [f—ygl=D(xn).
F,GEJ(x) f.9€J(zn)
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The characterization of smoothness therefore follows.

COROLLARY 18
A point © = {xn tnen € P X, is smooth if and only if x, € X,, is smooth for every
1

n € N.
A point x = {x, }neny € DX, is smooth if and only if there exists a natural
0

number ng such that ||z, || < ||z|lo for every n # ng and x,, € X, is smooth.

Also, @ X,, is not approximately smooth for p = 1,0.
P

COROLLARY 19
For any sequence of normed linear spaces X,,,

D(EPxn) :D(prn) =2

3. Birkhoff-James orthogonality in £,-direct sums

We begin the section by characterizing the set of extreme points of J(z) (de-

noted by Ext(J(x)) for any x € @ X,,. Recall that an extreme point of a convex
p

set C' is a point z having the property = = %(acl + x9) for x1,x0 € C if and only

if 1 = = xo.

PROPOSITION 20
Let x = {zp}nen € @X and let f = {fn}nen € @Xn, where p = [1,00) U {0}

and q is the conjugate index of p. Then
(1) If p € (1,00) then f € Ext(J(x)) if and only if
Ell
2 L

(2) If p=1, then f € Ext(J(x)) if and only if

fn € Ext(J(z,)) for every x, # 0.

fn € Ext(J(xy)) if 2, #0 and f, € Ext(Bx,) otherwise.
(3) If p=0, then f € Ext(J(x)) if and only if there exists ng € N such that:
Hl'n(,” = ”‘rHOv fno EEXt(J(ZL’nO)), fn:()forn;éno.

Proof. We prove the result for the case 1 < p < oo. The argument for the other
two cases are similar. Note that if f € J(z) \ Ext(J(x)), then f = 1(f! + f?) for
some distinct f1, f2 € J(z). Clearly as x, = 0 forces f! = f2 = 0, there exists
n € N such that f! # f2 and z,, # 0. Hence we have

z||P—! z||P—! z||p—1 z||P—! x|/t
(E414 Jalp™ 1 <|I 15 iy (E414 fﬁ), || 15~ 1 |l ||p7 2 e Jimn).

[P~ | [P~ [P~ |z [P71 T ([P
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So. =l fn ¢ Ext(J(x,)). Again, if f € J(x )such that 1Zlp_ fn ¢ Ext(J(zn)),

O Tanll7=T Teall 7=
llzllp~
Tenll7=

(2 [E2 s

tionals g and h by replacing f, in f by B g [E.
p

find distinct gy, hn € J(z,) such that fn = (gn + hy). Construct func-

h respectively, we

get two support functionals of = (by Theorem . ) such that f = %(g + h), proving
f & Bxt(J(x)).

Our next step is characterizing Birkhoff-James orthogonality in these spaces.
However, we first prove a lemma pertaining to the images of convex compact
subsets of a Hausdorff locally convex topological vector space under linear maps.

LEMMA 21

Let X be a Hausdorff locally convex topological vector space and let K C X be
conver and compact. If V is a finite dimensional Banach space and T: X — V is
a continuous linear map, then

T(K)=conv{T'(z): = € Ext(K)}.

Proof. Note that as T is linear and continuous, T'(K') must be compact and convex.
Now, by the Krein-Milman theorem [I4], Section 3.23], T(K) must be the closed
convex hull of the extreme points of T(K). So, it suffices to show that

Ext{T(K)} C {T(x) : x € Ext(K)}.

Now, fix an extreme point z of T(K) and let S := {z € K : T(x) = z}. Note that
for z1, o € S and X € [0,1], Ax1 + (1 — A)ze € K by the convexity of S and by
the linearity of T,

Tz + (1= Nag) =XT(z1) + (1 = N)T(x2) = Az 4+ (1 = Nz = 2.

So, S is convex. Further, since {z} C V is closed, S is a closed subset of K and
hence is compact. So, by the Krein-Milman theorem, S must have an extreme
point. Let = be an extreme point of S. We claim that z is an extreme point of
K, which would conclude the proof. To that end, consider x1,x> € K such that
x = (x1 4 x2). Then

%(T(wl) +T(z2)) =T(x) = 2.

Since T(x1),T(z2) € T(K) and z is an extreme point of T(K), we must have
T(x1) = T(z2) = z. But then z1,22 € S and since z is an extreme point of 5,
r1 =2 =XT.

Now we characterize Birkhoff-James orthogonality in @ X, for p € [1, c0)U{0}.
P
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THEOREM 22
Let v = {zn}nen, ¥ = {Yn}nen € BX,,. Then
P

(1) Ifpe (1,00), then x Ly if and only if =0 or

0¢ conv{ Szl fulyn) : € Ext(J(xn))}.

n=1

(2) If p=1, thenx Lpy if and only if x =0 or

T, #0 z,=0

for some f, € J(x,), where x, # 0.
(3) ifp=0, thenx Lpy if and only if =0 or

0 € conv{fn(yn) : fn € Ext(J(zn)), [onl = [lzllo}-

Proof. Observe that J(x) is weak* compact and convex, and ®: f — f(y), f €
J(z) is linear and continuous on J(x) under the weak* topology. Since the image
of ® is K, the ground field, by Lemma {f(ly): f € J(z)} is the closed convex
hull of the set {f(y) : f € Ext(J(x)}. Now, by James characterization of Birkhoff-
James orthogonality, * L y if and only if £ = 0 or there exists f € J(z) such
that f(y) = 0. Hence, z L g y if and only if 0 € conv{f(y) : f € Ext(J(z))}.
The result now follows by recalling the characterizations of the extreme points

of J(z) for z € X, for 1 < p < oo and p = 0. For example, we have for
P
1 <p<oo,

p—1
s 1) = { 3 anlm): g, € o)}

200 T
— o1
= W lznllP™" fru(yn) = fr € J(20) ¢-
Pn=1

Forp=1,if 2 Lp y and f = {fn}nen € J(z) is such that f(y) = 0, then
fn € J(xy) if 2, #0 and

> fulun) =0
U
Tn#0 xn=0

Tn #0

=0

z,=0 T,=0

The converse follows trivially since we can find a support functional g =
{gn}nen of = such that g(y) = 0 by taking g, = fp if ,, # 0 and g, = ¢,
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for x,, = 0 where ¥, € J(y,) and

Ty #0

c=—
Y lyall

z,=0

Clearly, by the given criteria |c¢| < 1 giving g € J(z) and g(y) =0. So, z Lp y.

We also express the p € (1,00) case in terms of semi-inner products.

COROLLARY 23
Forl<p<ooand x = {Zn}nen, ¥ = {UYn}tneny € Xy, © Lp y if and only if
P

there exist semi-inner products [-, -], in X,, such that

oo
Z Hanp_Q[ynvxn]n =0.
n=1

Proof. Note that by James characterization © L y if and only if f(z) = y for
some supt functional f of x. By characterization of the support functional in

T —1
Theorem f={fa}lnen € @X , such that =l fn is a support functional

[E

of z, whenever z,, # 0. Construct semi-inner products [, -], on X, such that
p—1

[2n, Tn] = ||xn||m¢fn(zn) whenever z,, # 0. If x,, = 0, we can choose [, -],, to

be any semi-inner product on X,,. Now, we have

oo oo
T, |P™ _
0= falym) = Z ”H “|” ol = 3 [P 0] = 0.
n=1 n=1

p—2
For the converse, set f,,(z,) = ”lf;nll,p,l [2n, Tnln 2n € Xj. Then whenever x,, # 0,
p
p—1
m%f" is a support functional of x,,. Hence f = {f,}nen € @q X¥ is a support

functional of = such that f(y) =z, ie. z Lpy.
Let us also note the following fact which will be used later.

COROLLARY 24
Let x = {an}tnen € @, Xy be such that x, =0 for every n # no. Then for any

Yy = {yn}nEN € @Xru
p

(1) Ifpe (1,00), x Lpy if and only if xp, Lp yn, and y Lp x if and only if
Yno J-B Tng -
(2) If p=1, x Lp y if and only if

min{|fay (o)l = fro € J(@no)} < Y llyall:

n#ng

Also, y Lp z if and only if yn, LB Tn,-
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If p =0, x Lp y if and only if xp, LB yn, and y Lp z if and only if
[ynll = llyllo for some n # no or yn, L @n,-

We do the three cases one after another.

By Corollary x Lpyif and only if [yng, Tngln, = 0 for some semi-inner
product [+, ]n, on Xy, i.e. Zny Lp Yn,. Similarly, by Corollary R3] y Lp
if and only if [yn,, Tngln, = 0 for some semi-inner product [, ],, in X,,,
i.e. Yny LB Tny-

From Theorem 22} = L y if and only if | f,, (Yny)| < 32,45, Y| for some
fro € J(@n,). But since J(zy,) is weak™ compact, this is equivalent to
min{| frg (Uno)| : fro € J(Tno)} < D iy 19mll-

Again, from Theorem y Lp  if and only if for some f, € J(yn),

Yn#0 Yn=0

Now, if y,,, = 0, (3.1) and y,,, Lp =, both follow trivially. Otherwise, the
right hand side 0 is zero and hence y L p x if and only if f,,(zn,) =0
for some fn, € J(Yno)s 1-€. Yny LB Tn, (by the James’ characterization of
Birkhoff-James orthogonality).

From Theorem([16] for any f € J (), f(y) = fno(Yn,) for some fr, € J(2y,).
Hence by James’ characterization, z L p y if and only if z,,, L p yn,. Again,

f(x) = foo(an,) for any f = {fnlnen € (@Xn> . Hence, by Theorem
0

f(z) = 0 for some support functional f of y if ||yn| = ||y|lo for some
n#ng or fn,(@n,) for some frny € J(Zn,), i-€. Tny LB Yne-

We now proceed toward characterizing the pointwise symmetry of Birkhoff-
James orthogonality in the space. We first characterize the left and right symmet-
ric points for P X,, and P X,.

1 2

THEOREM 25
The space @ X,, has no non-zero left-symmetric point and x = {x, }nen is a right-
1

symmetric point if and only if there exists ng € N such that

Proof.

xn = 0 whenever n #ng and 2z, € X,, s right-symmetric.

Let x be a non-zero left symmetric point of P X,,. If z, =0, find y € X,,

1
such that ||y|| > ||z||1. Then considering z = {2z }nen € @D X, given by z, = zy, if
1
k #n and z, = y, we clearly get from Theorem

rlpz z/tpux.

Now, if x,, # 0 for every n, find M such that

M 00
Solleall# D llzall:
n=1

n=M+1
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Consider z = {2z, }nen € P X, given by
1

Tn
Tenll’ 1<n<M,

Moy n > M.

2n71\/[“zn” I
Then again by Theorem 2] we get  Lg z but z /5 .
Again, if = is a right-symmetric point of @ X,, and z1, z2 # 0, then without
1

loss of generality, we may assume that ||z1|| < ||x2|]. Now consider y = {yn }nen €
P X, given by y; = z1 and y,, = 0 otherwise. Then clearly, © fp y but y Lz
1

by Theorem Further, if « has only one non-zero component z,, and z is
right-symmetric, then for any y € @ X,,, with only non-zero component y.,,,
1

rlpy © zn lpy, and ylpax < y, Lpx,.

Hence z,,, is right-symmetric. The converse, however, follows trivially from The-

orem [22] and Corollary

We now come to the case p = 2.

THEOREM 26
Let x = {zn}nen € D X,,. Then
2

(1) z is left-symmetric if and only if x, € X,, is left s.i.p. symmelric (see
Definition 4)) for every n € N or there exists ng € N such that x,, = 0 if
n # ng and Tn, s a left-symmetric point of Xy, .
(2) z is right-symmetric if and only if x, € X,, is right s.i.p. symmetric for
every n € N or there ezists ng € N such that x, = 0 if n # ny and x,, is
a right-symmetric point of Xy, .
Proof. From Corollary we get that for any y = {yn}neny € PXp, v Lp y if
2

and only if

Z[yna Tpln =0, (3.2)

for some sequence of semi-inner products [-, -], on X. The sufficiency for both the
parts now follows from . To prove the necessity, we assume a contradiction.
We prove the result for the left-symmetric case, and proof for the right-symmetric
case follows similarly. Without loss of generality, we therefore assume that there
exist z; € X; and a semi-inner product [-,-]; such that

[21,21]1 # [x1,21] for every semi-inner product [-,].

If ., # 0 for some m # 1 then define y, = {yn}nen € P X, for a € C by
2

21, n=1,
yn = Oél'm, n = m7

0, otherwise.
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Clearly, L g y, if

[21, 1)1 + |z, ||> = 0, (3.3)
But y, Lp x if and only if

[21, 21] + @z || = 0, (3.4)

for some semi-inner product [-, -] on X;. Since we can solve for « from ,
gives the desired contradiction. However, if x,, = 0 for all but one n = ng € N, we
have x 1 p y if and only if z,,, LB yn, and y Lp x if and only if y,, LB xn,. So
as « is left symmetric, so is .

We now proceed to the case p = 0.

THEOREM 27
The space @ X,, has no non-zero right-symmetric point. A point x = {x,}nen €
0

P X,, is left symmetric if and only if there exists ng € N such that x,, = 0 whenever
0

n # ng and x,, s a left-symmetric point of X,,,.

Proof. For the right-symmetric part, let © = {2, }nen € @ X,, be right-symmetric

0
and [|z1]| = ||z|lo # 0 without loss of generality. Now if m # n, then if ||z,,|| <
[[#]lo, we consider y = {yn}nen € DX, given by

0

*Hﬁiz”, if n=m,
=\ e i llzall = lzlo,
0, otherwise.
Theorem now yields that y L « but « Lp y. Hence ||z,| = ||z|lo for every

n € N. Since z € P X, z = 0.

The suﬂ[icienc; for the left-symmetric case follows from Corollary 24] For the
necessity, we assume ||z1|| = ||z|lo without loss of generality. Then if x,, # 0 for
some m # 1, find y; € Xy and y,, € X, such that 1 Lp y1, 11| = 1 and
Ym LB Tm, ||ym| = 2. We now define y = {yn tnen € P X, by setting y, = 0 for

0
n# 1,myields ¢ L gy but y L g x. Hence z,, = 0 for every m > 1. That x; is
left-symmetric again follows from Corollary [24]

We finish the section with the p € (1,00) \ {2} case.

THEOREM 28
Let x = {xn}neny € P X,,. Then
P

(1) If = is left-symmetric, either there exists ng € N such that x, = 0 for
n # ng and Tn, s a left-symmetric point of X,, or there exist m,k € N
such that x, =0 if n £ m,k, |xm| = ||zkll, and z.m, 2k are smooth p-left
s.i.p. symmetric points of X,,, Xy, respectively.
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(2) If x is right-symmetric, either there exists ng € N such that x,, = 0 for
n # ng and T, is a right-symmetric point of X,, or there exist m,k € N
such that x, =0 if n # m, k, |[xm| = ||z, and zn, xp are p-right s.i.p.
symmetric points of X,,, X, respectively.

Proof. The sufficiency in both the cases follows directly from computation. We
establish the necessity for the left-symmetric case and the proof for the right-
symmetric case follows in a similar way.

Observe that by Corollary[24] if x is left-symmetric, z,, € X,, is left-symmetric
for every n € N. Further, if there are more than one non-zero components of x,
without loss of generality, we can assume that x1, zo # 0. If |z1|| > ||x2]|, then
for o, 8 > 0, define y,, := {yn}nen € P X, given by

P

T, n=1,
Yn = —Qr2, N =2,
0, otherwise.

Hence, by Corollary 23] z L y, if and only if ||z, ||? = a|/z2|/? and y, Lp « if and
only if ||1]|P = aP~!|z2|P giving the desired contradiction as p # 2. Further if

additionally x3 # 0, we can assume that ||z1|| = ||z2|| = ||x3]|. Now for «, 8 € K,
set zog = {Zn}nen € @ X, given by
p
T, n=1,

ary, n =2,
BI37 n= 37
0, otherwise.

Zn =

Thus by Corollary 23} & Lp zas if and only if
1] + allza|? + Bllas||* =0 = 1+a+B=0.
Also, 24 L p if and only if
1+ [af"~ sgn(a) + [P~ sgn(B) = 0.

Setting o = f = —%, yields that x cannot be left-symmetric. Thus, without
loss of generality, we assume |[z1]] = ||z2]] # 0 and z, = 0 for n > 2. Let
O1:={y1 € Xy: 21 Lp y1}. Then O; is an open subset of X;. Since the
collection of smooth points is dense in Xy, find y; € O; smooth. Then for any
semi-inner product [-, -] on X,

[y1,z1] + al|z2]? =0 = = Llpy,

where y; is as chosen before, yo = axs and y,, = 0 otherwise. But then y Lp =
giving

_ xo||P
Il ) + a2 — g
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for some semi-inner product [-,]" on X;. Hence,

[

ly1 [P~ 2[z1, 1) = |[y1, 21] P .
L N R

Since y; is smooth, [x1,y1]" is unique for any semi-inner product [, -]’ on X;. Hence
[y1,21] is uniquely determined on the region {y; : y1 € O1, y1 smooth} for any
semi-inner product [-,-] on X;. Hence [y;, z1] is uniquely determined for ¢, € O;.
Since Span(0;) = Xy, [y1, 1] is uniquely determined on X; showing that x; is
smooth. Further, given y; € Xy, there exists a semi-inner product [, -]’ on X; such
that

p—2
[yh xl]a

[y1, 21]

(lzallya )P~ 2y, z][z1, 1) = |y, zi]lP = (21,0 = |70
lz1[[[|y1]]

finishing the proof for the left-symmetric case. The necessity for the right-symme-
tric case follows similarly.

Note that considering the case X,, = K, we can obtain the characterizations of
smooth points, left-symmetric points, and right-symmetric points in the sequence
Lebesgue spaces £, (1 < p < o0) and ¢p. Since, in this case, every point is smooth,
and p-left and p-right s.i.p. symmetric for every 1 < p < oo, the characterizations
are the same as were found by Bose, Roy, and Sain in [2].

References

[1] Birkhoff, Garrett. "Orthogonality in linear metric spaces." Duke Math. J. 1, no. 2
(1935): 169-172. Cited on[33]

[2] Bose, Babhrubahan, Saikat Roy, and Debmalya Sain. "Birkhoff-James orthogonal-
ity and its local symmetry in some sequence spaces." Revista de la Real Academia
de Cliencias Fzactas, Fisicas y Naturales. Serie A. Matemdticas 117, no. 3 (2023):
Article Id. 93. Cited on and

[3] Chattopadhyay, A., D. Sain, and T. Senapati. "Characterization of symmetric
points in I-spaces." Linear and Multilinear Algebra 69, no. 16 (2021): 2998-3009.
Cited on 331

[4] Chmielinski, J., D. Khurana, and D. Sain. "Approximate smoothness in normed
linear spaces." Banach Journal of Mathematical Analysis 17, no. 3 (2023): Article

Id. 41. Cited on 31} 32 35} 39 and

[5] Ghosh, P., D. Sain, and K. Paul. "On symmetry of Birkhoff-James orthogonality
of linear operators." Advances in Operator Theory 2 (2017): 428-434. Cited on
B3

[6] Ghosh, P., K. Paul, and D. Sain. "Symmetric properties of orthogonality of linear
operators on (R™,|| - ||1)." Novi Sad Journal of Mathematics 47 (2017): 41-46.
Cited on 33

[7] James, R.C. "Inner product in normed linear spaces." Bulletin of the American
Mathematical Society 53 (1947): 559-566. Cited on

[8] James, R.C. "Orthogonality and linear functionals in normed linear spaces." Trans-
actions of the American Mathematical Society 61 (1947): 265-292. Cited on



Geometry of /,-direct sums of normed linear spaces [51]

[9]

[16]

[17]
18]
[19]
[20]
21]

(22]

Lumer, G. "Semi-inner-product spaces." Transactions of the American Mathemat-
ical Society 100 (1961): 29-43. Cited on [33] and

Komuro, N.; K.-S. Saito, and R. Tanaka. "Left symmetric points for Birkhoff
orthogonality in the preduals of von Neumann algebras." Bulletin of the Australian
Mathematical Society 98 (2018): 494-501. Cited on

Komuro, N., K.-S. Saito, and R. Tanaka. "Symmetric points for (strong) Birkhoff
orthogonality in von Neumann algebras with applications to preserver problems."
J. Math. Anal. Appl. 463 (2018): 1109-1131. Cited on[33]

Komuro, N., K.-S. Saito, and R. Tanaka. "On symmetry of Birkhoff orthogonality
in the positive cones of C*-algebras with applications." J. Math. Anal. Appl. 474
(2019): 1488-1497. Cited on [33]

Paul, K., A. Mal, and P. Wéjcik. "Symmetry of Birkhoff-James orthogonality of
operators defined between infinite dimensional Banach spaces." Linear Algebra
and Its Applications 563 (2019): 142-153. Cited on

Rudin, Walter. Functional Analysis. 2nd ed. New York: McGraw-Hill, 1991. Cited
on 43

Sain, D., P. Ghosh, and K. Paul. "On symmetry of Birkhoff-James orthogonality of
linear operators on finite-dimensional real Banach spaces." Operators € Matrices
11 (2017): 1087-1095. Cited on [33]

Sain, D., et al. "A complete characterization of smoothness in the space of bounded
linear operators." Linear and Multilinear Algebra 68, no. 12 (2019): 2484-2494 .
Cited on 331

Sain, D., et al. "A study of symmetric points in Banach spaces." Linear and
Multilinear Algebra 70, no. 5 (2020): 888-898 . Cited on

Sain, D. "Birkhoff-James orthogonality of linear operators on finite dimensional
Banach spaces." J. Math. Anal. Appl. 447, no. 2 (2017): 860-866. Cited on

Sain, D. "On the norm attainment set of a bounded linear operator." J. Math.
Anal. Appl. 457, no. 1 (2018): 67-76. Cited on

Turnsek, A. "A remark on orthogonality and symmetry of operators in B(H)."
Linear Algebra and Its Applications 535 (2017): 141-150. Cited on

Turnsek, A. "On operators preserving James’ orthogonality." Linear Algebra and
Its Applications 407 (2005): 189-195. Cited on

Weaver, N. Measure Theory and Functional Analysis. Singapore: World Scientific
Publishing Company, 2013. Cited on

Babhrubahan Bose

Department of Mathematics
Indian Institute of Science
Bengaluru 560012

Karnataka

INDIA

E-mail: babhrubahanb@iisc.ac.in

Received: December 23, 2023; final version: May 24, 2025;
available online: December 15, 2025.



	p-direct sums
	Geometry of p direct sums
	Birkhoff-James orthogonality in p-direct sums

