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Geometry of ℓp-direct sums of normed linear spaces

Abstract. We consider ℓp-direct sums (1 ≤ p < ∞) and c0-direct sums of
countably many normed spaces and find the dual of these spaces. We char-
acterize the support functionals of arbitrary elements in these spaces to char-
acterize smoothness and approximate smoothness, both locally and globally.
These results let us answer the Chmieliński, Khurana, and Sain question
raised in [4] on the existence of a non-approximately smooth normed space
whose every element is smooth. We also characterize Birkhoff-James orthog-
onality and its pointwise symmetry in these spaces.

Introduction

The aim of the present article is to study the geometry of the normed linear
spaces constructed by taking countably infinite ℓp direct sums (for 1 ≤ p < ∞) of
normed linear spaces. We also consider c0 analogues of the direct sums and find
the duals of these spaces. We further characterize the support functionals of a
non-zero element in these spaces. Consequently, we characterize smoothness and
approximate smoothness in them and answer a question about the approximate
smoothness of a space raised by Chmieliński, Khurana, and Sain in [4]. We finish by
characterizing Birkhoff-James orthogonality and its pointwise symmetry in these
spaces. A similar analysis was done for ℓp direct sums of a pair of normed linear
spaces in [4] by Chmieliński, Khurana, and Sain, where the support functionals and
approximate smoothness in these finite direct sums were studied. In this article,
we consider ℓp-direct sums of countably many normed linear spaces and study
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support functionals, approximate smoothness, Birkhoff-James orthogonality, and
its pointwise symmetry in countably infinite ℓp-direct sums.

Let us establish the relevant notations and terminologies to be used throughout
the article. Throughout, K will denote the field of scalars (also called the ground
field), which is either R or C. Recall the sign function on K given by sgn: K → K,

sgn(x) :=
{

x
|x| , x ̸= 0,
0, x = 0.

Given a normed linear space X over K, let BX denote the closed unit ball of the
space. For any C ⊆ X convex, we denote the collection of all extreme points of C
by Ext(C). Let X∗ stand for the continuous dual of the space X and define the
support functional of a non-zero element x ∈ X to be any f ∈ X∗ such that

∥f∥ = 1, f(x) = ∥x∥.

Let J(x) denote the collection of support functionals of a non-zero x. Clearly, J(x)
is convex and weak∗ compact. The diameter of J(x) for a non-zero x is denoted
by D(x). It is trivial to note that as ∥f∥ = 1 for every f ∈ D(x), 0 ≤ D(x) ≤ 2.
We also define D(X) to be the supremum of D(x) over all non-zero x, i.e.

D(x) := diam(J(x)), D(X) := sup{D(x) : x ∈ X \ {0}}.

A non-zero element x ∈ X is said to be smooth if it has a unique support functional.
Hence, a non-zero x is smooth if and only if D(x) = 0. A normed space X is smooth
if every non-zero element of the space is smooth, i.e. D(X) = 0.

A non-zero element x ∈ X is called approximately ϵ-smooth for 0 ≤ ϵ < 2 if

D(x) ≤ ϵ.

A space X is called approximately ϵ-smooth for 0 ≤ ϵ < 2 if

D(X) ≤ ϵ.

A non-zero point in a space or a space itself is called approximately smooth if the
point or the space is approximately ϵ-smooth for some 0 ≤ ϵ < 2 respectively. In
[4], Chmieliński, Khurana, and Sain proved the following result pertaining to the
approximate smoothness in finite-dimensional Banach spaces, which serves as a
motivation for this work:

Theorem 1
If X is a finite-dimensional normed linear space, then X is smooth if and only if
every non-zero element of X is approximately smooth.

In the same article, the authors raised the following two questions about pos-
sible generalizations of the above result, which we have answered negatively in our
present work.

(1) If all non-zero elements in a normed linear space are approximately smooth,
is the space approximately smooth as well?
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(2) If all finite-dimensional subspaces of a normed linear space are approxi-
mately smooth, is the space approximately smooth as well?

Given two elements x, y ∈ X, x is defined to be Birkhoff-James orthogonal to
y [1], denoted by x ⊥B y if

∥x+ λy∥ ≥ ∥x∥ for every scalar λ.

James proved in [8] that x ⊥B y if and only if f(y) = 0 for some support functional
f of x. In the same article, he proved that a non-zero point x ∈ X is smooth if and
only if Birkhoff-James orthogonality is right additive at x, i.e. for any y, z ∈ X,

x ⊥B y, x ⊥B z ⇒ x ⊥B (y + z).

James proved in [7] that in a normed linear space of dimension 3 or more, Birkhoff-
James orthogonality is symmetric if and only if the space is an inner product
space. However, the importance of studying the point-wise symmetry of Birkhoff-
James orthogonality in describing the geometry of normed linear spaces has been
illustrated in [3, Theorem 2.11], [19, Corollary 2.3.4]. Let us recall the following
definition in this context from [18], which will play an important part in our present
study.

Definition 2
An element x of a normed linear space X is said to be left-symmetric (resp. right-
symmetric) if

x ⊥B y ⇒ y ⊥B x (resp. y ⊥B x ⇒ x ⊥B y),

for every y ∈ X.

Note that we refer to the left-symmetric and right-symmetric points of a given
normed linear space by the term point-wise symmetry of Birkhoff-James orthog-
onality. Birkhoff-James orthogonality and its pointwise symmetry have been the
focus of tremendous research aimed at understanding the geometry of a normed
space. We refer the readers to [2], [3],[5], [6], [10], [11], [12], [13], [15], [16], [17],
[20] [19],[18], [21] for some of the prominent works in this direction.

A semi-inner product [9, Definition 1] on a K vector space V is defined to be
a map [·, ·] : V × V → K such that for x, y, z ∈ V and λ ∈ K,

(1) [x, x] ≥ 0 with equality if and only if x = 0.
(2) [x, z] + λ[y, z] = [x+ λy, z].
(3) |[x, y]|2 ≤ [x, x][y, y].

Clearly, if V is a semi-inner product space, then ∥x∥ := [x, x] 1
2 is a norm on

V. Further, a semi-inner product on a Banach space X is a map [·, ·] : X × X → K
satisfying the above three properties along with [x, x] = ∥x∥2 for every x ∈ X.
Construction of a semi-inner product on X [9, Theorem 2] follows by choosing
a support functional fy for every y and defining

[x, y] := ∥y∥fy(x).

We now note down a proposition that relates the semi-inner products on a Ba-
nach space with notions of smoothness and Birkhoff-James orthogonality.
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Proposition 3
A non-zero point x ∈ X is smooth if and only if

[y, x]1 = [y, x]2 for every y ∈ X, (0.1)

for every pair [·, ·]1, [·, ·]2 of semi-inner products on X. Also, for x, y ∈ X, x ⊥B y
if and only if [y, x] = 0 for some semi-inner product [·, ·] on X.

Proof. Observe that y 7→ 1
∥x∥ [y, x] is a support functional of x and from the con-

struction of semi-inner products in [9, Theorem 2], for any f ∈ J(x), there exists
a semi-inner product [·, ·] on X such that [y, x] = ∥x∥f(y).

Now, for every pair of semi-inner products [·, ·]1, [·, ·]2 and x ̸= 0, [y, x]1 =
[y, x]2 if and only if 1

∥x∥ [y, x]1 = 1
∥x∥ [y, x]2 if and only if x has a unique support

functional, i.e. x is smooth.
Again, [y, x] = 0 for some semi-inner product [·, ·] on X if and only if x = 0

or ∥x∥f(y) = 0 for some f ∈ J(x). Hence, by the James’ characterization of
Birkhoff-James orthogonality, [y, x] = 0 for some semi-inner product [·, ·] on X if
and only if x ⊥B y.

We now define a notion of pointwise symmetry of semi-inner products.

Definition 4
Let 1 < p < ∞. A point x ∈ X is said to be p-left (resp.p-right) s.i.p. commuting
with y ∈ X \ {0} if given any semi-inner product [·, ·], there exists a semi-inner
product [·, ·]′ such that

[x, y]′ =
∣∣∣∣ [y, x]
∥x∥∥y∥

∣∣∣∣p−2
[y, x] (resp. [x, y] =

∣∣∣∣ [y, x]′

∥x∥∥y∥

∣∣∣∣p−2
[y, x]′).

A point x ∈ X is said to be p-left (resp. p-right) s.i.p. symmetric if x is p-left
(resp. p-right) s.i.p. commuting with every y ∈ X. Also, if x ∈ X is said to be left
(resp. right) s.i.p. symmetric if x is 2-left (resp. 2-right) s.i.p. symmetric.

We can immediately note the following proposition relating s.i.p. symmetry
with pointwise symmetry of Birkhoff-James orthogonality.

Proposition 5
If x ∈ X is p-left (resp. right) s.i.p. symmetric, for some 1 < p < ∞, then x is
a left-symmetric (resp. right-symmetric) point.

Proof. We use the fact from Proposition 3 that x ⊥B y if and only if [y, x] = 0
for some semi-inner product [·, ·] on X. First assume that x ∈ X is p-left s.i.p.-
symmetric for some 1 < p < ∞. Let x ⊥B y for some y ∈ X. If y = 0, then clearly
y ⊥B x. Otherwise, [y, x] = 0 for some semi-inner product [·, ·] on X. However, by
p-left s.i.p. commuting property of x with respect to y, there exists a semi-inner
product [·, ·]′ on X such that

[x, y]′ =
∣∣∣∣ [y, x]
∥x∥∥y∥

∣∣∣∣p−2
[y, x] = 0.

Hence, y ⊥B x. The proof for the p-right symmetric case follows similarly.
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In the first section, we define the ℓp-direct sums (1 ≤ p < ∞) and c0-direct
sums of normed spaces and characterize the duals of these spaces. In the second
section, we characterize the support functionals of these elements and obtain values
of diameters of any point in the space characterizing approximate smoothness
completely. We also use these results to answer a question raised by Chmieliński,
Khurana, and Sain in [4]. In the final section, we characterize Birkhoff-James
orthogonality and its pointwise symmetry in these spaces.

1. ℓp-direct sums

We now recall the definition of the ℓp direct sums of a sequence of normed
linear spaces. [22, Section 2.3.]

Throughout, Xn would denote a sequence of non-trivial (of dimension at least
one) normed linear spaces. We define the following direct sums:

Definition 6
Let 1 ≤ p < ∞. Then the ℓp-direct sum of Xn is defined as:⊕

p

Xn :=
{

{xn}n∈N : xn ∈ Xn,

∞∑
n=1

∥xn∥p < ∞
}
.

Also define: ⊕
∞

Xn :=
{

{xn}n∈N : xn ∈ Xn, sup
n≥1

∥xn∥ < ∞
}
,⊕

0
Xn :=

{
{xn}n∈N : xn ∈ Xn, lim

n→∞
∥xn∥ = 0

}
.

We define the norms for these spaces as follows:

Definition 7
Let 1 ≤ p < ∞. Then for {xn}n∈N ∈

⊕
p
Xn, define:

∥{xn}n∈N∥ :=
( ∞∑

n=1
∥xn∥p

) 1
p

.

Similarly, for {xn}n∈N ∈
⊕
∞

Xn, define

∥{xn}n∈N∥∞ := sup
n≥1

∥xn∥.

We also define for {xn}n∈N ∈
⊕
0
Xn,

∥{xn}n∈N∥0 := max
n≥1

∥xn∥.

Proposition 8
For p ∈ [1,∞]∪{0},

( ⊕
p
Xn, ∥ ·∥p

)
is a normed linear space. Also, it is a Banach

space if and only if Xn is a Banach space for every n ∈ N.
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Proof. The first statement follows from the sub-additivity of the norms and Min-
kowski’s inequality. Also, if any {xn

k }k∈N ⊂ Xn is a Cauchy sequence which is not
convergent, then defining {zk}k∈N ⊂

⊕
p
Xn as:

zk := {zk
j }j∈N, zk

j :=
{
xn

k , j = n,

0, otherwise,

gives a Cauchy sequence in
⊕
p
Xn which is not convergent.

Now, assume all the Xn to be Banach spaces. Let

xk = {xk
n}n∈N ∈

⊕
p

Xn

be such that {xk}k∈N is a Cauchy sequence. Then clearly as |xk|p ≥ |xk
n| for every

k, n ∈ N, {xk
n}n∈N is a Cauchy sequence in Xn. Let yn := lim

k→∞
xk

n. Let p ∈ [1,∞).
Now fix N ∈ N. Then for k, j > K for K sufficiently large,

N∑
n=1

∥xk
n − xj

n∥p ≤
∞∑

n=1
∥xk

n − xj
n∥p = ∥xk − xj∥p

p < ϵp.

Taking j → ∞, we get
N∑

n=1
∥xk

n − yn∥p < ϵp (1.1)

Hence we have( N∑
n=1

∥yn∥p

) 1
p

≤
( N∑

n=1
∥xk

n − yn∥p

) 1
p

+
( N∑

n=1
∥xk

n∥p

) 1
p

< ϵ+ ∥xk∥p.

Taking N → ∞ now yields y = {yn}n∈N ∈
⊕
p
Xn. Now taking N → ∞ in (1.1),

we get that for k > K,

∥xk − y∥p < ϵ.

For p = ∞, 0, the proof proceeds similarly.

We now characterize the dual of
⊕
p
Xn for p = [1,∞) ∪ {0}.

Theorem 9
Let p = [1,∞). Let q ∈ (1,∞] such that 1

p + 1
q = 1. For p = 0, set q = 1

by definition. Then the dual of
⊕
p
Xn is isometrically isomorphic to

⊕
q
X∗

n with

f = {fn}n∈N ∈
⊕
q
X∗

n acting on
⊕
p
Xn as

f(x) :=
∞∑

n=1
fn(xn), x = {xn}n∈N ∈

⊕
p

Xn.
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Proof. First let 1 < p < ∞. Clearly for f = {fn}n∈N ∈
⊕

q X∗
n, we have by

Holder’s inequality, ∣∣∣∣ ∞∑
n=1

fn(xn)
∣∣∣∣ ≤

∞∑
n=1

∥fn∥∥xn∥ ≤ ∥f∥q∥x∥p,

for any x = {xn}n∈N ∈
⊕
p
Xn. Further for ϵ > 0, find xn ∈ SXn

such that

fn(xn) > ∥fn∥ −
ϵ∥f∥q−1

q

2n∥fn∥q−1 ,

whenever fn ̸= 0 (such an xn is guaranteed to exist as we can find yn ∈ SXn such
that |fn(yn)| > ∥fn∥ − ϵ∥f∥q−1

q

2n∥fn∥q−1 and now taking xn = sgn(fn(yn))yn gives the
desired inequality) and take xn = 0 otherwise. Then for y = {yn}n∈N given by
yn = ∥fn∥q−1

∥f∥q−1
q

xn is an element of the unit sphere of
⊕
p
Xn. Further,

f(y) =
∞∑

n=1

∥fn∥q−1

∥f∥q−1
q

fn(xn) >
∞∑

n=1

∥fn∥q−1

∥f∥q−1
q

(
∥fn∥ −

ϵ∥f∥q−1
q

2n∥fn∥q−1

)
= ∥f∥q − ϵ.

Hence f is a continuous functional on
⊕
p
Xn.

Now let ψ be a continuous functional on
⊕
p
Xn. Then for any n ∈ N,

x 7→ ψ(xen), x ∈ Xn,

is a bounded linear functional on Xn. Let us denote this functional by ψn ∈ X∗
n.

Again consider xn ∈ SXn such that

ψn(xn) > ∥ψn∥ − ϵ

2
n
p
.

Then for any {cn}n∈N ∈ ℓp, we have

∞∑
n=1

∥ψn∥|cn| <
∞∑

n=1
ψ

( ∞∑
n=1

cnxnen

)
+ ϵ∥{cn}n∈N∥p < ∞.

Hence {∥ψn∥}n∈N ∈ ℓq. The proofs for p = 1, 0 cases follow similarly.

2. Geometry of ℓp direct sums

Again, let Xn be a given sequence of normed spaces. Since our aim is to char-
acterize the smoothness and approximate smoothness, We begin by characterizing
the support functionals of a non-zero element of

⊕
p
Xn.
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Theorem 10
Let p ∈ (1,∞) and let q be its conjugate. Then we have for any non-zero x =
{xn}n∈N ∈

⊕
p
Xn, we have for any f = {fn}n∈N ∈

⊕
q
Xn

∗, f ∈ J(x) if and only if

∥x∥p−1
p

∥xn∥p−1 fn ∈ J (xn) , (2.1)

if xn ̸= 0 and fn = 0 otherwise.

Proof. The sufficiency follows from elementary computations. For the necessity,
observe that by Hölder’s inequality

∥x∥p = f(x) =
∞∑

n=1
fnxn ≤

∞∑
n=1

∥fn∥∥xn∥

≤
( ∞∑

n=1
∥fn∥q

) 1
q
( ∞∑

n=1
xn∥p

) 1
p

= ∥f∥q∥x∥p.

(2.2)

Hence, equality must hold in the two above inequalities. From the first inequality,
we get, since fn(xn) ≤ ∥fn∥∥xn∥ for every n ∈ N,

fn(xn) = ∥fn∥∥xn∥ for every n ∈ N.

Hence fn

∥fn∥ ∈ J(xn) of xn ̸= 0. Also, from the second inequality, by the condition
of equality in Hölder’s inequality, we get:

∥fn∥q

∥xn∥p
=

∥f∥q
q

∥x∥p
p

= 1
∥x∥p

p
⇒ ∥fn∥ = ∥xn∥p−1

∥x∥p−1 ,

for every n ∈ N. Combining the two results yields (2.1).

Recall that for any non-zero x in a normed space, D(x) := diam(J(x)). We
now find D(x) for any x ∈

⊕
p
Xn.

Theorem 11
Let p ∈ (1,∞). For x = {xn}n∈N ∈

⊕
p
Xn,

D(x) =
( ∞∑

n=1

∥xn∥p

∥x∥p
p

(D(xn))q

) 1
q

. (2.3)

Proof. Let f1 = {f1
n}n∈N, f2 = {f2

n}n∈N ∈ J(x). Then ∥x∥p−1
p

∥xn∥p−1 f
i
n ∈ J(xn) when-

ever xn ̸= 0 for i = 1, 2. Hence

∥f1
n − f2

n∥ ≤ ∥xn∥p−1

∥x∥p−1
p

D(xn).
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Hence

∥f1 − f2∥q
q =

∞∑
n=1

∥f1
n − f2

n∥q ≤
∞∑

n=1

∥xn∥p

∥x∥p
p

(D(xn))q.

Taking supremum over f1, f2 ∈ J(x) now yields

D(x) ≤
( ∞∑

n=1

∥xn∥p

∥x∥p
p

(D(xn))q

) 1
q

.

Again, fix ϵ > 0. Find f1
n, f

2
n ∈ J(xn) such that

∥f1
n − f2

n∥q > (D(xn))q −
∥x∥p

p

∥xn∥p

ϵ

2n
.

Set f i =
{

∥xn∥p−1

∥x∥p−1
p

f i
n

}
for i = 1, 2. Hence we have f1, f2 ∈ J(x). However,

∥f1 − f2∥q =
∞∑

n=1

∥xn∥p

∥x∥p
p

∥f1
n − f2

n∥q ≥
( ∞∑

n=1

∥xn∥p

∥x∥p
p

(D(xn))q

)
− ϵ.

Since ϵ > 0 is arbitrary, (2.3) follows.

Corollary 12
An non-zero element x = {xn}n∈N ∈

⊕
p
Xn is smooth if and only if xn ∈ Xn is

smooth whenever xn ̸= 0.

Recall that D(X) is defined to be sup{D(x) : x ∈ X\ {0}}. We can, therefore,
conclude:

Corollary 13
Given normed linear spaces Xn,

D
( ⊕

p

Xn

)
= sup

n≥1
D(Xn).

Proof. Clearly, if x = {xn} ∈
⊕
p
Xn, has xn = 0 for every n ̸= n0, then D(x) =

D(xn0). Hence D(
⊕
p
Xn) ≥ supn≥1 D(xn). The reverse inequality follows directly

from equation (2.3) of Theorem 11.

Note that this answers the question raised by Chmieliński, Khurana, and Sain
in [4]: Is there a Banach space X such that D(x) < 2 for every non-zero element
x but D(X) = 2? It was shown that no finite-dimensional Banach space has this
property in [4]. Here, we show the existence of an infinite dimensional Banach
space having this property.
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Proposition 14
Let Xn be a sequence of Banach spaces such that D(Xn) ∈ (2− 1

n , 2). (For example,
we can choose Xn to be suitable two-dimensional polygonal spaces as was shown in
[4].) Then for any p ∈ (1,∞), for every x ∈

⊕
p
Xn, D(x) < 2 but D

( ⊕
p
Xn

)
= 2.

Proof. Since D(Xn) ∈ (2 − 1
n , 2), for every xn ∈ Xn, D(xn) < 2. Hence, for any

x = {xn} ∈
⊕
p
Xn, by Theorem 11,

D(x) =
( ∞∑

n=1

∥xn∥p

∥x∥p
p

(D(xn))q

) 1
q

<

( ∞∑
n=1

∥xn∥p

∥x∥p
p

2q

) 1
q

= 2.

Thus, every non-zero element of
⊕
p
Xn is approximately smooth but clearly,

D
( ⊕

p

Xn

)
= sup

n≥1
D(xn) ≥ sup

n≥1
2 − 1

n
= 2

from Corollary 13.

The above proposition, along with Theorem 1, also answers the second question
on approximate smoothness raised in [4].

Corollary 15
If Xn is a sequence of Banach spaces such that D(Xn) ∈ (2 − 1

n , 2), then
⊕
p
Xn

has the property that any finite-dimensional subspace of this space is approximately
smooth but the space itself is not.

We finish this section by characterizing the support functionals of elements of⊕
1
Xn and

⊕
0
Xn.

Theorem 16
For x = {xn}n∈N ∈

⊕
1
Xn, f = {fn}n∈N ∈

⊕
∞

Xn is a support functional of x if

and only if fn ∈ J(xn) if xn ̸= 0 and ∥fn∥ ≤ 1 if xn = 0.
For x = {xn}n∈N ∈

⊕
0
Xn, f = {fn}n∈N ∈

⊕
1
Xn is a support functional of

x if and only if fn ∈ λnJ(xn) if ∥xn∥ = ∥x∥0 and fn = 0 otherwise such that
λn ≥ 0,

∑
∥xn∥=∥x∥0

λn = 1.

Proof. We first consider the case of
⊕
1
Xn. Note that we have for f ∈ J(x),

f(x) ≤
∑∞

n=1 ∥fn∥∥xn∥ following similar computations as in (2.2). Further, by
a similar application of Hölder’s inequality for p = 1, q = ∞, we get

∥x∥1 = f(x) ≤
∞∑

n=1
∥fn∥∥xn∥ ≤

( ∞∑
n=1

∥xn∥
)(

sup
n≥1

∥fn∥
)

= ∥f∥∞∥x∥1.

Hence equality must hold in all the inequalities. So, following the same argument
as in Theorem 10, we get fn(xn) = ∥fn∥∥xn∥ for every n ∈ N and ∥fn∥ = ∥f∥∞
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whenever xn ̸= 0. Hence, for xn ̸= 0, fn(xn) = ∥fn∥∥xn∥ = ∥f∥∞∥xn∥ = ∥xn∥,
giving fn ∈ J(xn). Further, if xn = 0, then ∥fn∥ ≤ ∥f∥∞ = 1. The converse of
course, follows by verifying f(x) = ∥x∥ by directly computation and noting the
fact that ∥f∥∞ = supn≥1 ∥f∥ = 1, since xn ̸= 0 for at least one n ∈ N.

For the case of
⊕
0
Xn, we have for f support functional of x, by a similar appli-

cation of Hölder’s inequality: ∥x∥0 = f(x) ≤
∑∞

n=1 ∥fn∥∥xn∥ ≤ ∥x∥0∥f∥1 = ∥x∥0.
Hence, as equality holds in both the inequalities, by a similar argument as before,
fn(xn) = ∥fn∥∥xn∥ for every n ∈ N and fn = 0 if ∥xn∥ < ∥x∥0. Hence, setting
λn = ∥fn∥ whenever xn = ∥x∥0, we get

∑
∥xn∥=∥x∥0

λn =
∑

∥xn∥=∥x∥0
∥fn∥ =∑∞

n=1 ∥fn∥ = ∥f∥1 = 1. Also, fn(xn) = ∥fn∥∥xn∥ = λnxn if ∥xn∥ = ∥x∥0. So
fn

λn
∈ J(xn) if λn ̸= 0, giving fn ∈ λnJ(xn) whenever ∥xn∥ = ∥x∥0. The converse

follows by verifying f(x) = ∥x∥ and ∥f∥ = 1 through direct computation from the
given conditions.

We can now easily compute the value of D(x) for any non-zero x ∈
⊕
1
Xn.

Theorem 17
Let x = {xn}n∈N ∈

⊕
1
Xn be non-zero. Then

D(x) =
{

supn≥1 D(xn), if xn ̸= 0 for every n ∈ N,
2, otherwise.

Also for a non-zero x = {xn}n∈N ∈
⊕
0
Xn,

D(x) =
{
D(xn), if ∥xk∥ = ∥x∥0 if and only if k = n,

2, otherwise.

Proof. We first consider the case of
⊕
1
Xn. In the first case, if xn = 0 for some

n ∈ N, then consider f = {fn}n ∈
⊕
∞

X∗
n support functional of x. We now have

that both f̂ and f̂ ′ are support functionals of x where f̂k = f̂ ′
k = fk for every

k ̸= n and f̂n = hn f̂ ′
n = −hn for some hn ∈ SX∗

n
. So, 2 ≥ D(x) ≥ ∥f̂ − f̂ ′∥ ≥

∥hn − (−hn)∥ = 2. In the second case of course, for any support functional
f = {fn}n ∈

⊕
∞

X∗
n of x, fn ∈ J(xn) giving

D(x) = sup
f,g∈J(x)

∥f − g∥∞ = sup
f,g∈J(x)

sup
n≥1

∥fn − gn∥

= sup
fn,gn∈J(xn)

∥fn − gn∥ = sup
n≥1

D(xn).

In the case of
⊕
0
Xn, if ∥xn∥ = ∥xk∥ = ∥x∥0, then for any fn ∈ J(xn) and

fk ∈ J(xk), fnen and fkek are support functionals of x giving 2 ≤ D(x) ≤
∥fnen − fkek∥ = ∥fn∥ + ∥fk∥ = 2. If ∥xk∥ = ∥x∥0 if and only if k = n, then the
only support functionals of x are of the form fen for f ∈ J(xn). Hence

D(x) = sup
F,G∈J(x)

∥F −G∥ = sup
f,g∈J(xn)

∥f − g∥ = D(xn).
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The characterization of smoothness therefore follows.

Corollary 18
A point x = {xn}n∈N ∈

⊕
1
Xn is smooth if and only if xn ∈ Xn is smooth for every

n ∈ N.
A point x = {xn}n∈N ∈

⊕
0
Xn is smooth if and only if there exists a natural

number n0 such that ∥xn∥ < ∥x∥0 for every n ̸= n0 and xn0 ∈ Xn0 is smooth.

Also,
⊕
p
Xn is not approximately smooth for p = 1, 0.

Corollary 19
For any sequence of normed linear spaces Xn,

D
( ⊕

1
Xn

)
= D

( ⊕
0

Xn

)
= 2.

3. Birkhoff-James orthogonality in ℓp-direct sums

We begin the section by characterizing the set of extreme points of J(x) (de-
noted by Ext(J(x)) for any x ∈

⊕
p
Xn. Recall that an extreme point of a convex

set C is a point x having the property x = 1
2 (x1 + x2) for x1, x2 ∈ C if and only

if x1 = x = x2.

Proposition 20
Let x = {xn}n∈N ∈

⊕
p
Xn and let f = {fn}n∈N ∈

⊕
q
X∗

n, where p = [1,∞) ∪ {0}

and q is the conjugate index of p. Then
(1) If p ∈ (1,∞) then f ∈ Ext(J(x)) if and only if

∥x∥p−1
p

∥xn∥p−1 fn ∈ Ext(J(xn)) for every xn ̸= 0.

(2) If p = 1, then f ∈ Ext(J(x)) if and only if

fn ∈ Ext(J(xn)) if xn ̸= 0 and fn ∈ Ext(BXn
) otherwise.

(3) If p = 0, then f ∈ Ext(J(x)) if and only if there exists n0 ∈ N such that:

∥xn0∥ = ∥x∥0, fn0 ∈ Ext(J(xn0)), fn = 0 for n ̸= n0.

Proof. We prove the result for the case 1 < p < ∞. The argument for the other
two cases are similar. Note that if f ∈ J(x) \ Ext(J(x)), then f = 1

2 (f1 + f2) for
some distinct f1, f2 ∈ J(x). Clearly as xn = 0 forces f1

n = f2
n = 0, there exists

n ∈ N such that f1
n ̸= f2

n and xn ̸= 0. Hence we have

∥x∥p−1
p

∥xn∥p−1 fn = 1
2

( ∥x∥p−1
p

∥xn∥p−1 f
1
n +

∥x∥p−1
p

∥xn∥p−1 f
2
n

)
,

∥x∥p−1
p

∥xn∥p−1 f
1
n,

∥x∥p−1
p

∥xn∥p−1 f
2
n ∈ J(xn).
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So, ∥x∥p−1
p

∥xn∥p−1 fn ̸∈ Ext(J(xn)). Again, if f ∈ J(x) such that ∥x∥p−1
p

∥xn∥p−1 fn ̸∈ Ext(J(xn)),

find distinct gn, hn ∈ J(xn) such that ∥x∥p−1
p

∥xn∥p−1 fn = 1
2 (gn + hn). Construct func-

tionals g and h by replacing fn in f by ∥xn∥p−1

∥x∥p−1
p

g and ∥xn∥p−1

∥x∥p−1
p

h respectively, we
get two support functionals of x (by Theorem 10) such that f = 1

2 (g+h), proving
f ̸∈ Ext(J(x)).

Our next step is characterizing Birkhoff-James orthogonality in these spaces.
However, we first prove a lemma pertaining to the images of convex compact
subsets of a Hausdorff locally convex topological vector space under linear maps.

Lemma 21
Let X be a Hausdorff locally convex topological vector space and let K ⊂ X be
convex and compact. If V is a finite dimensional Banach space and T : X → V is
a continuous linear map, then

T (K) = conv{T (x) : x ∈ Ext(K)}.

Proof. Note that as T is linear and continuous, T (K) must be compact and convex.
Now, by the Krein-Milman theorem [14, Section 3.23], T (K) must be the closed
convex hull of the extreme points of T (K). So, it suffices to show that

Ext{T (K)} ⊆ {T (x) : x ∈ Ext(K)}.

Now, fix an extreme point z of T (K) and let S := {x ∈ K : T (x) = z}. Note that
for x1, x2 ∈ S and λ ∈ [0, 1], λx1 + (1 − λ)x2 ∈ K by the convexity of S and by
the linearity of T ,

T (λx1 + (1 − λ)x2) = λT (x1) + (1 − λ)T (x2) = λz + (1 − λ)z = z.

So, S is convex. Further, since {z} ⊂ V is closed, S is a closed subset of K and
hence is compact. So, by the Krein-Milman theorem, S must have an extreme
point. Let x be an extreme point of S. We claim that x is an extreme point of
K, which would conclude the proof. To that end, consider x1, x2 ∈ K such that
x = 1

2 (x1 + x2). Then

1
2(T (x1) + T (x2)) = T (x) = z.

Since T (x1), T (x2) ∈ T (K) and z is an extreme point of T (K), we must have
T (x1) = T (x2) = z. But then x1, x2 ∈ S and since x is an extreme point of S,
x1 = x2 = x.

Now we characterize Birkhoff-James orthogonality in
⊕
p
Xp for p ∈ [1,∞)∪{0}.
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Theorem 22
Let x = {xn}n∈N, y = {yn}n∈N ∈

⊕
p
Xn. Then

(1) If p ∈ (1,∞), then x ⊥B y if and only if x = 0 or

0 ∈ conv
{ ∞∑

n=1
∥xn∥p−1fn(yn) : fn ∈ Ext(J(xn))

}
.

(2) If p = 1, then x ⊥B y if and only if x = 0 or∣∣∣∣ ∑
xn ̸=0

fn(yn)
∣∣∣∣ ≤

∑
xn=0

∥yn∥

for some fn ∈ J(xn), where xn ̸= 0.
(3) if p = 0, then x ⊥B y if and only if x = 0 or

0 ∈ conv{fn(yn) : fn ∈ Ext(J(xn)), ∥xn∥ = ∥x∥0}.

Proof. Observe that J(x) is weak* compact and convex, and Φ: f 7→ f(y), f ∈
J(x) is linear and continuous on J(x) under the weak* topology. Since the image
of Φ is K, the ground field, by Lemma 21, {f(y) : f ∈ J(x)} is the closed convex
hull of the set {f(y) : f ∈ Ext(J(x)}. Now, by James characterization of Birkhoff-
James orthogonality, x ⊥B y if and only if x = 0 or there exists f ∈ J(x) such
that f(y) = 0. Hence, x ⊥B y if and only if 0 ∈ conv{f(y) : f ∈ Ext(J(x))}.

The result now follows by recalling the characterizations of the extreme points
of J(x) for x ∈

⊕
p
Xn for 1 < p < ∞ and p = 0. For example, we have for

1 < p < ∞,

{f(y) : f ∈ Ext(J(x))} =
{ ∑

xn ̸=0
gn(yn) : ∥x∥p−1

P

∥xn∥p−1 gn ∈ J(xn)
}

=
{

1
∥x∥p

p

∞∑
n=1

∥xn∥p−1fn(yn) : fn ∈ J(xn)
}
.

For p = 1, if x ⊥B y and f = {fn}n∈N ∈ J(x) is such that f(y) = 0, then
fn ∈ J(xn) if xn ̸= 0 and

∞∑
n=1

fn(yn) = 0

⇓∑
xn ̸=0

fn(yn) = −
∑

xn=0
fn(yn)

⇓∣∣∣∣ ∑
xn ̸=0

fn(yn)
∣∣∣∣ =

∣∣∣∣ ∑
xn=0

fn(yn)
∣∣∣∣ ≤

∑
xn=0

|fn(yn)| ≤
∑

xn=0
∥fn∥∥yn∥ ≤

∑
xn=0

∥yn∥.

The converse follows trivially since we can find a support functional g =
{gn}n∈N of x such that g(y) = 0 by taking gn = fn if xn ̸= 0 and gn = cψn
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for xn = 0 where ψn ∈ J(yn) and

c = −

∑
xn ̸=0

fn(yn)∑
xn=0

∥yn∥
.

Clearly, by the given criteria |c| ≤ 1 giving g ∈ J(x) and g(y) = 0. So, x ⊥B y.

We also express the p ∈ (1,∞) case in terms of semi-inner products.

Corollary 23
For 1 < p < ∞ and x = {xn}n∈N, y = {yn}n∈N ∈

⊕
p
Xn, x ⊥B y if and only if

there exist semi-inner products [·, ·]n in Xn such that
∞∑

n=1
∥xn∥p−2[yn, xn]n = 0.

Proof. Note that by James characterization x ⊥B y if and only if f(x) = y for
some support functional f of x. By characterization of the support functional in
Theorem 10, f = {fn}n∈N ∈

⊕
q
X∗

n, such that ∥x∥p−1
p

∥xn∥p−1 fn is a support functional

of xn whenever xn ̸= 0. Construct semi-inner products [·, ·]n on Xn such that
[zn, xn] = ∥xn∥ ∥x∥p−1

p

∥xn∥p−1 fn(zn) whenever xn ̸= 0. If xn = 0, we can choose [·, ·]n to
be any semi-inner product on Xn. Now, we have

f(y) =
∞∑

n=1
fn(yn) =

∞∑
n=1

∥xn∥p−2

∥x∥p−1
p

[yn, xn]n ⇒
∞∑

n=1
∥xn∥p−2[yn, xn]n = 0.

For the converse, set fn(zn) := ∥xn∥p−2

∥x∥p−1
p

[zn, xn]n zn ∈ Xn. Then whenever xn ̸= 0,
∥x∥p−1

p

∥xn∥p−1 fn is a support functional of xn. Hence f = {fn}n∈N ∈
⊕

q X∗
n is a support

functional of x such that f(y) = x, i.e. x ⊥B y.

Let us also note the following fact which will be used later.

Corollary 24
Let x = {xn}n∈N ∈

⊕
p Xn be such that xn = 0 for every n ̸= n0. Then for any

y = {yn}n∈N ∈
⊕
p
Xn,

(1) If p ∈ (1,∞), x ⊥B y if and only if xn0 ⊥B yn0 and y ⊥B x if and only if
yn0 ⊥B xn0 .

(2) If p = 1, x ⊥B y if and only if

min{|fn0(yn0)| : fn0 ∈ J(xn0)} ≤
∑

n̸=n0

∥yn∥.

Also, y ⊥B x if and only if yn0 ⊥B xn0 .
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(3) If p = 0, x ⊥B y if and only if xn0 ⊥B yn0 and y ⊥B x if and only if
∥yn∥ = ∥y∥0 for some n ̸= n0 or yn0 ⊥B xn0 .

Proof. We do the three cases one after another.
(1) By Corollary 23, x ⊥B y if and only if [yn0 , xn0 ]n0 = 0 for some semi-inner

product [·, ·]n0 on Xn0 , i.e. xn0 ⊥B yn0 . Similarly, by Corollary 23, y ⊥B x
if and only if [yn0 , xn0 ]n0 = 0 for some semi-inner product [·, ·]n0 in Xn0 ,
i.e. yn0 ⊥B xn0 .

(2) From Theorem 22, x ⊥B y if and only if |fn0(yn0)| ≤
∑

n̸=n0
∥yn∥ for some

fn0 ∈ J(xn0). But since J(xn0) is weak* compact, this is equivalent to
min{|fn0(yn0)| : fn0 ∈ J(xn0)} ≤

∑
n̸=n0

∥yn∥.
Again, from Theorem 22, y ⊥B x if and only if for some fn ∈ J(yn),∣∣∣∣ ∑

yn ̸=0
fn(xn)

∣∣∣∣ ≤
∑

yn=0
∥xn∥. (3.1)

Now, if yn0 = 0, (3.1) and yn0 ⊥B xn0 both follow trivially. Otherwise, the
right hand side of (3.1) is zero and hence y ⊥B x if and only if fn0(xn0) = 0
for some fn0 ∈ J(yn0), i.e. yn0 ⊥B xn0 (by the James’ characterization of
Birkhoff-James orthogonality).

(3) From Theorem 16, for any f ∈ J(x), f(y) = fn0(yn0) for some fn0 ∈ J(xn0).
Hence by James’ characterization, x ⊥B y if and only if xn0 ⊥B yn0 . Again,
f(x) = fn0(xn0) for any f = {fn}n∈N ∈

( ⊕
0
Xn

)∗
. Hence, by Theorem

16, f(x) = 0 for some support functional f of y if ∥yn∥ = ∥y∥0 for some
n ̸= n0 or fn0(xn0) for some fn0 ∈ J(xn0), i.e. xn0 ⊥B yn0 .

We now proceed toward characterizing the pointwise symmetry of Birkhoff-
James orthogonality in the space. We first characterize the left and right symmet-
ric points for

⊕
1
Xn and

⊕
2
Xn.

Theorem 25
The space

⊕
1
Xn has no non-zero left-symmetric point and x = {xn}n∈N is a right-

symmetric point if and only if there exists n0 ∈ N such that

xn = 0 whenever n ̸= n0 and xn0 ∈ Xn0 is right-symmetric.

Proof. Let x be a non-zero left symmetric point of
⊕
1
Xn. If xn = 0, find y ∈ Xn

such that ∥y∥ > ∥x∥1. Then considering z = {zn}n∈N ∈
⊕
1
Xn given by zk = xk if

k ̸= n and zn = y, we clearly get from Theorem 22,

x ⊥B z, z ̸⊥B x.

Now, if xn ̸= 0 for every n, find M such that
M∑

n=1
∥xn∥ ̸=

∞∑
n=M+1

∥xn∥.
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Consider z = {zn}n∈N ∈
⊕
1
Xn given by

zn =


xn

∥xn∥ , 1 ≤ n ≤ M,

Mxn

2n−M ∥xn∥ , n > M.

Then again by Theorem 22, we get x ⊥B z but z ̸⊥B x.
Again, if x is a right-symmetric point of

⊕
1
Xn and x1, x2 ̸= 0, then without

loss of generality, we may assume that ∥x1∥ ≤ ∥x2∥. Now consider y = {yn}n∈N ∈⊕
1
Xn given by y1 = x1 and yn = 0 otherwise. Then clearly, x ̸⊥B y but y ⊥B x

by Theorem 22. Further, if x has only one non-zero component xn0 and x is
right-symmetric, then for any y ∈

⊕
1
Xn, with only non-zero component yn0 ,

x ⊥B y ⇔ xn ⊥B yn and y ⊥B x ⇔ yn ⊥B xn.

Hence xn0 is right-symmetric. The converse, however, follows trivially from The-
orem 22 and Corollary 24.

We now come to the case p = 2.
Theorem 26
Let x = {xn}n∈N ∈

⊕
2
Xn. Then

(1) x is left-symmetric if and only if xn ∈ Xn is left s.i.p. symmetric (see
Definition 4) for every n ∈ N or there exists n0 ∈ N such that xn = 0 if
n ̸= n0 and xn0 is a left-symmetric point of Xn0 .

(2) x is right-symmetric if and only if xn ∈ Xn is right s.i.p. symmetric for
every n ∈ N or there exists n0 ∈ N such that xn = 0 if n ̸= n0 and xn0 is
a right-symmetric point of Xn0 .

Proof. From Corollary 23, we get that for any y = {yn}n∈N ∈
⊕
2
Xn, x ⊥B y if

and only if
∞∑

n=1
[yn, xn]n = 0, (3.2)

for some sequence of semi-inner products [·, ·]n on X. The sufficiency for both the
parts now follows from (3.2). To prove the necessity, we assume a contradiction.
We prove the result for the left-symmetric case, and proof for the right-symmetric
case follows similarly. Without loss of generality, we therefore assume that there
exist z1 ∈ X1 and a semi-inner product [·, ·]1 such that

[z1, x1]1 ̸= [x1, z1] for every semi-inner product [·, ·].

If xm ̸= 0 for some m ̸= 1 then define yα = {yn}n∈N ∈
⊕
2
Xn for α ∈ C by

yn =


z1, n = 1,
αxm, n = m,

0, otherwise.
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Clearly, x ⊥B yα if

[z1, x1]1 + α∥xn∥2 = 0, (3.3)

But yα ⊥B x if and only if

[z1, x1] + α∥xn∥2 = 0, (3.4)

for some semi-inner product [·, ·] on X1. Since we can solve for α from (3.3), (3.4)
gives the desired contradiction. However, if xn = 0 for all but one n = n0 ∈ N, we
have x ⊥B y if and only if xn0 ⊥B yn0 and y ⊥B x if and only if yn0 ⊥B xn0 . So
as x is left symmetric, so is xn0 .

We now proceed to the case p = 0.

Theorem 27
The space

⊕
0
Xn has no non-zero right-symmetric point. A point x = {xn}n∈N ∈⊕

0
Xn is left symmetric if and only if there exists n0 ∈ N such that xn = 0 whenever

n ̸= n0 and xn0 is a left-symmetric point of Xn0 .

Proof. For the right-symmetric part, let x = {xn}n∈N ∈
⊕
0
Xn be right-symmetric

and ∥x1∥ = ∥x∥0 ̸= 0 without loss of generality. Now if m ̸= n, then if ∥xm∥ <
∥x∥0, we consider y = {yn}n∈N ∈

⊕
0
Xn given by

yn =


− xm

∥xm∥ , if n = m,

xn

∥xn∥ , if ∥xn∥ = ∥x∥0,

0, otherwise.

Theorem 22 now yields that y ⊥B x but x ̸⊥B y. Hence ∥xn∥ = ∥x∥0 for every
n ∈ N. Since x ∈

⊕
0
Xn, x = 0.

The sufficiency for the left-symmetric case follows from Corollary 24. For the
necessity, we assume ∥x1∥ = ∥x∥0 without loss of generality. Then if xm ̸= 0 for
some m ̸= 1, find y1 ∈ X1 and ym ∈ Xm such that x1 ⊥B y1, ∥y1∥ = 1 and
ym ̸⊥B xm, ∥ym∥ = 2. We now define y = {yn}n∈N ∈

⊕
0
Xn by setting yn = 0 for

n ̸= 1,m yields x ⊥B y but y ⊥B x. Hence xm = 0 for every m > 1. That x1 is
left-symmetric again follows from Corollary 24.

We finish the section with the p ∈ (1,∞) \ {2} case.

Theorem 28
Let x = {xn}n∈N ∈

⊕
p
Xn. Then

(1) If x is left-symmetric, either there exists n0 ∈ N such that xn = 0 for
n ̸= n0 and xn0 is a left-symmetric point of Xn or there exist m, k ∈ N
such that xn = 0 if n ̸= m, k, ∥xm∥ = ∥xk∥, and xm, xk are smooth p-left
s.i.p. symmetric points of Xm, Xk, respectively.
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(2) If x is right-symmetric, either there exists n0 ∈ N such that xn = 0 for
n ̸= n0 and xn0 is a right-symmetric point of Xn or there exist m, k ∈ N
such that xn = 0 if n ̸= m, k, ∥xm∥ = ∥xk∥, and xm, xk are p-right s.i.p.
symmetric points of Xm, Xk, respectively.

Proof. The sufficiency in both the cases follows directly from computation. We
establish the necessity for the left-symmetric case and the proof for the right-
symmetric case follows in a similar way.

Observe that by Corollary 24, if x is left-symmetric, xn ∈ Xn is left-symmetric
for every n ∈ N. Further, if there are more than one non-zero components of x,
without loss of generality, we can assume that x1, x2 ̸= 0. If ∥x1∥ > ∥x2∥, then
for α, β > 0, define yα := {yn}n∈N ∈

⊕
p
Xn given by

yn =


x1, n = 1,
−αx2, n = 2,
0, otherwise.

Hence, by Corollary 23, x ⊥B yα if and only if ∥x1∥p = α∥x2∥p and yα ⊥B x if and
only if ∥x1∥p = αp−1∥x2∥p giving the desired contradiction as p ̸= 2. Further if
additionally x3 ̸= 0, we can assume that ∥x1∥ = ∥x2∥ = ∥x3∥. Now for α, β ∈ K,
set zαβ = {zn}n∈N ∈

⊕
p
Xn given by

zn =


x1, n = 1,
αx2, n = 2,
βx3, n = 3,
0, otherwise.

Thus by Corollary 23, x ⊥B zαβ if and only if

∥x1∥2 + α∥x2∥2 + β∥x3∥2 = 0 ⇒ 1 + α+ β = 0.

Also, zαβ ⊥B if and only if

1 + |α|p−1sgn(α) + |β|p−1sgn(β) = 0.

Setting α = β = − 1
2 , yields that x cannot be left-symmetric. Thus, without

loss of generality, we assume ∥x1∥ = ∥x2∥ ̸= 0 and xn = 0 for n > 2. Let
O1 := {y1 ∈ X1 : x1 ̸⊥B y1}. Then O1 is an open subset of X1. Since the
collection of smooth points is dense in X1, find y1 ∈ O1 smooth. Then for any
semi-inner product [·, ·] on X1,

[y1, x1] + α∥x2∥2 = 0 ⇒ x ⊥B y,

where y1 is as chosen before, y2 = αx2 and yn = 0 otherwise. But then y ⊥B x
giving

∥y1∥p−2[x1, y1]′ + |α|p ∥x2∥p

α
= 0,
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for some semi-inner product [·, ·]′ on X1. Hence,

∥y1∥p−2[x1, y1]′ = |[y1, x1]|p ∥x2∥2−p

[y1, x1] .

Since y1 is smooth, [x1, y1]′ is unique for any semi-inner product [·, ·]′ on X1. Hence
[y1, x1] is uniquely determined on the region {y1 : y1 ∈ O1, y1 smooth} for any
semi-inner product [·, ·] on X1. Hence [y1, x1] is uniquely determined for y1 ∈ O1.
Since Span(O1) = X1, [y1, x1] is uniquely determined on X1 showing that x1 is
smooth. Further, given y1 ∈ X1, there exists a semi-inner product [·, ·]′ on X1 such
that

(∥x1∥∥y1∥)p−2[y1, x1][x1, y1]′ = |[y1, x1]|p ⇒ [x1, y1]′ =
∣∣∣∣ [y1, x1]
∥x1∥∥y1∥

∣∣∣∣p−2
[y1, x1],

finishing the proof for the left-symmetric case. The necessity for the right-symme-
tric case follows similarly.

Note that considering the case Xn = K, we can obtain the characterizations of
smooth points, left-symmetric points, and right-symmetric points in the sequence
Lebesgue spaces ℓp (1 < p < ∞) and c0. Since, in this case, every point is smooth,
and p-left and p-right s.i.p. symmetric for every 1 < p < ∞, the characterizations
are the same as were found by Bose, Roy, and Sain in [2].

References

[1] Birkhoff, Garrett. "Orthogonality in linear metric spaces." Duke Math. J. 1, no. 2
(1935): 169-172. Cited on 33.

[2] Bose, Babhrubahan, Saikat Roy, and Debmalya Sain. "Birkhoff-James orthogonal-
ity and its local symmetry in some sequence spaces." Revista de la Real Academia
de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 117, no. 3 (2023):
Article Id. 93. Cited on 33 and 50.

[3] Chattopadhyay, A., D. Sain, and T. Senapati. "Characterization of symmetric
points in ln

p -spaces." Linear and Multilinear Algebra 69, no. 16 (2021): 2998-3009.
Cited on 33.

[4] Chmieliński, J., D. Khurana, and D. Sain. "Approximate smoothness in normed
linear spaces." Banach Journal of Mathematical Analysis 17, no. 3 (2023): Article
Id. 41. Cited on 31, 32, 35, 39 and 40.

[5] Ghosh, P., D. Sain, and K. Paul. "On symmetry of Birkhoff-James orthogonality
of linear operators." Advances in Operator Theory 2 (2017): 428-434. Cited on
33.

[6] Ghosh, P., K. Paul, and D. Sain. "Symmetric properties of orthogonality of linear
operators on (Rn, ∥ · ∥1)." Novi Sad Journal of Mathematics 47 (2017): 41-46.
Cited on 33.

[7] James, R.C. "Inner product in normed linear spaces." Bulletin of the American
Mathematical Society 53 (1947): 559-566. Cited on 33.

[8] James, R.C. "Orthogonality and linear functionals in normed linear spaces." Trans-
actions of the American Mathematical Society 61 (1947): 265-292. Cited on 33.



Geometry of ℓp-direct sums of normed linear spaces [51]

[9] Lumer, G. "Semi-inner-product spaces." Transactions of the American Mathemat-
ical Society 100 (1961): 29-43. Cited on 33 and 34.

[10] Komuro, N., K.-S. Saito, and R. Tanaka. "Left symmetric points for Birkhoff
orthogonality in the preduals of von Neumann algebras." Bulletin of the Australian
Mathematical Society 98 (2018): 494-501. Cited on 33.

[11] Komuro, N., K.-S. Saito, and R. Tanaka. "Symmetric points for (strong) Birkhoff
orthogonality in von Neumann algebras with applications to preserver problems."
J. Math. Anal. Appl. 463 (2018): 1109-1131. Cited on 33.

[12] Komuro, N., K.-S. Saito, and R. Tanaka. "On symmetry of Birkhoff orthogonality
in the positive cones of C∗-algebras with applications." J. Math. Anal. Appl. 474
(2019): 1488-1497. Cited on 33.

[13] Paul, K., A. Mal, and P. Wójcik. "Symmetry of Birkhoff-James orthogonality of
operators defined between infinite dimensional Banach spaces." Linear Algebra
and Its Applications 563 (2019): 142-153. Cited on 33.

[14] Rudin, Walter. Functional Analysis. 2nd ed. New York: McGraw-Hill, 1991. Cited
on 43.

[15] Sain, D., P. Ghosh, and K. Paul. "On symmetry of Birkhoff-James orthogonality of
linear operators on finite-dimensional real Banach spaces." Operators & Matrices
11 (2017): 1087-1095. Cited on 33.

[16] Sain, D., et al. "A complete characterization of smoothness in the space of bounded
linear operators." Linear and Multilinear Algebra 68, no. 12 (2019): 2484-2494 .
Cited on 33.

[17] Sain, D., et al. "A study of symmetric points in Banach spaces." Linear and
Multilinear Algebra 70, no. 5 (2020): 888-898 . Cited on 33.

[18] Sain, D. "Birkhoff-James orthogonality of linear operators on finite dimensional
Banach spaces." J. Math. Anal. Appl. 447, no. 2 (2017): 860-866. Cited on 33.

[19] Sain, D. "On the norm attainment set of a bounded linear operator." J. Math.
Anal. Appl. 457, no. 1 (2018): 67-76. Cited on 33.

[20] Turnšek, A. "A remark on orthogonality and symmetry of operators in B(H)."
Linear Algebra and Its Applications 535 (2017): 141-150. Cited on 33.

[21] Turnšek, A. "On operators preserving James’ orthogonality." Linear Algebra and
Its Applications 407 (2005): 189-195. Cited on 33.

[22] Weaver, N. Measure Theory and Functional Analysis. Singapore: World Scientific
Publishing Company, 2013. Cited on 35.

Babhrubahan Bose
Department of Mathematics
Indian Institute of Science
Bengaluru 560012
Karnataka
INDIA
E-mail: babhrubahanb@iisc.ac.in

Received: December 23, 2023; final version: May 24, 2025;
available online: December 15, 2025.


	p-direct sums
	Geometry of p direct sums
	Birkhoff-James orthogonality in p-direct sums

