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Abstract. We present both necessary and sufficient conditions for a convex
closed shape such that for every convex function the average integral over
the shape does not exceed the average integral over its boundary.

It is proved that this inequality holds for n-dimensional parallelotopes, n-
dimensional balls, and convex polytopes having the inscribed sphere (tangent
to all its facets) with the centre in the centre of mass of its boundary.

1. Introduction

Dragomir and Pearce proved [4, Theorem 215] that if Bn is an n-dimensional
ball then  

B3

f(x)dx ≤
 
∂B3

f(x)dx

for every convex function f : B3 → R; here and below
�

stands for the average
integral (more precisely,

�
X
f(x)dx := 1

|X|
�
X
f(x)dx).

Later, Cal-Carcamo [1] and Cal-Carcamo-Escauriaza [2] proved that 
Bn

f(x)dx ≤
 
∂Bn

f(x)dx

for every n ≥ 2 and a convex function f : Bn → R.
During Conference on Inequalities and Applications 2016 Páles stated the

problem whether for every convex and closed set X and every convex function
f : X → R, the following inequality is valid 

X

f(x)dx ≤
 
∂X

f(x)dx. (1)
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It is however easy to verify that for the triangle T with vertices (0,−1), (0, 1), (1, 0)
and the function f : T 3 (x, y) 7→ x, inequality (1) is not satisfied (as inequality
1
3 ≤ 1−

√
2

2 is not valid). Furthermore, this property is invariant under transition,
scaling, changing orientation and reflection, whence it is a property of a shape. It
turned out that the only triangles admitting this property are equilateral triangles
(see Proposition 2 for details).

Author was notified that Fedor Nazarov proved the conjectured inequality in
the case n = 2 and for a symmetric X.

This motivates us to introduce the following definition. A convex, closed and
bounded set X ⊂ Rn (n ∈ N) is called Jensen-type if for every convex function
f : X → R, inequality (1) is satisfied. It is worth mentioning that if Y is similar to
X then either both or none of them are of Jensen-type. Therefore this property
can be considered as a property of convex shapes (i.e. classes of abstraction under
a similarity relation).

Using this definition previous results can be expressed briefly as n-dimensional
ball is of Jensen-type or Bn is of Jensen-type. The second example can be ex-
pressed by a 45− 45− 90 triangle is not of Jensen-type.

Motivated by these preliminaries we are going to prove this property for regular
polygons, parallelotopes (in all dimensions), and Platonic solids. Moreover, we will
present an independent proof that all balls are of Jensen-type.

Finally, let us emphasize that this problem is related to Choquet theory (see
Niculescu [5] and Niculescu–Persson [6, chap. 7]), where the following result was
stated.

Theorem 1
Let µ be a probability measure on a metrizable compact convex subset K of a locally
convex Hausdorff space. Then there exists a probability measure λ on K which has
the same barycentre as µ; is null outside ExtK and verifies the inequality

�
K

f(x)dµ(x) ≤
�

ExtK
f(x)dλ(x);

for all continuous convex functions f : K → R. Here ExtK denotes the set of all
extreme points of K.

2. Results

We begin with some necessary condition for X to be Jensen-type which gen-
eralizes the argumentation inspired by already presented result for a 45− 45− 90
triangle.

Lemma 1
If X is of Jensen-type then centres of mass of X and ∂X coincide.

Proof. Let πi : Rn → R be a projection on i-th coordinate (i ∈ {1, . . . , n}). Both
πi and −πi are convex so, as X is of Jensen-type, we get

 
X

πi(x)dx ≤
 
∂X

πi(x)dx and
 
X

−πi(x)dx ≤
 
∂X

−πi(x)dx.
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Thus  
X

πi(x)dx =
 
∂X

πi(x)dx for i ∈ {1, . . . , n}.

But centres of mass of X and ∂X equal to
( �

X
πi(x)dx

)n
i=1 and

( �
∂X

πi(x)dx
)n
i=1,

respectively. The above equality states that these points coincide.

Remark
We have presented some necessary condition for a shape to be of Jensen-type. Our
conjecture is that every convex shape which satisfies this condition is of Jensen-
type.

In the subsequent result we are going to prove that all parallelotopes and n-
dimensional balls are of Jensen-type. Prior to this we characterize all Jensen-type
triangles.

Proposition 2
Every triangle of Jensen-type is equilateral.

Proof. Let ABC be an arbitrary triangle which is of Jensen-type. Let us keep the
standard notation a = |BC|, b = |AC|, c = |AB|.

It is well-known that the centre of mass of ABC equals (in barycentric coor-
dinates) 1

3A+ 1
3B + 1

3C. Meanwhile the centre of mass of its boundary equals

1
a+ b+ c

(
a · B + C

2 + b · A+ C

2 + c · A+B

2

)
= b+ c

2(a+ b+ c) ·A+ a+ c

2(a+ b+ c) ·B + a+ b

2(a+ b+ c) · C.

Therefore, in view of Lemma 1 and the uniqueness of barycentric coordinates in
a triangle, we obtain

b+ c

2(a+ b+ c) = a+ c

2(a+ b+ c) = a+ b

2(a+ b+ c) ,

which after a simple transformation reduces to a = b = c.
The converse implication is a trivial corollary from more general Theorem 5

(which is proved at the end of this note).

Theorem 2
All parallelotopes are of Jensen-type.

Proof. Fix a parallelotopeW of dimension n. Let {Si}2
n

i=1 be all its facets. Denote
by S∗i the facet opposite to Si. In fact the facet S∗i is simply Si shifted by some
vector vi ∈ Rn. Finally, for y ∈ Si, let y∗ := y + vi ∈ S∗i .

Fix a convex function f : W → R. By the Hermite-Hadamard inequality we
have, for all admissible i and y ∈ Si,

� y∗

y

f(x)dx ≤ dist(y, y∗) · f(y) + f(y∗)
2 = |vi| ·

f(y) + f(y∗)
2 .
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If we integrate both side over Si, we obtain
�
W
f(x)dx

sin∠(Si, vi)
=
�
Si

� y∗

y

f(x)dxdy ≤ |vi| ·
�
Si

f(y) + f(y∗)
2 dy.

If we multiply both sides by |Si| · sin∠(Si, vi) and use the well-known equality
|W | = |Si| · |vi| · sin∠(Si, vi), we obtain

|Si|
�
W

f(x)dx ≤ |W | ·
�
Si

f(y) + f(y∗)
2 dy.

Finally, let us sum up the above inequality for i ∈ {1, 2, . . . , 2n}. Then we get

|∂W | ·
�
W

f(x)dx ≤ |W |
�
∂W

f(y)dy,

which simplifies to  
W

f(x)dx ≤
 
∂W

f(y)dy.

In the next theorem we will present an alternative proof (after [1, 2]) that all
balls are Jensen-type.

Theorem 3
Let n ≥ 2, then every n-dimensional ball is of Jensen-type.

Proof. Fix a convex function f : Bn → R. We have
 
Bn

f(x)dx = 1
|Bn|

�
Bn

f(x)dx = 1
|Bn|

� 1

0
rn−1

�
Sn−1

f(rx)dxdr

= 1
|Bn|

� 1

0

rn−1

2

�
Sn−1

f(rx) + f(−rx)dxdr.

Applying Wright-convexity of f we get
 
Bn

f(x)dx ≤ 1
|Bn|

� 1

0

rn−1

2

�
Sn−1

f(x) + f(−x)dxdr

≤ 1
|Bn|

� 1

0
rn−1dr

�
Sn−1

f(x)dx = 1
n|Bn|

�
Sn−1

f(x)dx.

By the identity n|Bn| = |Sn−1|, we obtain desired inequality.

2.1. Convex polytopes having an inscribed sphere

We will now deal with convex polytopes. To avoid misunderstandings the
sphere inscribed in a polytope is the sphere which is tangent to all its facets.
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Lemma 3
Let n ∈ N, ∆ ⊂ Rn be a convex (n− 1)-dimensional set, and s ∈ Rn \∆ such that
G = conv{∆, s} is n-dimentional. Then for every convex function f : G→ R,

 
G

f(x)dx ≤ n

n+ 1

 
∆
f(x)dx+ 1

n+ 1f(s).

Proof. For every θ ∈ (0, 1] let Tθ be a homothetic transformation of ∆ with centre
s and scale θ. Denote its image by ∆θ (obviously ∆1 = ∆). Moreover, set
H := dist(s,∆) and let π : G → ∆ be a projection such that π|∆θ

= T−1
θ . We

know that

x = θ · π(x) + (1− θ) · s for all θ ∈ (0, 1] and x ∈ ∆θ.

Whence, �
G

f(x)dx = H ·
� 1

0

�
∆θ

f(x)dxdθ

= H ·
� 1

0

�
∆θ

f(θ · π(x) + (1− θ)s)dxdθ.

= H ·
� 1

0

�
∆
θn−1f(θ · x+ (1− θ)s)dxdθ

Thus, by Jensen’s and Fubini’s inequalities,

�
G

f(x)dx ≤ H ·
�

∆

(� 1

0
θndθ · f(x) +

� 1

0
θn−1(1− θ)dθ · f(s)

)
dx.

Since
� 1

0 θ
ndθ = 1

n+1 and
� 1

0 θ
n−1(1− θ)dθ = 1

n(n+1) we obtain

�
G

f(x)dx ≤ H ·
( 1
n+ 1

�
∆
f(x)dx+ 1

n(n+ 1) |∆| · f(s)
)

= H · |∆|
n

·
( n

n+ 1

 
∆
f(x)dx+ 1

n+ 1 · f(s)
)
.

To finish the proof we can use the classical equality |G| = 1
n ·H · |∆|.

Theorem 4
Let W be an n-dimensional convex polytope having an inscribed sphere with centre
s. Then  

W

f(x)dx ≤ n

n+ 1

 
∂W

f(x)dx+ 1
n+ 1f(s) (2)

for every convex function f : W → R.
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Proof. Let r be the radius of the inscribed sphere. Denote all facets of W by
{A1, . . . , Ak}. Moreover, let Gi = conv{Ai, s}. We have |Gi| = r

n · |Ai|, in partic-
ular |W | = r

n |∂W |. By Lemma 3 we have (for all i ∈ {1, . . . , k}),
�
Gi

f(x)dx ≤ n

n+ 1 · |Gi| ·
 
Ai

f(x)dx+ 1
n+ 1 · |Gi| · f(s)

= n

n+ 1 ·
r

n
· |Ai| ·

 
Ai

f(x)dx+ 1
n+ 1 · |Gi| · f(s)

= r

n+ 1 ·
�
Ai

f(x)dx+ 1
n+ 1 · |Gi| · f(s).

Summing this inequality (side-by-side for i ∈ {1, · · · , k}) we obtain
�
W

f(x)dx ≤ r

n+ 1 ·
�
∂W

f(x)dx+ 1
n+ 1 · |W | · f(s)

= r · |∂W |
n+ 1 ·

 
∂W

f(x)dx+ 1
n+ 1 · |W | · f(s)

To finish the proof note that

r · |∂W |
n+ 1 = n

n+ 1 ·
r · |∂W |

n
= n

n+ 1 · |W | .

We can now present some simple corollary.

Corollary 1
Let W be a convex n-dimensional polytope having the inscribed sphere with centre
s and let m be the centre of mass of ∂W . Then

 
W

f(x)dx ≤
 
∂W

f(x)dx+ 1
n+ 1(f(s)− f(m))

for every convex function f : W → R.

Indeed, by Jensen’s inequality [3, Theorem 2.6.2] we have

f(m) = f
( 

∂W

xdx
)
≤
 
∂W

f(x)dx,

thus
0 ≤ 1

n+ 1

( 
∂W

f(x)dx− f(m)
)
.

We can now sum this inequality with (2) side-by-side to obtain desired inequality.
As a trivial particular case we obtain some sufficient condition for W to be of

Jensen-type.
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Theorem 5
Let W be a convex polytope having the inscribed sphere. If the centre of this sphere
coincide with the centre of mass ∂W , then W is of Jensen-type.

Obviously this result implies that all regular polygons and Platonic solids are
of Jensen-type.

Acknowledgement. I am grateful to Karol Gryszka, Stefan Steinerberger, and
Alfred Witkowski for their valuable remarks.
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