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Abstract. The aim of this article is to provide the local convergence analysis
of two novel competing sixth convergence order methods for solving equa-
tions involving Banach space valued operators. Earlier studies have used
hypotheses reaching up to the sixth derivative but only the first derivative
appears in these methods. These hypotheses limit the applicability of the
methods. That is why we are motivated to present convergence analysis
based only on the first derivative. Numerical examples where the conver-
gence criteria are tested are provided. It turns out that in these examples
the criteria in the earlier works are not satisfied, so these results cannot be
used to solve equations but our results can be used.

1. Introduction

Let B1, B2 be Banach spaces and Ω be a convex subset of B1. Using Mathe-
matical Modeling, numerous problems in Computational Sciences and also in En-
gineering, Mathematical Biology, Mathematical Economics and other disciplines
can be written in the form of equation

F (x) = 0, (1)

where F : Ω ⊆ B1 → B2 is a differentiable operator in the sense of Fréchet. The
solutions of such equations cannot be found in closed form, in general. So, most
of the solution methods for such equations are usually iterative.

Recently numerous researchers have presented fast convergence methods using
only the first derivative or divided differences of order one [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
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12, 15, 13, 11, 14, 16, 17, 18, 19, 20, 21] in the method but not in the assumptions
of the convergence, where much higher than order one derivatives are used. We
consider a sixth order Jarratt-like method [12, 15, 20] for approximating a solution
x∗ of (1). Earlier studies of such methods make assumptions on the derivatives of
F of order up to six although the method involves only the Fréchet derivative of
order one. However, these methods are important for faster convergence, especially
in cases of stiff systems of equations. So it is important to obtain the convergence
of these methods using assumption only on the first order derivative of F .

In this article, we present the local convergence analysis of two competing
sixth order methods by Wang [20] and Madhu [15], defined, respectively for each
n = 0, 1, 2, . . . by

yn = xn − αF ′(xn)−1F (xn),

zn = xn −
1
2(3F ′(yn)− F ′(xn))−1(3F ′(yn) + F ′(xn))F ′(xn)−1F (xn),

xn+1 = zn − (3
2F
′(yn)−1 − 1

2F
′(xn))−1)F (zn)

(2)

and
yn = xn − αF ′(xn)−1F (xn),
zn = yn − αnF

′(xn)−1F (yn),
xn+1 = zn − αnF

′(xn))−1)F (zn),
(3)

where x0 ∈ Ω is an initial point, α ∈ S, S = R or C, and αn = 2I−F ′(xn)−1F ′(yn).
The sixth order of convergence was shown using hypothesis reaching up to sixth
derivative of F and Taylor expansions in the special case when B1 = B2 = Rj .
These hypotheses limit the applicability of methods (2) and (3). As a motivational
and academic example, define function F on Ω = [− 1

2 ,
5
2 ] by

F (x) =
{
x3 ln x2 + x5 − x4, x 6= 0,
0, x = 0.

We have that x∗ = 1,

F ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x

and
F ′′′(x) = 6 ln x2 + 60x2 − 24x+ 22.

Function F ′′′(x) is unbounded on Ω. Hence, the results in [12, 15, 20] cannot be
applied to solve equation (1). We provide a local convergence analysis using only
hypotheses on the first Fréchet-derivative. This way we expand the applicabil-
ity of these methods (2) and (3). Moreover, we provide computable convergence
radii, error bounds on the distances ‖xn − x∗‖ and uniqueness results based on
Lipschitz-type functions. Such results were not given in [15] and [20]. Further-
more, we use the computational order of convergence (COC) and the approximate
computational order of convergence (ACOC)(which do not depend on higher than
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one Fréchet-derivative) to determine the order of convergence of methods (2) and
(3). Local results are important because they provide the degree of difficulty for
choosing initial points. Our idea can be used on other iterative methods.

The rest of the paper is structured as follows: Section 2 contains the local
convergence analysis of method (2). The numerical examples are presented in the
concluding Section 3.

2. Local Convergence Analysis I

The local convergence analysis of method (2) is based on some scalar functions
and parameters. Let w0 be a strictly continuous, increasing function defined on
the interval [0,+∞) with values in [0,+∞) and satisfying w0(0) = 0 and α ∈ S.
Suppose that equation

w0(t) = 1 (4)

has at least one positive solution. Denote by ρ the smallest such solution of (4).
Let also w, v be strictly continuous, increasing functions defined on the interval

[0, ρ) with values in [0,+∞) and satisfying w(0) = 0. Define functions g1 and h1
on the interval [0, ρ) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ + |1− α|

∫ 1

0
v(θt)dθ

1− w0(t) ,

h1(t) = g1(t)− 1.

Suppose that
|1− α|v(0) < 1. (5)

We have by the definition of the scalar functions, ρ and (5) that h1(0) = |1 −
α|v(0) − 1 < 0 and h1(t) → +∞ as t → ρ−. By applying the intermediate value
theorem on function h1, we deduce that the equation h1(t) = 0 has at least one
solution in (0, ρ). Denote by ρ1 the smallest such solution.

Define functions p and q on [0, ρ) by

p(t) = 1
2(3w0(g1(t)t) + w0(t)),

q(t) = p(t)− 1.

We get q(0) = −1 and q(t)→ +∞ as t→ ρ−. Denote by ρq the smallest solution
of equation q(t) = 0 in (0, ρ). Set ρ̄ = min{ρ, ρq}. Moreover, define functions g2
and h2 on the interval [0, ρ̄) by

g2(t) =

∫ 1

0
w((1− θ)t)dθ

1− w0(t) + 3
4

(w0(t) + w0(g1(t)t))
∫ 1

0
v(θt)dθ

(1− w0(t))(1− p(t)) ,

h2(t) = g2(t)− 1.
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We get again h2(0) = −1 and h2(t) → a positive number or +∞ as t → ρ̄−.
Denote by ρ1 the smallest solution of equation h2(t) = 0 in (0, ρ̄). Furthermore,
define functions g3 and h3 on the interval [0, ρ̄1) by

g3(t) =
[∫ 1

0
w((1− θ)g2(t)t)dθ

1− w0(g2(t)t) + (w0(g1(t)t) + w0(g2(t)t))
(1− w0(g1(t)t)(1− w0(g2(t)t))

+ w0(t) + w0(g1(t)t)
(1− w0(t))(1− w0(g1(t)t)

]
×
∫ 1

0
v(θg2(t)t)dθg2(t),

h3(t) = g3(t)− 1.

Suppose ρ̄1 and ρ̄2 are the smallest positive solutions of

g1(t)t = 1 (6)

and
g2(t)t = 1, (7)

respectively. Set ¯̄ρ = min{ρ̄1, ρ̄2}. We get that h3(0) = −1 and h3(t) → +∞ as
t→ ¯̄ρ−. Denote by ρ3 the smallest solution of equation h3(t) = 0 in (0, ¯̄ρ). Define
the radius of convergence ρ∗ by

ρ∗ = min{ρi}, i = 1, 2, 3. (8)

Then, we have that for each t ∈ [0, ρ∗),

0 ≤ gi(t) < 1 and 0 ≤ p(t) < 1. (9)

Let U(u, ε) = {x ∈ B1 : ‖x − u‖ < ε} for u ∈ B1 and ε > 0. Let also U(u, ε),
stand, for its closure.

Next, we present the local convergence analysis of method (2) using the pre-
ceding notation. The proof follows in an analogous way as the corresponding ones
in [5, 7] (see also [4, 8, 15, 14, 16, 20]).

Theorem 2.1
Let F : Ω ⊂ B1 → B2 be a continuously differentiable operator in the sense of
Fréchet. Suppose:
there exists x∗ ∈ Ω, such that

F (x∗) = 0, F ′(x∗)−1 ∈ L(B2,B1);

there exists function w0 : [0,+∞) → [0,+∞) strictly continuous and increasing
with w0(0) = 0 such that for each x ∈ Ω,

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖). (10)

Set Ω0 = Ω∩U(x∗, ρ∗), where ρ∗ is defined previously. There exist w, v : [0,+∞)→
[0,+∞) strictly continuous, increasing functions satisfying w(0) = 0 such that for
each x, y ∈ Ω0, (4), (6), (7), (9),

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖), (11)
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‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖) (12)

and
Ū(x∗, r) ⊆ Ω (13)

hold. Then, the sequence {xn} generated for x0 ∈ U(x∗, ρ) − {x∗} by method (2)
is well defined in U(x∗, ρ∗), remains in U(x∗, ρ∗) and converges to x∗ so that for
each n = 0, 1, 2, . . .,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ∗, (14)
‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (15)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (16)

where functions gi, i = 1, 2, 3 are given previously. Moreover, if there is some
R ≥ ρ∗ such that ∫ 1

0
w0(θR)dθ < 1, (17)

then the limit point x∗ is the only solution of equation F (x) = 0 in Ω ∩ Ū(x∗, R).

Proof. We shall show using induction that sequence {xk} is well defined, remains
in U(x∗, ρ∗) and converges to x∗ so that the estimates (14)–(16) hold. First, we
show that y0 is well defined and (17) holds for n = 0. To do this, by condition
(10) and x ∈ U(x∗, ρ∗), we have in turn that

‖F ′(x∗)−1(F ′(x)− F ′(x∗)‖ ≤ w0(‖x− x∗‖) ≤ w0(ρ) < 1. (18)

It follows from (18) and the Banach perturbation Lemma (see for example [2, 3,
13, 16]) that F ′(x)−1 ∈ L(B2,B1) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1
1− w0(‖x− x∗‖) . (19)

In particular, y0 exists by the first substep of method (2) and (19) for x = x0
(since x0 ∈ U(x∗, ρ∗)). Using the first substep of method (2), we obtain in turn
that (12), (9) (for i = 1) and (19),

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (1− α)F ′(x0)−1F (x0)

=
∫ 1

0
F ′(x0)−1F ′(x∗)F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))

− F ′(x0)](x0 − x∗)dθ

+ (1− α)F ′(x0)−1F ′(x∗)F ′(x∗)−1F (x0),

(20)
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so

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖

×
∥∥∥F ′(x∗)−1

∫ 1

0
[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ

∥∥∥
+ |1− α|‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤

∫ 1

0
w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖+

∫ 1

0
v(θ‖x0 − x∗‖)dθ

1− w0(‖x0 − x∗‖)
× ‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ∗,

(21)

thus (14) holds for n = 0 and y0 ∈ U(x∗, ρ∗), where we also used the estimate

‖F ′(x∗)−1F (x0)‖ = ‖F ′(x∗)−1(F (x0)− F (x∗))‖

=
∥∥∥ ∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ(x0 − x∗)

∥∥∥
≤
∫ 1

0
v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖,

(22)

since ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ ≤ ρ∗ (i.e. x∗ + θ(x0 − x∗) ∈ U(x∗, ρ∗)
for each θ ∈ [0, 1]).

Secondly, we show that z0 is well defined and (18) holds for n = 0. To achieve
this by the second substep of method (2) for n = 0, (11), (9) (for i = 2) and (22),
we get in turn

z0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

+
(
I − 1

2(3F ′(y0)− F ′(x0))−1(3F ′(y0) + F ′(x0))
)

× F ′(x0)−1F (x0)
= x0 − x∗ − F ′(x0)−1F (x0)

+ 3
2(3F ′(y0)− F ′(x0))−1(F ′(y0)− F ′(x0))F ′(x0)−1F (x0),

(23)

so by (2) for n = 0, (9) (for i = 2), (20) and (23) get in turn that

‖z0 − x∗‖ ≤ g1(‖x0 − x∗‖)‖x0 − x∗‖

+ 3
4

(w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖))
(1− p(‖x0 − x∗||))(1− w0(‖x0 − x∗‖))

×
∫ 1

0
v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ∗,

which shows (15) for n = 0 and z0 ∈ U(x∗, ρ∗), where we also used the estimate
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‖(2F ′(x∗))−1(3(F ′(y0)− F ′(x∗))− (F ′(x0)− F ′(x∗))‖

≤ 1
2 [3w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)]

≤ p(‖x0 − x∗‖) < p(ρ∗) < 1,

so
‖(3F ′(y0)− F ′(x0))−1F ′(x∗)‖ ≤ 1

2(1− p(‖x0 − x∗‖))
. (24)

Thirdly, we show that x1 is well defined and (19) hold for n = 0. By the third
substep of method (2), (24), (9) (for i = 3), (19), (24) and (17) we get in turn that

x1 − x∗ = z0 − x∗ − F ′(z0)−1F (z0) + F ′(z0)−1F (z0)

−
[3

2F
′(y0)−1 − 1

2F
′(x0)−1

]
F (z0)

= z0 − x∗ − F ′(z0)−1F (z0)
+ F ′(z0)−1(F ′(y0)− F ′(z0))F ′(y0)−1F (z0)

+ 1
2F
′(x0)−1(F ′(y0)− F ′(x0))F ′(y0)−1F (z0),

so

‖x1 − x∗‖ ≤

∫ 1

0
w((1− θ)‖z0 − x∗‖)dθ‖z0 − x∗‖

1− w0(‖z0 − x∗‖)

+ (w0(‖z0 − x∗‖) + w0(‖y0 − x∗‖)
(1− w0(‖z0 − x∗‖))(1− w0(‖y0 − x∗‖))

×
∫ 1

0
v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

+ 1
2

(w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖))
(1− w0(‖x0 − x∗‖))(1− w0(‖y0 − x∗‖))

×
∫ 1

0
v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < ρ∗,

which shows (16) for n = 0 and x1 ∈ U(x∗, ρ∗). Then, substitute x0, y0, z0 and x1
by xk, yk, zk and xk+1, resp., in the preceding estimates, to complete the induction
for (14)–(16). Then, in view of the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < ρ∗, (25)

where c = g3(‖x0 − x∗‖) ∈ [0, 1), we deduce that lim
k→∞

xk = x∗ and xk+1 ∈
U(x∗, ρ∗).
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Finally, we show the uniqueness of the solution result. Let y∗ ∈ Ω ∩ Ū(x∗, R)
be such that F (y∗) = 0. Set

T =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗))dθ.

Then, using (10) and (17), we get that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0
w0(θ‖x∗ − y∗‖)dθ

≤
∫ 1

0
w0(θR)dθ < 1,

so, T−1 ∈ L(B2,B1). Then, from the identity 0 = F (y∗) − F (x∗) = T (y∗ − x∗),
we conclude that x∗ = y∗ completing the uniqueness of the solution part and the
proof of the theorem.

Remark 2.2

(a) Let w0(t) = L0t, w(t) = Lt. The radius ρ̃1 = 2
2L0+L was obtained by Argyros

as the convergence radius for Newton’s method under condition (10)–(12).
Notice that the convergence radius for Newton’s method given independently
by Rheinboldt [18] and Traub [19] is given by

ρ̃ = 2
3L < ρ̃1.

Let f(x) = ex − 1. Then x∗ = 0. Set Ω = U(0, 1). Then, we have that
L0 = e− 1 < L = e

1
L0 , so ρ̃ = 0.24252961 < ρ̃1 = 0.3827.

Moreover, the new error bounds [2, 3, 4, 5, 6] are

‖xn+1 − x∗‖ ≤
L

1− L0‖xn − x∗‖
‖xn − x∗‖2,

whereas the old ones [18, 19]

‖xn+1 − x∗‖ ≤
L

1− L‖xn − x∗‖
‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Clearly, the
radius of convergence of method (2) given by ρ∗ is smaller than ρ̃1.

(b) Method (2) stays the same if we use the new instead of the old conditions
[12, 15, 20]. We can use the computational order of convergence (COC)

ξ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

for eachn = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

for eachn = 0, 1, 2, . . . .
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(c) Using (10) and

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + q0(‖x− x∗‖)

condition (13) can be replaced by

w(t) = 1 + w0(t)

or
w = 1 + w0(ρ∗).

(d) If we restrict method (2) to the first two substeps and replace zn by xn+1,
then we obtain the results for the Jarratt method [12].

3. Local Convergence Analysis-II

The local convergence analysis of method (3) is given in an analogous way to
method (2). Let w0, w, v, ρ and R be as in Section 2. Define functions G1, H1,
G2 and H2 on the interval [0, ρ) by

G1(t) =

∫ 1

0
w((1− θ)t)dθ

1− w0(t) ,

H1(t) = G1(t)− 1,

G2(t) = G1(t) +

∫ 1

0
v(θt)dθ +

∫ 1

0
v(θG1(t)t)dθ + ϕ(t)

1− w0(t) ,

H2(t) = G2(t)− 1,

where

ϕ(t) =
(w0(G1(t)t) + w0(t))

∫ 1

0
v(θG1(t)t)dθG1(t)

1− w0(t) .

We have H1(0) = H2(0) = −1 and H1(t) → +∞ as t → ρ−, H2(t) → a positive
constant or +∞ as t → ρ−. Denote by r1, r2 the smallest solutions of equations
H1(t) = 0 and H2(t) = 0, respectively. Suppose that equation

G1(t)t = 1

has at least one positive positive solution. Denote by ˜̃ρ the smallest such solution.
Moreover, define functions G3 and H3 on the interval [0, ˜̃ρ) by
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G3(t) =

∫ 1

0
w((1− θ)G2(t)t)dθG2(t)

1− w0(G2(t)t)

+
(w0(t) + w0(G2(t)t))

∫ 1

0
v(θG2(t)t)dθG2(t)

(1− w0(G2(t)t))(1− w0(t))

+
(w0(G1(t)t) + w0(t))

∫ 1

0
v(θG2(t)t)dθG2(t)

(1− w0(t))2

and
H3(t) = G3(t)− 1.

We get H3(0) = −1 and H3(t) → +∞ as t → ˜̃ρ−. Denote by r3 the smallest
solution of equation H3(t) = 0 in (0, ˜̃ρ). Further, define the radius of convergence
r by

r∗ = min{ri}, i = 1, 2, 3. (26)
Then, for each t ∈ [0, r∗),

0 ≤ Gi(t) < 1 (27)
and

0 ≤ w0(G2(t)t) < 1.

Theorem 3.1
Suppose that hypotheses of Theorem 2.1 but with ρ∗, replaced by r∗ given by (26)
and R by R∗. Then, the conclusions of Theorem 2.1 hold but with method (2)
replaced by method (3).

Proof. As in Theorem 2.1 but for method (3), we obtain in turn from the three
substeps of method (3) that

‖yn − x∗‖ ≤ G1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r∗

and

zn − x∗ = xn − x∗ − (2I − F ′(xn)−1F ′(yn))F ′(xn)−1F (yn)

= xn − x∗ − F ′(xn)−1F (xn) + F ′(xn)−1(F (xn)− F (yn))

+ F ′(xn)−1[F ′(yn)F ′(xn)−1 − F ′(xn)−1]F (yn)

= yn − x∗ + F ′(xn)−1[(F (xn)− F (yn))

+ (F ′(yn)− F ′(xn))F ′(xn)−1F (yn)],

so

‖zn − x∗‖ ≤ ‖yn − x∗‖

+

∫ 1

0
v(θ‖xn − x∗‖)dθ‖xn − x∗‖+

∫ 1

0
v(θ‖yn − x∗‖)dθ‖yn − x∗‖

1− w0(‖xn − x∗‖)
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+ ψ(‖xn − x∗‖, ‖yn − x∗‖)
1− w0(‖xn − x∗‖)

≤ G2(‖xn − x∗‖)‖xn − x∗‖
≤ ‖xn − x∗‖,

where

ψ(s, t) =
(w0(t) + w0(s))

∫ 1

0
v(θt)dθt

1− w0(t)
and from

xn+1 − x∗ = zn − x∗ − F ′(zn)−1F (zn)
+ F ′(zn)−1F (zn)− αnF

′(xn)−1F (zn)
= zn − x∗ − F ′(zn)−1F (zn)

+ F ′(zn)−1(F ′(xn)− F ′(zn))F ′(xn)−1F (zn)
+ (F ′(xn)−1)2(F ′(yn)− F ′(xn))F (zn),

leading to

‖xn+1 − x∗‖ ≤

∫ 1

0
w((1− θ)‖zn − x∗‖)dθ‖zn − x∗‖

1− w0(‖zn − x∗‖)

+
(w0(‖xn − x∗‖) + w0(‖zn − x∗‖))

∫ 1

0
v(θ‖zn − x∗‖)dθ‖zn − x∗‖

(1− w0(‖xn − x∗‖)(1− w0(‖zn − x∗‖))

+
(w0(‖yn − x∗‖) + w0(‖xn − x∗‖))

∫ 1

0
v(θ‖zn − x∗‖)dθ‖zn − x∗‖

1− w0(‖xn − x∗‖)
≤ G3(‖xn − x∗‖)‖xn − x∗‖) ≤ ‖xn − x∗‖.

4. Numerical Examples

The numerical examples are presented in this section.

Example 4.1
Let B1 = B2 = R3, Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on Ω for
u = (x, y, z)T by

F (u) = (ex − 1, e− 1
2 y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
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Notice that using the (12)-(16), conditions, we get w0(t) = (e− 1)t, w(t) = e
1

e−1 t

and v(t) = e
1

e−1 .
Then using the definition of ρ∗ and r∗, we have that (see also (8) and (27)),

ρ∗ = 0.14444885915244823348935199192056,
r∗ = 0.041513536254307446815570159515119.

Example 4.2
Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] and be
equipped with the max norm. Let Ω = U(0, 1). Define function F on Ω by

F (ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ.

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ for each ξ ∈ Ω.

Then, we get that x∗ = 0, w0(t) = 7.5t, w(t) = 15t and v(t) = 15. This way, we
have that

ρ∗ = 0.0029787165027481215216764720565834,
r∗ = 0.00025772162389070053020029282819792.

Example 4.3
Let us return back to the motivational example. Then, we get that w0(t) = w(t) =
147t and v(t) = 147. So, we obtain

ρ∗ = 0.000002280599520303840650292497016504,
r∗ = 0.0000001563215609454908465374514160.

Example 4.4
Let B1 = B2 = C[0, 1],Ω = Ū(x∗, 1) and consider the nonlinear integral equation
of the mixed Hammerstein-type [1, 2, 7, 9, 10, 12, 16] defined by

x(s) =
∫ 1

0
G(s, t)

(
x(t)3/2 + x(t)2

2

)
dt,

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =
{

(1− s)t, t ≤ s,
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (1), where the
mapping F : C[0, 1]→ C[0, 1]) is defined by

F (x)(s) = x(s)−
∫ 1

0
G(s, t)

(
x(t)3/2 + x(t)2

2

)
dt.
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Notice that ∥∥∥∫ 1

0
G(s, t)dt

∥∥∥ ≤ 1
8 .

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0
G(s, t)

(3
2x(t)1/2 + x(t)

)
dt,

so since F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1
8

(3
2‖x− y‖

1/2 + ‖x− y‖
)
.

Then, we get that w0(t) = w(t) = 1
8 ( 3

2 t
1/2 + t), v(t) = 1 + w0(t). So, we obtain

ρ∗ = 0.74068507094596702788891207092092,
r∗ = 0.57895531889724227703197811933933.
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