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Abstract. In this work, we construct the sequence spaces f(Q(r, s, t, u)),
f0(Q(r, s, t, u)) and fs(Q(r, s, t, u)), where Q(r, s, t, u) is quadruple band ma-
trix which generalizes the matrices ∆3, B(r, s, t), ∆2, B(r, s) and ∆, where
∆3, B(r, s, t), ∆2, B(r, s) and ∆ are called third order difference, triple
band, second order difference, double band and difference matrix, respec-
tively. Also, we prove that these spaces are BK-spaces and are linearly
isomorphic to the sequence spaces f , f0 and fs, respectively. Moreover, we
give the Schauder basis and β, γ-duals of those spaces. Lastly, we charac-
terize some matrix classes related to those spaces.

1. Basic knowledge

By a sequence space, we mean a vector subspace of w, where w is a set of all
real (or complex) valued sequences which becomes a vector space under point-wise
addition and scalar multiplication. For the spaces of all bounded, null, conver-
gent and absolutely p-summable sequences, we use the symbols `∞, c0, c and `p,
respectively, where 1 ≤ p <∞.

LetX be a Banach sequence space. If each of the maps pk : X → C, pk(x) = xk
is continuous for all k ∈ N, X is called a BK-space. The sequence spaces `∞, c0
and c are all BK-spaces according to ‖x‖∞ = supn∈N |xn| and `p is a BK-space
according to

‖x‖p =
( ∞∑
k=0
|xk|p

) 1
p

, where p ∈ (1,∞] (see [22]).
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For a given infinite matrix A = (ank) with ank ∈ C for all n, k ∈ N and x = (xk) ∈
w, the A-transform of x is denoted by y = Ax and is defined by

yn = (Ax)n =
∞∑
j=0

anjxj

for all n ∈ N and each of these series being assumed convergent (see [30]). In terms
of ease of use, here and in the following, the summation without limits runs from
zero to infinity.

By (X : Y ), we denote the class of all matrices A = (ank) such that Ax ∈ Y
for every x ∈ X, where X and Y are two arbitrary sequence spaces. The matrix
domain XA of the matrix A = (ank) in a sequence space X is defined by

XA = {x = (xk) : Ax ∈ X}. (1.1)

The spaces of all convergent and bounded series are denoted by cs and bs and
are defined by cs = cS and bs = (`∞)S where S = (snk) is called the summation
matrix defined by

snk =
{

1, 0 ≤ k ≤ n,
0, k > n

for all n, k ∈ N.
A matrix A = (ank) is called a triangle provided ank = 0 for k > n and ann 6= 0

for all n, k ∈ N. Moreover, a triangle matrix uniquely has an inverse.
As an application of the Hahn-Banach theorem to the sequence space `∞, the

concept of Banach Limits was first put forward by the Stefan Banach. Banach first
recognized certain non-negative linear functionals on `∞ which remain invariant
under shift operators and which are extension of l, where l : c −→ R, l(x) = lim

n→∞
xn

is defined and l is linear functional on c. This kind of functionals were later termed
"Banach Limits" [13].

A continuous linear functional L : `∞ → R is called a Banach Limit if the
following conditions are satisfied:

(i) L(xn) ≥ 0 if xn ≥ 0, n = 0, 1, 2, . . . ;
(ii) L(Pj(xn)) = L(xn), Pj(xn) = xn+j , j = 1, 2, 3, . . . ;

(iii) L(e) = 1, where e = (1, 1, . . . ).

Lorentz continued the study of Banach Limits and brought out a new notion
named Almost Convergence. The sequence x = (xn) ∈ `∞ is called almost conver-
gent and the number Lim xn = λ is called its F -limit if L(xn) = λ holds for every
limit L (see [21]).

An approach to the construction of a new sequence space by means of the
domains of the difference matrices was used by, c0(∆), c(∆) and `∞(∆) in [18],
∆c0(p), ∆c(p) and ∆`∞(p) in [1], c0(u,∆, p), c(u,∆, p) and `∞(u,∆, p) in [2],
c0(∆2), c(∆2) and `∞(∆2) in [16], c0(u,∆2), c(u,∆2) and `∞(u,∆2) in [23],
c0(u,∆2, p), c(u,∆2, p) and `∞(u,∆2, p) in [11], c0(∆m), c(∆m) and `∞(∆m) in
[15], ˆ`∞, ĉ0, ĉ and ˆ̀

p in [20], c0(B), c(B), `∞(B) and `p(B) in [28], f̂0 and f̂ in
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[3], f0(B) and f(B) in [29]. For recent developments in this direction, we refer
the reader to the textbooks/monographs [8], [9], [24] and [25], and the references
therein.

2. Almost convergence quadruple band matrix

In this section, we mention some old works and construct the sequence spaces
f0(Q(r, s, t, u)), f(Q(r, s, t, u)) and fs(Q(r, s, t, u)). Moreover, we prove that these
spaces are BK-spaces and are linearly isomorphic to the sequence spaces f0, f
and fs, respectively.

Lorentz characterized the almost convergent sequences by giving the next the-
orem.

Theorem 1 (see [21])
In order that F -limit, Lim xn = λ exists for the sequence x = (xn), it is necessary
and sufficient that

lim
k→∞

xn + xn+1 + · · ·+ xn+k

k + 1 = λ

holds uniformly in n.

By connecting the notion of almost convergence and Theorem 1, the spaces
f , f0 and fs of all almost convergent sequences, almost null sequences and almost
convergent series are defined by

f =
{
x = (xk) ∈ w : ∃λ ∈ C lim

i→∞

i∑
k=0

xn+k

i+ 1 = λ uniformly in n
}
,

f0 =
{
x = (xk) ∈ w : lim

i→∞

i∑
k=0

xn+k

i+ 1 = 0 uniformly in n
}

and

fs =
{
x = (xk) ∈ w : ∃λ ∈ C lim

i→∞

i∑
k=0

n+k∑
j=0

xj
i+ 1 = λ uniformly in n

}
,

respectively. By using the relation (1.1), the sequence space fs can be redefined
as follows

fs = fS .

Theorem 2 (see [12])
The inclusions c ⊂ f ⊂ `∞ strictly hold.

Theorem 3 (see [12])
The sequence spaces f and f0 are BK-spaces with the norm

‖x‖f = sup
i,n∈N

∣∣∣∣ i∑
k=0

xn+k

i+ 1

∣∣∣∣
and fs is a BK-space with the norm ‖x‖fs = ‖Sx‖f .
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In order to define sequence spaces, the difference matrix was first used by
Kızmaz in [18]. He constructed the difference sequence spaces c0(∆), c(∆) and
`∞(∆), as follows

c0(∆) =
{
x = (xk) ∈ w : lim

k→∞
(xk − xk+1) = 0

}
,

c(∆) =
{
x = (xk) ∈ w : lim

k→∞
(xk − xk+1) exists

}
and

`∞(∆) =
{
x = (xk) ∈ w : sup

k∈N
|xk − xk+1| <∞

}
and the difference matrix ∆ = (enk) is defined by

enk =


1, k = n,

−1, k = n+ 1,
0, otherwise

for all n, k ∈ N.
Afterward, Başar and Kirişçi used the generalized difference matrix in [3] for

defining the generalized difference sequence spaces f̂0 and f̂ which are defined by

f̂0 =
{
x = (xk) ∈ w : lim

m→∞

m∑
j=0

rxn+j + sxn+j−1

m+ 1 = 0 uniformly in n
}

and

f̂ =
{
x = (xk) ∈ w : ∃λ ∈ C lim

m→∞

m∑
j=0

rxn+j + sxn+j−1

m+ 1 = λ uniformly in n
}
.

Moreover, Sönmez used the triple band matrix in [29] for defining almost conver-
gent sequence spaces derived by the domain of triple band matrix. These spaces
are defined by

f0(B(r, s, t)

=
{
x = (xk) ∈ w : lim

m→∞

m∑
j=0

rxn+j + sxn+j−1 + txn+j−2

m+ 1 = 0 uniformly in n
}

and

f(B(r, s, t)) =
{
x = (xk) ∈ w :

∃λ ∈ C lim
m→∞

m∑
j=0

rxn+j + sxn+j−1 + txn+j−2

m+ 1 = λ uniformly in n
}
.
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Recently, Bişgin has defined the sequence spaces c0(Q), c(Q), `∞(Q) and `p(Q)
as follows

c0(Q) =
{
x = (xk) ∈ w : lim

k→∞
(rxk + sxk−1 + txk−2 + uxk−3) = 0

}
,

c(Q) =
{
x = (xk) ∈ w : lim

k→∞
(rxk + sxk−1 + txk−2 + uxk−3) exists

}
,

`∞(Q) =
{
x = (xk) ∈ w : sup

k∈N
|rxk + sxk−1 + txk−2 + uxk−3| <∞

}
and

`p(Q) =
{
x = (xk) ∈ w :

∑
k

|rxk + sxk−1 + txk−2 + uxk−3|p <∞
}
,

where 1 ≤ p <∞ and the quadruple band matrixQ = Q(r, s, t, u) = (qnk(r, s, t, u))
is defined by

qnk(r, s, t, u) =



r, k = n,

s, k = n− 1,
t, k = n− 2,
u, k = n− 3,
0, otherwise

for all n, k ∈ N, r, s, t, u ∈ R \ {0}. Here, we would like to bring attention that
Q(1,−3, 3,−1) = ∆3, Q(r, s, t, 0) = B(r, s, t), Q(1,−2, 1, 0) = ∆2, Q(r, s, 0, 0) =
B(r, s) and Q(1,−1) = ∆, where ∆3, B(r, s, t), ∆2, B(r, s) and ∆ are called third
order difference, triple band, second order difference, double band (generalized
difference) and difference matrices, respectively. Therefore, our results derived
from the matrix domain of the quadruple band matrix are more general and more
comprehensive than the results on the matrix domain of the others mentioned
above.

Now, we define the spaces f0(Q(r, s, t, u)), f(Q(r, s, t, u)) and fs(Q(r, s, t, u))
by

f0(Q(r, s, t, u)) =
{
x = (xk) ∈ w :

lim
i→∞

i∑
j=0

rxn+j + sxn+j−1 + txn+j−2 + uxn+j−3

i+ 1 = 0 uniformly in n
}
,

f(Q(r, s, t, u)) =
{
x = (xk) ∈ w :

∃λ ∈ C lim
i→∞

i∑
j=0

rxn+j + sxn+j−1 + txn+j−2 + uxn+j−3

i+ 1 = λ uniformly in n
}
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and

fs(Q(r, s, t, u)) =
{
x = (xk) ∈ w :

∃λ ∈ C lim
i→∞

i∑
j=0

n+j∑
v=0

rxv + sxv−1 + txv−2 + uxv−3

i+ 1 = λ uniformly in n
}
,

respectively. By taking into account the notation (1.1), the sequence spaces
f0(Q(r, s, t, u)), f(Q(r, s, t, u)) and fs(Q(r, s, t, u)) can be redefined by means of
the domain of the quadruple band matrix Q = Q(r, s, t, u) as follows

f0(Q) = (f0)Q, f(Q) = fQ and fs(Q) = fsQ. (2.1)

Also, for given an arbitrary sequence x = (xk) ∈ w, the Q(r, s, t, u)-transform of
x = (xk) is defined by

yk = (Q(r, s, t, u)x)k = rxk + sxk−1 + txk−2 + uxk−3

for all k ∈ N.

Theorem 4
The sequence spaces f0(Q(r, s, t, u)), f(Q(r, s, t, u)) and fs(Q(r, s, t, u)) equipped
with the norms

‖x‖f(Q(r,s,t,u)) = ‖x‖f0(Q(r,s,t,u)) = ‖Q(r, s, t, u)x‖f

and
‖x‖fs(Q(r,s,t,u)) = ‖Q(r, s, t, u)x‖fs,

respectively, are BK-spaces.

Proof. Notice that f , f0 and fs are known to be BK-spaces. Moreover, quadruple
band matrix is a triangle matrix and the condition (2.1) holds. If we connect these
results with Theorem 4.3.12 of Wilansky [30], we conclude that f(Q(r, s, t, u)),
f0(Q(r, s, t, u)) and fs(Q(r, s, t, u)) are BK-spaces. This completes the proof of
theorem.

Now, let us pay attention to the equation

rz3 + sz2 + tz + u = 0,

where r, s, t, u ∈ R \ {0}. We know that this equation has three roots such that
z1 = 1

3r [a − b − s], z2 = − 1
6r [(1 − i

√
3)a − (1 + i

√
3)b + 2s] and z3 = − 1

6r [(1 +
i
√

3)a− (1− i
√

3)b+ 2s], where

a =
3

√√
(−27r2u+ 9rst− 2s3)2 + 4(3rt− s2)3 − 27r2u+ 9rst− 2s3

2

and

b =
3

√√
(−27r2u+ 9rst− 2s3)2 + 4(3rt− s2)3 + 27r2u− 9rst+ 2s3

2 .
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We henceforth prefer that µ1, µ2 and µ3 are random three roots of the equation
rz3 + sz2 + tz + u = 0. Also, by using a simple calculation, we have

µ1 + µ2 + µ3 = −s
r
, µ1µ2 + µ1µ3 + µ2µ3 = t

r
and µ1µ2µ3 = −u

r
,

µ3
1 + s

r
µ2

1 + t

r
µ1 + u

r
= 0, (2.2)

µ2
1 + µ2

2 + s

r
(µ1 + µ2) + µ1µ2 + t

r
= 0, (2.3)

µ2
1 + µ2

2 + µ2
3 + µ1µ2 + µ1µ3 + µ2µ3 + s

r
(µ1 + µ2 + µ3) + t

r
= 0, (2.4)

µ1 + µ2 + µ3 + s

r
= 0. (2.5)

Theorem 5
The sequence spaces f0(Q(r, s, t, u)), f(Q(r, s, t, u)) and fs(Q(r, s, t, u)) are linearly
isomorphic to the sequence spaces f0, f and fs, respectively.

Proof. Because of the equivalence f0(Q(r, s, t, u)) ∼= f0 and fs(Q(r, s, t, u)) ∼= fs
can be proved by using similar operations, the proof is given for only the sequence
space f(Q(r, s, t, u)). For this purpose, the presence of a linear bijection between
the sequence spaces f(Q(r, s, t, u)) and f should be shown.

In that case, let us define a transformation L : f(Q(r, s, t, u)) → f so that
L(x) = Q(r, s, t, u)x. It is clear that L(x) = Q(r, s, t, u)x ∈ f whenever x = (xk) ∈
f(Q(r, s, t, u)). Also, it is obviously provided that L is a linear transformation and
x = 0 in case of L(x) = 0. Thus, L is injective.

Now, through the medium of y = (yk) ∈ f , let us define a sequence x = (xk)
such that

xk = 1
r

k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3yj

for all k ∈ N. Then, by considering (2.2)–(2.5), we obtain

(Qx)k = rxk + sxk−1 + txk−2 + uxk−3

=
k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3yj

+ s

r

k−1∑
j=0

k−j−1∑
i=0

k−j−i−1∑
v=0

µk−j−i−v−1
1 µv2µ

i
3yj

+ t

r

k−2∑
j=0

k−j−2∑
i=0

k−j−i−2∑
v=0

µk−j−i−v−2
1 µv2µ

i
3yj

+ u

r

k−3∑
j=0

k−j−3∑
i=0

k−j−i−3∑
v=0

µk−j−i−v−3
1 µv2µ

i
3yj
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=
k−3∑
j=0

[ k−j−3∑
i=0

[ k−j−i−3∑
v=0

µi3µ
v
2µ

k−j−i−v−3
1

(
µ3

1 + s

r
µ2

1 + t

r
µ1 + u

r

)
+ µi3µ

k−j−i−2
2

(
µ2

1 + µ2
2 + s

r
(µ1 + µ2) + µ1µ2 + t

r

)
+ µk−j−2

3

(
µ2

1 + µ2
2 + µ2

3 + µ1µ2 + µ1µ3 + µ2µ3

+ s

r
(µ1 + µ2 + µ3) + t

r

)]]
yj

+
[
yk−2

(
µ2

1 + µ2
2 + µ2

3 + µ1µ2 + µ1µ3 + µ2µ3

+ s

r
(µ1 + µ2 + µ3) + t

r

)
+ yk−1

(
µ1 + µ2 + µ3 + s

r

)
+ yk

]
= yk

for all k ∈ N, which yields that

lim
i→∞

i∑
j=0

rxn+j + sxn+j−1 + txn+j−2 + uxn+j−3

i+ 1 = lim
i→∞

i∑
j=0

yn+j

i+ 1 = F − lim yn.

Namely, x = (xk) ∈ f(Q(r, s, t, u)) and L(x) = y. Hence, L is surjective. Also, for
all x = (xk) ∈ f(Q(r, s, t, u)), we have

‖L(x)‖f = ‖Q(r, s, t, u)x‖f = ‖x‖f(Q(r,s,t,u)).

That’s why, L is norm preserving. As a consequences of these, L is a linear
bijection. Therefore, we obtain f(Q(r, s, t, u)) ∼= f as desired. This completes the
proof of theorem.

3. The Schauder basis and β, γ-duals

In this section, we mention the Schauder basis and determine β- and γ-duals
of the spaces f(Q(r, s, t, u)) and fs(Q(r, s, t, u)).

If a normed space X contains a sequence b = (bk) with the property that, for
all x = (xk) ∈ X, there is a unique sequence of scalars (αn) such that∥∥∥∥x− n∑

k=0
αkbk

∥∥∥∥
X

→ 0

as n→∞, then b = (bk) is called a Schauder basis for X.

Corollary 1 (see [3])
Almost convergent sequence space f has no Schauder basis.

Remark 1
For an arbitrary sequence space X and a triangle matrix A = (ank), it is known
that XA has a basis if and only if X has a basis, [17].
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Remark 1 and Corollary 1 give us the next corollary.

Corollary 2
The sequence spaces f(Q(r, s, t, u)) and fs(Q(r, s, t, u)) have no Schauder basis.

Let X and Y be two arbitrary sequence spaces. Define the multiplier space
M(X,Y ) by

M(X,Y ) =
{
a = (ak) ∈ w : xa = (xkak) ∈ Y for all x = (xk) ∈ X

}
.

Then, the β- and γ-duals of a sequence space X are defined by

Xβ = M(X, cs) and Xγ = M(X, bs),

respectively.
For a given infinite matrix A = (ank) of complex numbers, we write the fol-

lowings
sup
n∈N

∑
k

|ank| <∞, (3.1)

lim
n→∞

ank = ξk for each fixed k ∈ N, (3.2)

lim
n→∞

∑
k

ank = ξ, (3.3)

lim
n→∞

∑
k

|∆(ank − ξk)| = 0, (3.4)

sup
n∈N

∑
k

|∆ank| <∞, (3.5)

lim
k→∞

ank = 0 for each fixed n ∈ N, (3.6)

lim
n→∞

∑
k

|∆2ank| = α, (3.7)

where ∆ank = ank − an,k+1 and ∆2ank = ∆(∆ank). Then, we can give the next
lemma.

Lemma 1
Let A = (ank) be an infinite matrix of complex numbers. Then, the followings
hold:

(i) A = (ank) ∈ (f : `∞)⇔ (3.1) holds (see [27]);

(ii) A = (ank) ∈ (f : c)⇔ (3.1), (3.2), (3.3) and (3.4) hold (see [27]);

(iii) A = (ank) ∈ (fs : `∞)⇔ (3.5) and (3.6) hold (see [3]);

(iv) A = (ank) ∈ (fs : c)⇔ (3.2), (3.5), (3.6) and (3.7) hold (see [26]).
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Theorem 6
Given the sets t1, t2, t3, t4, t5, t6 and t7 as follows

t1 =
{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

∣∣∣∣1r
n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj

∣∣∣∣ <∞},
t2 =

{
a = (ak) ∈ w : lim

n→∞

1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj exists for each k ∈ N

}
,

t3 =
{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

[
1
r

k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3

]
ak exists

}
,

t4 =
{
a = (ak) ∈ w : lim

n→∞

∑
k

∣∣∣∣∆[1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj − ξk

]∣∣∣∣ = 0
}
,

t5 =
{
a = (ak) ∈ w : sup

n∈N

∑
k

∣∣∣∣∆[1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj

]∣∣∣∣ <∞},
t6 =

{
a = (ak) ∈ w : lim

k→∞

1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj = 0 for each n ∈ N

}
,

t7 =
{
a = (ak) ∈ w : lim

n→∞

∑
k

∣∣∣∣∆2
[

1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj

]∣∣∣∣ exists},
where

lim
n→∞

1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj = ξk

for all k ∈ N. Then the following statements hold:

(i) {f(Q(r, s, t, u))}β = t1 ∩ t2 ∩ t3 ∩ t4;

(ii) {f(Q(r, s, t, u))}γ = t1;

(iii) {fs(Q(r, s, t, u))}β = t2 ∩ t5 ∩ t6 ∩ t7;

(iv) {fs(Q(r, s, t, u))}γ = t5 ∩ t6.

Proof. To avoid the repetition of the similar statements, we give the proof for only
part (i). Let us take a = (ak) ∈ w and consider a sequence x = (xk) such that

xk = 1
r

k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3yj

for all k ∈ N.
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Then, we have

n∑
k=0

akxk =
n∑
k=0

[
1
r

k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3yj

]
ak

=
n∑
k=0

[
1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj

]
yk = (Dy)n

for all n ∈ N, where D = (dnk) is defined by

dnk =


1
r

n∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3aj , 0 ≤ k ≤ n,

0, k > n

for all k, n ∈ N. Therefore, ax = (akxk) ∈ cs in case of x = (xk) ∈ f(Q(r, s, t, u))
if and only if Dy ∈ c in case of y = (yk) ∈ f , namely a = (ak) ∈ {f(Q(r, s, t, u))}β
if and only if D ∈ (f : c). If we combine this fact with (ii) of Lemma 1, we can see
that a = (ak) ∈ {f(Q(r, s, t, u))}β if and only if

sup
n∈N

∑
k

|dnk| <∞,

lim
n→∞

dnk = ξk for each fixed k ∈ N,

lim
n→∞

∑
k

dnk = ξ

and
lim
n→∞

∑
k

|∆(dnk − ξk)| = 0.

This result gives us that {f(Q(r, s, t, u))}β = t1 ∩ t2 ∩ t3 ∩ t4. This completes the
proof of theorem.

4. Matrix Classes

In this section, we characterize some matrix classes related to the sequence
spaces f(Q(r, s, t, u)) and fs(Q(r, s, t, u)). Here and after, we use the matrices
G = (gnk) and V = (vnk) defined by

gnk = 1
r

∞∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3anj (4.1)

vnk = rank + san−1,k + tan−2,k + uan−3,k (4.2)

for all n, k ∈ N, respectively.
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Theorem 7
Let X be an arbitrary sequence space and A = (ank) be an infinite matrix whose
entires provide the relations (4.1) and (4.2). Then, the followings hold:

(i) A ∈ (f(Q(r, s, t, u)) : X)⇔ G ∈ (f : X) and {ank}k∈N ∈ {f(Q(r, s, t, u))}β
for all n ∈ N;

(ii) A ∈ (X : f(Q(r, s, t, u)))⇔ V ∈ (X : f).

Proof. (i). Assume that A ∈ (f(Q(r, s, t, u)) : X). Let us take an arbitrary
sequence y = (yk) ∈ f and consider f(Q(r, s, t, u)) ∼= f , where y = Q(r, s, t, u)x.
Then, GQ(r, s, t, u) exists and {ank}k∈N ∈ {f(Q(r, s, t, u))}β for all n ∈ N, which
yields that {gnk}k∈N ∈ `1 for all n ∈ N. Therefore, Gy exists and∑

k

gnkyk =
∑
k

ankxk

for all n ∈ N, that is Gy = Ax. Thus, G ∈ (f : X).
For the converse, assume that G ∈ (f : X) and {ank}k∈N ∈ {f(Q(r, s, t, u))}β

for all n ∈ N. Now, we take an arbitrary sequence x = (xk) ∈ f(Q(r, s, t, u)).
Then, it is obvious that Ax exists. Moreover, we get

σ∑
k=0

ankxk =
σ∑
k=0

[
1
r

k∑
j=0

k−j∑
i=0

k−j−i∑
v=0

µk−j−i−v1 µv2µ
i
3yj

]
ank

=
σ∑
k=0

[
1
r

σ∑
j=k

j−k∑
i=0

j−k−i∑
v=0

µj−k−i−v1 µv2µ
i
3anj

]
yk

for all n ∈ N. If we pass to limit as σ →∞, we obtain that Ax = Gy. This gives
us that A ∈ (f(Q(r, s, t, u)) : X).

(ii). For any x = (xk) ∈ X, let us consider the next equality

{Q(Ax)}n = r(Ax)n + s(Ax)n−1 + t(Ax)n−2 + u(Ax)n−3

=
∑
k

(rank + san−1,k + tan−2,k + uan−3,k)xk

= (V x)n

for all n ∈ N. By passing to the generalized limit, we get that Ax ∈ f(Q(r, s, t, u))
if and only if V x ∈ f . This completes the proof of theorem.

Now, for the next lemma, let us write the followings by considering an infinite
matrix A = (ank).

F − lim
n→∞

ank = ξk for all fixed k ∈ N, (4.3)

F − lim
n→∞

∑
k

ank = ξ, (4.4)
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F − lim
n→∞

n∑
j=0

ajk = ξk for all fixed k ∈ N, (4.5)

sup
n∈N

∑
k

∣∣∣∣∆( n∑
j=0

ajk

)∣∣∣∣ <∞, (4.6)

sup
n∈N

∑
k

∣∣∣∣ n∑
j=0

ajk

∣∣∣∣ <∞, (4.7)

∑
n

ank = ξk for all fixed k ∈ N, (4.8)

∑
n

∑
k

ank = ξ, (4.9)

lim
n→∞

∑
k

∣∣∣∣∆[ n∑
j=0

ajk − ξk
]∣∣∣∣ = 0, (4.10)

lim
ϑ→∞

∑
k

∣∣∣∣ 1
ϑ+ 1

ϑ∑
j=0

an+j,k − ξk
∣∣∣∣ = 0 uniformly in n, (4.11)

lim
ϑ→∞

∑
k

∣∣∣∣∆[ 1
ϑ+ 1

ϑ∑
j=0

an+j,k − ξk
]∣∣∣∣ = 0 uniformly in n, (4.12)

lim
ϑ→∞

∑
k

1
ϑ+ 1

∣∣∣∣ ϑ∑
i=0

∆
[ n+i∑
j=0

ajk − ξk
]∣∣∣∣ = 0 uniformly in n, (4.13)

lim
ϑ→∞

∑
k

1
ϑ+ 1

∣∣∣∣ ϑ∑
i=0

∆2
[ n+i∑
j=0

ajk − ξk
]∣∣∣∣ = 0 uniformly in n. (4.14)

Lemma 2
For a given infinite matrix A = (ank), the followings hold:

(i) A = (ank) ∈ (c : f)⇔ (3.1), (4.3) and (4.4) hold (see [19]);

(ii) A = (ank) ∈ (`∞ : f)⇔ (3.1), (4.3) and (4.11) hold (see [14]);

(iii) A = (ank) ∈ (f : f)⇔ (3.1), (4.3), (4.4) and (4.12) hold (see [14]);

(iv) A = (ank) ∈ (f : cs)⇔ (4.7), (4.8), (4.9) and (4.10) hold (see [5]);

(v) A = (ank) ∈ (cs : f)⇔ (3.5) and (4.3) hold (see [4]);

(vi) A = (ank) ∈ (cs : fs)⇔ (4.5) and (4.6) hold (see [4]);

(vii) A = (ank) ∈ (bs : f)⇔ (3.5), (3.6), (4.3) and (4.13) hold (see [6]);

(viii) A = (ank) ∈ (bs : fs)⇔ (3.6), (4.5), (4.6) and (4.13) hold (see [6]);
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(ix) A = (ank) ∈ (fs : f)⇔ (3.6), (4.3), (4.12) and (4.13) hold (see [7]);

(x) A = (ank) ∈ (fs : fs)⇔ (4.5), (4.6), (4.13) and (4.14) hold (see [7]).

If we combine Lemma 1, relations (4.1), (4.2), Theorem 7 and Lemma 2, we
can give two more results.

Corollary 3
Let us take the entries of the matrix G = (gnk) instead of the entries of the matrix
A = (ank) in (3.1)–(3.7) and (4.3)–(4.14). Then the following statements hold:

(i) A = (ank) ∈ (f(Q(r, s, t, u)) : c) ⇔ {ank}k∈N ∈ {f(Q(r, s, t, u))}β for all
n ∈ N and (3.1), (3.2), (3.3) and (3.7) hold;

(ii) A = (ank) ∈ (f(Q(r, s, t, u)) : `∞) ⇔ {ank}k∈N ∈ {f(Q(r, s, t, u))}β for all
n ∈ N and (3.1) holds;

(iii) A = (ank) ∈ (f(Q(r, s, t, u)) : cs) ⇔ {ank}k∈N ∈ {f(Q(r, s, t, u))}β for all
n ∈ N and (4.7), (4.8), (4.9) and (4.10) hold;

(iv) A = (ank) ∈ (f(Q(r, s, t, u)) : bs) ⇔ {ank}k∈N ∈ {f(Q(r, s, t, u))}β for all
n ∈ N and (4.8) holds.

Corollary 4
Let us take the entries of the matrix V = (vnk) instead of the entries of the matrix
A = (ank) in (3.1)–(3.7) and (4.3)–(4.14). Then the following statements hold:

(i) A = (ank) ∈ (c : f(Q(r, s, t, u)))⇔ (3.1), (4.3) and (4.4) hold;

(ii) A = (ank) ∈ (`∞ : f(Q(r, s, t, u)))⇔ (3.1), (4.3) and (4.11) hold;

(iii) A = (ank) ∈ (f : f(Q(r, s, t, u)))⇔ (3.1), (4.3), (4.4) and (4.12) hold;

(iv) A = (ank) ∈ (cs : f(Q(r, s, t, u)))⇔ (3.5) and (4.3) hold;

(v) A = (ank) ∈ (bs : f(Q(r, s, t, u)))⇔ (3.5), (3.6), (4.3) and (4.13) hold;

(vi) A = (ank) ∈ (fs : f(Q(r, s, t, u)))⇔ (3.6), (4.3), (4.12) and (4.13) hold;

(vii) A = (ank) ∈ (cs : fs(Q(r, s, t, u)))⇔ (4.5) and (4.6) hold;

(viii) A = (ank) ∈ (bs : fs(Q(r, s, t, u)))⇔ (3.6), (4.5), (4.6) and (4.13) hold;

(ix) A = (ank) ∈ (fs : fs(Q(r, s, t, u)))⇔ (4.5), (4.6), (4.13) and (4.14) hold.

5. Conclusion

By remembering the definition of Quadruple band matrix, one can easily see
that Q(1,−3, 3,−1) = ∆3, Q(r, s, t, 0) = B(r, s, t), Q(1,−2, 1, 0) = ∆2, Q(r, s, 0, 0)
= B(r, s) and Q(1,−1) = ∆, where ∆3, B(r, s, t), ∆2, B(r, s) and ∆ are called
third order difference, triple band, second order difference, double band (general-
ized difference) and difference matrices, in turn. Also, Quadruple band matrix is
not a special case of m-th order generalized difference matrix Bm defined in [10]
and is not a special case of the weighed mean matrices. Therefore, this work fills
up a gap in the known literature.
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