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Abstract. In this article we present the existence and uniqueness results for
fractional integro-differential equations with -Hilfer fractional derivative.
The reasoning is mainly based upon different types of classical fixed point
theory such as the Monch fixed point theorem and the Banach fixed point
theorem. Furthermore, we discuss E-Ulam-Hyers stability of the presented
problem. Also, we use the generalized Gronwall inequality with singularity
to establish continuous dependence and uniqueness of the J-approximate
solution.

1. Introduction

In this article, we consider the boundary value problem of i-Hilfer fractional
derivative of the form

{HD:Wy(t) = f(t,y(t), [l k(t,s)y(s)ds),  teJ:=(a,b],

_ (1)
L " lpy(a®) + qy(07)] = c, (y=a+5-ap),

where 7 Dg’f o -) is the generalized Hilfer fractional derivative of order « € (0, 1)
and type 8 € [0,1] and I;; 7% (.) is the generalized fractional integral in the sense
of Riemann-Liouville of order 1 — v, v = a4+ —af and f: J X EX E —
F is a continuous function in Banach space E, E is an abstract Banach space,
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p,g €ER, ce E, p+q# 0 and fat k(t,s)y(s)ds is a linear integral operator with
n =max{ [ |k(t,s)|ds: (t,s) € JxJ}, k:JxJ =R

The fractional calculus has been given proper attention by many researchers
in the last few decades. This branch of mathematics was founded by Leibniz and
Newton in seventeenth century. In the eighteenth century some notable defini-
tions about fractional derivatives were given by some famous mathematicians like
Riemann, Liouville, Gronwal, Letnikove, Hadamard and many others, for more
detail see [10, 12} 16, 17]. In the last few decades significant work has been done
on various aspects of fractional calculus due to the fact that, the modelling of
various phenomenons in the fields of science and engineering is done more pre-
cisely using fractional differential equations as compared to ordinary differential
equations. Since a boundary value problem of differential equations represent an
important class of applied analysis, the area mentioned was given more importance,
see [1L 2, [8] [T6], 23] and the references therein. An important characteristic is that
engineers and scientists have developed some new models that involve fractional
differential equations. These models have been applied successfully, for instance in
theory of viscoelasticity and viscoplasticity, modelling of polymers and proteins,
transmission of of ultrasound waves, modelling of human tissue under mechanical
loads, etc. There have been extensive consideration in the last decades of the exis-
tence theory of boundary value problems including fractional differential equation,
see [5, @, 19 7], 3, [18].

This paper is organized as follows. In Section [2] we introduce some notations,
definitions, and preliminary facts, which are use throughout this paper. By us-
ing measure of noncompactness and Monch fixed point theorem we present the
existence result of our problem in Section [3] We discuss E,-Ulam-Hyers stability
of problem in Section [4] Finally, in Section [5] by using generalized Gronwall
inequality with singularity we establish continuous dependence and uniqueness of
d-approximate solution of problem .

2. Preliminaries

Let J := (a,b], (00 < a < b < o) be a finite interval and let C[J, E] be
the Banach space of continuous functions on J into £ with the norm ||y||lc(s,z) =
sup{lly(t)|| : t € J}, ¥: J — R be an increasing function such that ¢’(t) # 0 for
allt € J. For 0 <+ < 1 and n € N, the weighted spaces C1—;y[J, E], CT__ [, E]
of continuous function f: (a,b] — FE are defined by

Crony[J,E] = {f: (a,b] = B (¥() = %(a))' 77 f(-) € C[J, E]},
Cr Wyl Bl ={f: (a,b] > E: feC"'[JE], f™ € Ci_,ylJ E]}.
Obviously Ci_..y[J, E, C{LAW[J, E] are the Banach spaces with the norms

1flley i = max [[(¥(t) = ¥(a) = fH),

t€la,b]

n—1
Iflley e = Z 1N e + 1™ ey 8
k=0
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respectively. For n = 0, we have CY__ /[J, E] = C1_+,y[J, E|.

DEFINITION 2.1 ([20])

Let a > 0 and 9 be a positive and increasing function, having a continuous deriva-
tive ¢’ on the interval (a,b). Then the left-sided v-Riemann-Liouville fractional
integral of a function f: [a,00) — R of order « is defined by

0 = gy | Mo s,

where Ngil(t, s) = ' (s)(Y(t) —(s))* ! and T is a gamma function.

DEFINITION 2.2 ([20])

Let n — 1 < o < n with n € N, let [a,b] be an interval(—oco < a < b < o0) and
f,¢ € C™[a,b] be two functions such that 1) is increasing and /(¢) # 0, for all
t € [a,b]. The left-sided y-Hilfer fractional derivative of function f of order o and
type 0 < 8 < 1 is defined by

« n—ao); 1 d\" 1— n—a);
HDa_;_'B’wf(t) — Ig—%(- )w(,(/]/(t) @) Ié_'_ B)(n—a) wf(t)

THEOREM 2.1 ([20])
Let f € Cla,b], 0 <a <1, and 0 < B < 1. Then

HD&PVIOv £(t) = £(2).

LeEMmMA 2.1 ([12])
Let o,y > 0, then

129 () — p(a)) = m(w(t) _ gyt
and
DY ((t) — v(a)) ! =0,
where

. 1 d _ o)
DYy (t) = AN j0-p) -, gy
Ty (1) (w) =) y(t)

LeEmMmaA 2.2 ([20])

IffeCHJE],0<a<1,and 0< 3 <1, then

- Iii_ﬁ)(l_a)ﬂbf(a)
I'(7)

Now, we give definitions of fundamental spaces. For v = a + § — af and
0<a,B,y<1,0< u<1, we define

P HDSTY f(E) = f(2) ((t) — (@),

Ol LBl ={f € CioyylJ. B : "DV e Oy ylJ, B},

C’Y

| Wl Bl ={f € CiyylJ.E]: DY f e CryylJ El}.
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It is clear that C)__ ,[J, E] C CT' L: ol El.

Next, we introduce the Hausdorff measure of noncompactness ®(-) on each
bounded subset K C E by

®(K) = inf{r > 0: for which K has a finite r-net in E}.

In the following Lemmas, we recall some basic properties of ®(-).

LeMMA 2.3 ([6])
Let Ay, As be a nonempty subsets of a Banach space E. The measure of noncom-
pactness ®(-) satisfies:

1) ®(A) =0 if and only if A is precompact in E;

(1)

(2) for all bounded subsets Ay, As of E, Ay C Ay implies P(A;) < P(As);

(3) ®({z} UA) = D(A) for every x € E and every nonempty subset A C E;
(4) ®(A) = ®(A) = ®(conv A), where A is the closure of A and conv A is the

convex hull of A;

(5) (I)(Al + Ag) < q)(Al) + ‘I)(AQ), where A1 + Ay = {a1 +as: a; € Ay, as €
AQ};

(6) (I)(Al U AQ) = IIlaX{(I)(Al), @(AQ)},
(7) ®(AA) < |A\|®(A) for any X € R.

For any V C C[J, E], we define

/:V(s)dsz{/atu(s)ds: ueV} for ¢t € J,

where V(s) = {u(s) € E: u e V}.

LEMMA 2.4 ([9])
If V C C[J, E] is bounded and equicontinuous, then t — ®(V(t)) is continuous on
J, and

B(V(J)) = max (Y /v ds _/a (V(s))ds) forteJ,

teJ

where V(J) ={u(s): ueV, se J}.

LEMMA 2.5 ([9])

Let h € LY(J,R") and {u,}32, be a sequence of Bochner integrable functions
from J into E with ||u,(t)|| < h(t) for almost all t € J and every n > 1, then the
function W(t) = ®(({u,(t)}22,) belongs to L*(J,R*) and satisfies

@(/tun(s)ds: nZl) §2/tW(s)dS forte J.
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LEMMA 2.6 ([14])

Let U be a closed conver and nonempty subset of a Banach space E with 0 € U.
Suppose that G: U — E is a continuous map satisfying the Mdnch’s condition
(i.e. if set M CU is countable and M C conv({0} U G(M)), then M is relatively
compact), then G has a fized point in U.

LeMMA 2.7 ([21])
Let 0: (0,b] x R — R be a continuous function. Then the 1-Hilfer problem

ADSYu(t) = O(t,u(t)),  t € (0,0,

Ié;’ﬁwu(o)

uo,

s equivalent to the integral equation

71 1 ‘ / a—1
u(t) = wo+ ey | V0 =05 s )

THEOREM 2.2

Let f: J x Ex E — E be a continuous function such that f € Ci_. 4[J, E] for
ally € C1—y y[J, E]. Then the problem s equivalent to the following integral
equation

_ (@) =) q g
y(t) - (p =+ q)F(W) {C - F(O& + 1— 'Y) /a sz (bv S)f(87y(8), (By)(s))ds}

1 ' a—1
T / NEH(E,9) (s, y(s), (By)(s))ds,

where (By)(t) := fat k(t, s)y(s)ds and Nﬁ_l(t, 5) ==Y (s)(Y(t) —P(s))* L.

Proof. In view of lemma a solution of the first equation of can be expressed

ult) = — L)+ g [ M9 (5900). (B

Now, by using condition Ii;%w[py(a‘*‘) +qy(b7)] = ¢, we get

@) @) R
o) = P e - et [ NI 09 5.0, (B <))

1 t o
+ F(Oé)/a Nw (t, S)f(s’y(s)a(By)(S))ds

For more details, see [4, [19)].
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3. Existence and uniqueness of solution

To obtain our results, the following conditions must be satisfied.

(H;) The function f:J x E x E — E satisfies a Carathéodory condition.
(Hs) There exists a function p € Cy_ [J, E] such that

If&zyll < llu®l,  teld zyek.
(H3) There exist constant numbers L, M > 0 such that
I (¢, 21, By1) — f(t, 22, By2)|| < Loy — w2 + M| Byr — Bya||,
for each t € J and z1,22,vy1,y2 € F and
[ Byr — Byal| < nllyr — y2l|-
(H4) There exist constants E, M > 0 such that

S(f(t,y1,y2) < LO(y1) + M®(a), €,
where y1,y2 are bounded subsets of F.

Now, by using the Ménch fixed point theorem, we present the existence result
for the problem .

THEOREM 3.1
Assume that f: J x E x E — FE is a function such that f(-,y(-),(By)(:)) €
Cfﬁl;qj‘) [J, E] for ally € C1_ 4[J, E| and satisfies the conditions |(Hy) ' If
d ! ()
N b) — ol < 1.
[(’p—f—q‘F(OH—l) + r(a+,y))(7/’( ) —¥(a)) ] <

Then the problem has at least one solution in CY__ [J, E].

Proof. Consider the operator G: Ci_ y[J, E] = C1_y [J, E] defined by

((t) —p(a))!
(p+qT(y

)
b
q oy
X{C‘m / NETI(b.5)f(5,y(9), (By)(s))ds} ()

Gy(t) =

1 t o
+F(O¢)/QN(/) (t,s)f(s,y(s), (By)(s))ds.

Clearly, G is well defined and the fixed point of the operator G is a solution of the
problem . Define a bounded, closed and convex set

ke ={y € Ci—y [, El: lylc,_,., <&
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of Banach space C_ [J, E] with { > 1%, where

el 1
w'_[\pﬂzlml

Claim(1). The operator G maps the set k¢ in to itself (Gke C ke).
For any y € k¢, t € J, we have

1Gy(#)((t) = (a))' 7]

<‘ 1 +‘ q 1

- p+q’1“(7) p+Q‘F(V)F(a*7+1)

b
< [ NET 0 0(e). (B

— (a7 ot
+ O [N o)., (B o) s
q a— 7
< i/ (W)F(a—v+1 /N (02 e
SO gg)“” — [ W e luolas
| \ : :
- p+q’1“ p+qll(y)l(a—y+1)
/ Ny (b, 5) —(a ))7_1||/i||cl,w[J,E]d8
+ ) ngv()a)) 7/ NGt ) (W(s) — (@) Hplle, 1. ds
c q P(b) — w(a))“
= ‘p+q’ L(v) ‘p+ I'(a+1) el vtz
L TR = (@)

1l e, 5T E]

I(a+

Q

7)
c I'(v)
S‘p—i—q’ny) (’p—kq‘ a1+1)+F(a:&y—’y))

X () = (@)l 1.1

Hp +4q ‘ F(lfy } K’p —(il— q ‘ F(a1+ 1) * F(E(j—)y))(w(b) B w(a))a}f
<w+ B¢

It follows that ||Gyllc,_. , <& Thus Gke C k.
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Claim(2). The operator G is continuous on k.
Let {y,}52; be a sequence such that y, — y in k¢ as n — oo, then for each y € k¢,
t € J, we have

1(Gyn(t) — Gy()) ((t) — dJ( N

‘p—kq‘F +1— )

/ N7 (b, 9)((s) = (@) fy = fullor ., ds
U(t) —(a)' 7 a-1 -1 _ s
+ r(a> / NG7H(E 8)(W(s) = (@) M fy, = Fyllor ., d

{’ ‘ L'(v)
p+gq Fa+1 F(a+’y

where f,,, = f(s,yn(s), (Byn)(s)) and f, = f(s,y(s), (By)(s)). By Lebesgue con-
vergence theorem, we conclude that

PO =66 U flles

1Gyn — Gyl =0 asn — oo,

and hence the operator G is continuous on k¢.
Claim(3). The operator G is equicontinuous on k.
For any t1,t2 € J such that a <t <ty <b,y € k¢, we have

1Gy(t2) (W (t2) — ()™ = Gy(ta)(¥(tr) — ¢(a)) ]

< [Jewt2) = vten iy [N 29 (5,00, (B o))
- @) @) s [N )t (B s
<ot = vt g [N ) 500, (B s
00 = @) s [N ) st (B o))
= (0(0) = @) s [N 9 9te). (B <))
< et {2 0t ) 0(02) - vla)

= N7t 8) (W (t) — $(a)' ) (W(s) — 9(a)) " Hds
[ )W (t) — 9()7 7 (Whlta) — ()

t1

x ((s) — w(a)w—lds} S0 asty b
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Thus, G(ke) is equicontinuous, that is mod.(G(ke)) = 0, where mod.(G(ke))
is the modulus of equicontinuity of G(ke).

Claim(4). The Monch condition is satisfied.
For brevity, let K be a bounded subset of a Banach space C[J, E] and Q be the
measure of noncompactness in the Banach space C[J, E] which is defined by

Q(K) = max_(0(2), mod(2)).

where 7(K) is the collection of all countable subsets of K, and o is the real
measure of noncompactness defined by

o(Z) = sup e HO(Z(t))
t€la,b]

such that Z(t) = {y(t) : y € Z}, ¢t € J, L is the suitably constant and mod.(Z) is
the modulus of equicontinuity of Z given by

mod(Z) = lim su ma. ta) —y(t1)|].
0d(7) = liy sup masy(ts) ~y(t)]

Observe that €2 is well defined [19, 1] and is a monotone, nonsingular and reg-
ular measure of noncompactness. Let U C k¢ be a countable set such that U C
conv(G(U)U{0}). Now we need to show that U is precompact. Let {z,}72; C G(U)
be a countable set. Then there exists a set {y,}>2; such that z,(t) = (Gy,)(t)

forall t € J, n > 1. Using and Lemmas we get
O({zn(t)}nz1)
= ({(Gyn) () }nL1)
‘ ’ (1/1(1?) —Y(a))
“Ip+¢Il(y) T(la+1-7)

/ NV (b, $)D(f (5, {yn ()11, (Blyn(s)}321)))ds

+r<a> / N3H )2 (S (s, {yn(9) Yo, (Blyn(9)}o21)))ds

‘ ' ((t) —p(a))~!
T lp+qiT(y) T(a+1-19)

b ~ —
< [ NZT BT+ 200 sp B3}

s€la,b]

2 t 1 N e .
+m/a N7t ) (L + 2Mn) szl[g,)b]q)({y"(s)}”zl)ds

<‘ q ’ 2 (P(t) —Y(a))!
“Ip+qll(y) T(a+1-7)

b
/ N7 (B, s)et* (L +2Mn) sup e™H@({ya(s)}3L1)ds
a t€la,b]
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2 /t 1 L .,
+t s Ny (tys)e 8 L+2M17 sup e S(I)({yn(s)};:o: ds
F(a) @ v ( )se[a,b] !

_7
p+q

7—10({%7}20:1)

<|
- D(a+1-7)

2
[ (0 — wta))
b o~ —
X/a Ng_y(b,S)eLs(L—i—?Mn)ds

2 t) — @)t [ o=y s(T T
_[’pj—q‘r(’y) (d)ls()a—i—wl(—)?y) /an (b, 5)e"* (L + 2Mn)ds

2

+m/ﬂ j\/;‘;‘_l(ts)eLs(E+2Z/\4\77)d5]0-({yn}20:1).

It follows

| (w(t) = (@)™

o({znlnzy) < sup e p—|—q’l_‘(’y) Mo Tl )

t€la,b]

b
></ N7 (b, s)e"* (L + 2Mn)ds

2 [t . .
" @/ Ni~Hts)e™ (L + 2Mn)ds| o ({yn }72)

< Ro({yn}nZi),

where R € (0,1) is the suitable constant, such that

- 2 (W) —(a) [P P
R = sup e Lt[|—Z /N (b, 8)eL* (L + 20n)ds
te[al,ob} [p+q|F(7) Tla+1—7v) J, ¢ (b, 5)e™*( n)
2 ‘ a—1 Ls/T -
+1"(a)/a N7t s)et* (L + 2Mn)ds).
Notice that

o({yn}is) < o) < oleomv(GU) U{OD) = o({an}ia) < Rol{yn}ita),

which implies that o({y,}52,) = 0 and hence o({z,,}°2 ;) = 0. Now, by step 3, we
have an equicontinuous set {z,}2; on J. Hence Q(U) < Q(conv(GU) U {0})) <
QGMU)), where QGU)) = Q{zrn}2,) = 0. Thus U is precompact. Hence,
by Lemma [2.6] the operator G has a fixed point y*, which is a solution of the
problem in C1_,4[J, E]. Finally, we need to show that such a fixed point
y* € CiyylJ.E] is in C]__ ,[J, E]. Since y* is a fixed point of operator G in
Ci—~,¢[J, E], then, for each t € J, we have
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e (W@ =)y q
v = are) {C Tla+1—7)
b
[ N0 90, (B ) )

1 ‘ a—1 « *
+ r(a)/ NGt 8)f(s,y7(s), (By™)(s))ds.

Applying D, on both sides and using Lemma we get

DYy (t) = DIYT £(t, 5™ (), (By™)(1))
= DI f (g (1), (By) (1))

Since v > « and f € Cfﬁlﬁ") [J, E], then the right hand side is in Ci_, y[J, E]

and hence Dz;wy*(t) € Ci—yy[J, E], which implies that y* € C]__ [J, E]. As
a consequence of the above steps, we conclude that the problem has at least
one solution in C7__ [, E].

In the forthcoming theorem, by using Banach contraction principle, we present
the unigeness of solution for the problem .

THEOREM 3.2

Assume that and [(H3)| hold. If

q 1 I'(y)
[(‘erq‘F(Ole) (e +7)

JL+nM)@0) - v(@)°] <1, ()
then the problem has a unique solution in C|__ [J,E] C C1—yy[J, E].

Proof. By using the Banach contraction principle we shall show that the operator
G, defined by , has a unique fixed point, which is a unique solution of the
problem in Cy_yy[J,E]l. Let y,v € Ci_y[J,E] and t € J, then, by our
hypotheses, we have

1w () =1(a))' = [Gy(#) — Gu(B)]|

= ’piq‘r<v>r<a1+ =)

X/ Ny 7 (0:9)11f (s, 9(5), (By)(s)) = f(s,v(s), (Bv)(s)) | ds

X/a NGTHE ) f(s,y(s), (By)(s)) = f(s,0(s), (Bv)(s))||ds
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(L+nM) a(
<’p+q‘1" MNa+1—7 /N (0, 8)[[y(s) — v(s)l|ds
+ (L+nM)(z£((oz)— Y (a)) —7/ NS () ly(s) — v(s)ds
(L +nM)

q
<[l
b
x / NZT (b, 8)(0(s) — () My — vy, ds

L L)) — v(@)'
I(a)

[ A )~ vy - vl

(L +nM) o
< [ |G ) - vt
(L+nM)I(v) N
a0 9@y =vle, .,

- K‘erq‘F(onr 1) + F(z(l)’y))

X (L nM)(6(0) = (@) lly = vlley -

By (@), the operator G: Cy_ y[J, E] = C1_,4[J, E] is a contracting mapping.
According to the Banach contraction principle we conclude that the operator G
has a unique fixed point y* in C_ 4[J, E] which is a unique solution of .

4. FE.-Ulam-Hyers stability

In this part, we discuss the FE,-Ulam-Hyers stability of problem . The
following observations are taken from [13] [15] [22].

LEMMA 4.1 ([21])
Let @ > 0 and x, y be two nonnegative function locally integrable on [a,b]. As-
sume that g is a continuous, monnegative and nondecreasing function, and let

¥ € Ca,b] be an increasing function such that ' (t) # 0 for all t € [a,b]. If

x(t) < y(t) +g(t)/ Ng_l(t,s)x(s)ds, t € [a,b].
Then

z(t) < y(t) / Z:n(a))]/vm Lt s)y(s)ds, t € [a,b].

If y be a nondecreasing function on [a,b]. Then we have

z(t) Syt Ea(g®)T (a)[v(t) —¢(a)]®),  t€a,b],
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where Eo(+) is the Mittag-Leffler function defined by

> k
_ Y
Ea(y) - P F(Otk 4 1)7 Yy € (Ca §R(O‘{) > 0

REMARK 4.1
A function 2z € C]__ ,[J, E] is a solution of the inequality

I DE () = £t 2(8), (B2) ()] < eEalti(t) — (), t € J, (4)
if and only if there exists a function g € C}__ ,[J, E] such that
(1) g < eBa((¥(t) —(a))?), t € J;
(i) DV 2(t) = f(t,2(t), (B2)(t) + g(t), t € J.

DEFINITION 4.1
The problem is E,-Ulam-Hyers stable with respect to E,((¢(t) — ¥(a))®)
if there exists a real number Cg > 0 such that, for each ¢ > 0 and each z €

Cy_, 47, E], which satisfies (), there exists a solution u € Cl_, ylJ. E] of
such that

12(t) —u@)|| < CpeEa((¥(t) —¢(a))®),  tel
LEMMA 4.2

Let v = a+pB—af be such that o« € (0,1), B € [0,1]. If a function z € C]. [J, E]

1=,
satisfies , then z satisfies the following integral inequality
1 t
A0 =T~ gy | AT (s (B s)) s

IN

q 1 «a @
e e s 00— 00" + Buls) )]

T, = (Y(t) —p(a))?™ {c B = Jrql — /a Ng—v(b, $)f(s,2(s), (Bz)(s))ds}

(oo}
and Eq o_~ is the Mittag-Liffler function defined as Eqo_yz = ) m
n=0

Proof. According to Theorem and Remark the following equation
DG a(t) = f(t2(1), (B2) () +g(t),  ted
with condition Ii:’y’w[pz(cﬁ) + qz(b7)] = ¢ is equivalent to the integral equation

_ W(t) — ,(/}(a))’y—l q b a—ry
A0 =T~ Tty T, ATt

1

t ot L ' a—1 s
+@/a Ny (t,S)f(s,z(s),(Bz)(s))ds-i—F(a)/a NEH(t, 8)g(s)ds.
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The above implies that

[0~ T~ g [ N 9056260 (B |

I(a) J,
‘ ’ (Y(t) —(a)) !
“lp+qiT(y) Tla+1-—19)

L L / N7 (t5)llg(s)llds

I'(a) Jo
‘ ’ (P(t) —¥(a)) e
“Ip+qll(y) T(a+1-9)

b
x / NET(b, ) Ba((4(5) — (a))*)ds

b
/ NS (b, ) lg(5)ds

/ NSt 5) Ea((16(5) — 9(a))®)ds

q | ¢ (¥ () = ¥(a)™)" (@)*)"
S‘p—kq’F(w)ﬂZ% F(na+2— +EZ na+1)

Hp p ) F(lw B (1(b) — ¥(a))® + Ea(¥(t) — w(a))a} .

Now, in the following theorem we prove the E,-Ulam-Hyers stability result for
1-Hilfer problem .

THEOREM 4.1
Assume that|(Hy)| and|(Hs)| are satisfied. Then equation

DG y(t) = St y(0), (By)(1),  ted (6)
is Eo-Ulam-Hyers stable.
Proof. Let ¢ > 0 and let z € C7__ ,[J, E] be a solution of the following inequality
1D A1) — £t 2(0), (B2 < Balf(t) —$(a)®, e

Let u € C]_ [, E] be a unique solution of the problem

t
DRy = £ (o), [ ke Sy(e)ds), et = )
LY py(a®) + qy(d7)] = 177 [pa(a™) + qz(b7))],
Now, by Theorem [2.2] we have

L / Nt 5) (s, u(s), (Bu)(s))ds,  t€
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where

O ) Fa ) (Bl (e11ds
o= o sy [ A 0w, ()
Since I;I'M’[pu(a*) +qu(b7)] = I;I'“/’[pz(a )+ qz(b7)], we can easily find that

T. = T.. Hence using , we get for each t € J,
1200 = < 20 = T2 = g [ 37400 (5,260, (B) o) s
g [ e s 20 (B2 s)as

_F(la)/atNg1(t’8)f(s7u(s)7(Bu)(S))dsH

Hp s \ F(17) Ep o ((t) — (a)® + Eo(1(t) — ¢(a))a]

LnM [*, a1 —u(s)||ds
+ E B [ 000 - 0 () = o).

Using Lemma we obtain

1200) = ()] < e[| | 5 B (5(0) = 0@)" + Ea0(0) = 0(a)”]
X Ea((L+nM)[(t) - (o))
1 a a
Hp+ |5y B (00) = (@) + Balw(8) — w(a))°]
Eal(L+nM)[(t) - $(a)]")
< cEeEC,((L + M) () — ¥(@)*),
where

Hp tq \ F(ly) B ((0) = ¢(a))” + Ea(¥(b) — W))ﬂ .

Thus @ is F,-Ulam-Hyers stable.

5. J-approximation solution

DEFINITION 5.1 ([19])
A function y € C}_ - d)[J E)] satisfying the ¢-Hilfer fractional integro-differntial
inequality

DSy (1) = f(t (), By <6, ted

and
L py(a™) +qy(b™)] = ¢

is called an d-approximate solutions of the problem .
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THEOREM 5.1

Assume thatm and H3 )| hold. Let y; € C}_ w“ El, i = 1,2, be an -
approximation solution 0 e following problem

DR () = F(tyi(e), By (1), t€ T = (ab],
L pyi(a™) + qua(b7)] = @i

(7)

Then

(¥(t) = ¢(a)) >+
IMNa+1)

1
lyr — yQHC‘lﬂ,w < ¥{(51 + 52)(

($(1) = (@) D)

1 LM no
R 2= Tna oy 0 ~ V(@) )}

where

T _1—7(1+§; L;@”ﬁ 0(1) — (@)™,

Proof. Let y; € CI’ [ E], i = 1,2 be an d-approximation solution of (7). Then

by Definition [5.1] we have

I"DE  ys(t) = f(t,i(8), (By) (D) < 6 (8)

and
LY pyi(a®) + qui(d7)] = &

Applying 1 fl’ on both sides of . we get

(¥(t) — ¥(a))*ds
INa+1)

A G 0] e S (LD R ) i et

pI'(v) L (7) ur yi(07) (9)
— IV f(t,yi(t), (Byi)@))H.

From the fact |z| — |y| < |z — y| < |z| + |y|, we obtain

(¥(t) —(a))®(d1 + d2)
MNa+1)

(Y(t) —(a)'e N (Y(t) — 1/1(61))7*”1]177,1@
pL'(7) pI'(7) ot

— IV f(t, i (t), (Byl)(t))H

y1(b7)

> Hyl(t) -
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(¥(t) —y(a) "'
+ Hy2(f) - Ty 2 4 P
— IZV (£, ya2(t), (By2) (1)) H
e - GO s
— 1%Vt (), (Byl)(t))} _ {w(t) (¥ —pﬁ((;l)))% C

(w(t)—lﬁ(a))w_lq -, - -, -
SO )

> () - yatp) - LU= (6 25

pL'(v)
(V(t) = (@) 'g 1y, 1—1,
+ L) [Ia+ ¢y (b7) - I+ ¢y (b7)]

— 132 £t (8), (Byn)(®) = 157 £ (.92 (8), (By) ()]

((t) = (a) "' (e — &) ’
pl'(7)

a _ — _
- e UL 07) = 17 a0

+

> [lyr(#) = 2 (D =

- ||[13+’”f(t7y1( £), (By1)(t) — 15" f (£ y2(1), (Byz) ()]l

In consequence, we have

2 (t) —y2(t)|

(W(t) = ¥(@)* (61 +38) | () = P(a)"[[er —
T(a+1) pI'(7)

<

+ [ Oy ) — 12|
UL 7 (0), By )(0) — T2 10, ya(0), (By) (1))
)~ @) (1 +82) | (6(0) — @) e &
- I(a+1) pL(y)
+ SO O 10,0 - 170 )
UL P (0, By )(0) — 15 10, 1a(0), (By) (1)
W0 = v@) (G +8) | 00— (@) -

T(a+1) pI'(7)
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(0 @) a1,
0 s (6) — 20

+ (LA M) i (8) = g (8)]

< W) = 9(a)?(01 +85) | (W(t) = ¥(a)"]ler — &
- [(a+1) pr'(v)

(W) —¥(a)'q
p

_|_

_|_

||y1 — Y2 Hclf'y,w

+ (LMY |y () — ya (1)l
< O(t) + (L +nM)ISY |y (t) — g2 (1),
where

W) — (@) (5 ) L (@) — (@) —
o) = RS TR PO
(6() — (@) 1q

+ p ly1 —v2lley .-

Using Lemma we obtain

191(2) = w2()l

< Ot) + i(L + M) IV O(t)

n=1

R SO (L4 M) L (00) ~ (0)®

||81 *52” > n rna, y—1
e Z::(L+nM) L (4 (1) — ()

o ( )Ilyl vallon, , Z (L +nM)" 1 ((t) = db(a)” ™!

n=1

<O(t) + ;6(1&—:_53 Z(L + nM)"IM(w(t) _ w(a))(n+1)a
n=1

Bl S gy T ) - e

pl(7) T(na +7)
q S W T() —
+ m”l/l —yallen . ;(L +nM) mw(t) —(a))"t
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60— Eall (@) = 9(@)! X LARM)"
+ [0 bl (e - + 3 Tragny V10~ ¥(@) )

+ ]%nyl —ollen . () — (a)? ™

) (L—'_nM)n no+y—
+;m<w(t)—w(a)) ey,

Hence for each t € [a, b] we have

1 (t) = (@) [y (t) = y2()]]

< (61+ 52)(@@) ;(;P(Jc:)l))a—vﬂ

) (L+T}M)n R
+;m(¢(t) — 4p(a))rrDa=r+ )

[e =l 1 D)
e (rwﬁ,;r(naw“"(” b(a))")

=l (1+ Z S i) - va)™).

[(na+7)
Thus
— a a—y+1
lys = welley ., < %{(51 N 52)((w<t)r(;/}<+ )1))
- Z I( ii iﬂ\oa IS A (@) D) (10)

e — | (L +nM)" -
i (76 +n§m<w> —(@)™) }-

REMARK 5.1
If 41 = 62 = 0 in the inequality , then we have

Ll =l 1 S (M) -
I = weler o < g (g + > T 17y W0 — v ).

which provides continuous dependence on the problem . In addition, if ¢; = ¢3,
then we have
lyr — w2l =0,

which proves the uniqueness of solutions of the problem .
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REMARK 5.2

(1) If p=1and ¢ =0, then reduces to the initial value problem of v-Hilfer
fractional derivative.

(2) If p = 0 and ¢ = 1, then reduces to the terminal value problem of
1-Hilfer fractional derivative.

(3) f p=¢g=1and ¢ =0, then reduces to the anti-periodic value problem
of -Hilfer fractional derivative.

6. An example
Consider the following fractional differential equation with the boundary con-

dition

119t 1 ¢
Mgy = [ty + [ sin Sy e )
4 0 2 (11)
l;2t —
I§ [y(0%) +2y(17)] = 3,
Wherea:%,ﬂz%,Wza—l—ﬂ—aﬁz%,pzl,qu,c:?;, J =(0,b] = (0,1],
P(t) =2 and n = maxte(o,l]{fot sin §ds}. Define f: (0,1] x E x E — E by

1 -~ b
Fty(o), (By)(®) = ¢ [tan 1 y(0) + [ sinJy(o)ds],  te 1)
0
Then, for any ¢t € (0,1] and y,y*: (0,1] — R, we have

(ly = v*ll +nlly —y*[),

N

1 (8 y(t), (By) (X)) — f(t,y" (), (By")(@))]| <

which implies that and are satisfied with n = max{fot sinjds: teJ}~
0.24 and M = L = 7. Further, by some simple calculations, we see that

[( q N I'(v)
P+l(a+1) T(a+7)

)(L M) ((b) — ¢(a))a} ~0.68 < 1.
Thus, is satisfied. Now all the hypotheses in Theorem are fulfilled. So

the v-Hilfer problem has a unique solution on (0, 1]. Let us notice that the
following inequality

(2" -1)%)

is satisfied. Thus the equation @ is F,-Ulam-Hyers stable with

IDES™ 4(t) — f(t, 2(t), (B2)(1)] < eE

[N

2(t) —u(t)] 1< Cp By (2~ 1)Y),  te(01],

where Cg = [2F,1 4 (1) + E1(1)] > 0.

14
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