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Existence and stability of solutions for a system of
quadratic integral equations in Banach algebras

Abstract. The aim of this paper is to prove the existence and stability of
solutions of a system of quadratic integral equations in the Banach algebra
of continuous and bounded functions on unbounded rectangle. The main
tool used in our considerations is the multiple fixed point theorem which is
a consequence of Darbo’s fixed point theorem and the technique associated
with measures of noncompactness. We also present an illustrative example.

1. Introduction

The theory of integral operators and integral equations is an important part
of nonlinear analysis. It is caused by the fact that this theory is frequently ap-
plicable in other branches of mathematics and in mathematical physics, engineer-
ing, economics, biology as well in describing problems connected with real world
(cf.[19, 25]). It is well-known that a lot of problems investigated in the theories
of radiative transfer and neutron transport, and in the kinetic theory of gases and
also several real world problems can be described with the help of various quadratic
integral equations. Especially the quadratic integral equations of Chandrasekhar
type can be very often encountered in several applications see [12, 18]. In the
last years there appeared many papers devoted to the quadratic integral equations
and several types of integral operators are investigated, we refer to the papers of
Benchohra and al. [3], Banaś and al. [9, 14, 15, 16, 20, 21] and references therein.

On the other hand, the classical theory of integral operators and equations
can be generalized with the help of the Stieltjes integral having kernels dependent
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on one or two variables. Such an approach was presented and developed in many
research papers see the results of Abbas and Benchohra [1, 2, 7], Banaś and al.
[8, 15, 17].

The goal of this paper is to investigate a finite system of nonlinear quadratic
integral equations of Hadamard-Volterra-Stieltjes type applying the concept of
multiple fixed point of condensing operators and we will use the technique associ-
ated with measures of noncompactness. There are some papers in this direction,
Aghajani and al. [4, 5], Dhage [20] and references therein.

It is worthwhile mentioning that in applications, the most useful measures of
noncompactness are those defined in an axiomatic way [6, 11]. Such a direction
of investigations has been initiated in the papers [10, 13], where the authors in-
troduced the so-called condition (m) related to the operation of multiplication in
an algebra and playing a crucial role in the use of the technique of measures of
noncompactness in Banach algebras setting. Moreover, if we apply an approach
to the measure of noncompactness concept associated with a suitable axiomatic
definition, then we create the possibility to characterize solutions of investigated
operator equations see [9, 12, 13, 14, 16, 21].

Consider the following system of quadratic fractional integral equations

u1(x, y) = ϕ(x, y) + (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× g(t, s, u1(t, s), . . . , un(t, s))
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t),

u2(x, y) = ϕ(x, y) + (Gu2)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× g(t, s, u2(t, s), . . . , un(t, s), u1(t, s))
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t),

...
...

un(x, y) = ϕ(x, y) + (Gun)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× g(t, s, un(t, s), . . . , un−2(t, s), un−1(t, s))
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t),

(1)

where x, y ∈ J = [1,+∞)×[1, b], r1, r2 > 1, ϕ : J → R is a continuous and bounded
function, G : BC → BC is a linear operator, g : J × Rn → R is a continuous
function, h1 : [1, b] × [1, b] → R, h2 : [1,+∞) × [1,+∞) → R are given functions,
and Γ(·) is the Euler gamma function.

2. Preliminaries

Assume that (X, ‖·‖) is an infinite dimensional Banach space with zero element
θ. Denote by B(x, r) the closed ball with center at x and radius r. We write Br
to denote the ball B(θ, r). If U is a subset of X then the symbols U , ConvU
stand for the closure and closed convex hull of U , respectively. Apart from this
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the symbol diamU will denote the diameter of a set U while ‖U‖ denotes the norm
of U ; that is, ‖U‖ = sup{‖u‖ : u ∈ U}. Moreover, we denote by MX the family of
all nonempty and bounded subsets of X and by NX its subfamily consisting of all
relatively compact sets.

Here, we give some basic facts concerning measures of noncompactness, which
is defined axiomatically in terms of some natural conditions.

Definition 2.1 ([6, 11])
A mapping ψ : MX → R+ is said to be a measure of noncompactness in X if it
satisfies the following conditions:

(A1) The family kerψ = {A ∈ MX : ψ(A) = 0} is nonempty and kerψ ⊂ NX ;

(A2) A ⊂ B → ψ(A) ≤ ψ(B);

(A3) ψ(A) = ψ(A);

(A4) ψ(A) = ψ(ConvA);

(A5) ψ(λA+ (1− λ)B) ≤ λψ(A) + (1− λ)ψ(B) for λ ∈ [0, 1];

(A6) If (An) is a sequence of closed sets from MX such that An+1 ⊂ An (n =
0, 1, 2, . . .) and if limn→∞ ψ(An) = 0, then the intersection set A∞ =⋂∞
n=0 An is nonempty.

The family kerψ described in (A1) is said to be the kernel of the measure of
noncompactness ψ.

Remark 2.2
Observe that the intersection set A∞ from (A6) is a member of the family kerψ.
In fact, since ψ(A∞) ≤ ψ(An) for any n, we infer that ψ(A∞) = 0.

In the sequel we will assume that the space X has the structure of a Banach
algebra. In such a case we write uv in order to denote the product of elements
u, v ∈ X. Similarly, we will write UV to denote the product of subsets U , V of X;
that is, UV = {uv : u ∈ U, v ∈ V }.

Definition 2.3 ([10, 13])
One says that the measure of noncompactness µ defined on a Banach algebra X
satisfies condition (m) if for arbitrary sets U, V ∈ MX the following inequality is
satisfied

µ(UV ) ≤ ‖U‖µ(V ) + ‖V ‖µ(U). (m)

Remark 2.4
It turns out that the above defined condition (m) is very convenient in consider-
ations connected with the use of the technique of measures of noncompactness in
Banach algebras. Apart from this the majority of measures of noncompactness
satisfy this condition.
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We recall the well known fixed point theorem of Darbo.

Theorem 2.5 ([5, 6, 9])
Let Ω be a nonempty, bounded, closed and convex subset of a Banach space X
and let F : Ω → Ω be a continuous mapping. Assume that there exists a constant
k ∈ [0, 1) such that ψ(FA) ≤ kψ(A) for any nonempty subset A of Ω. Then F has
a fixed point in the set Ω.

Remark 2.6
Let us denote by FixF the set of all fixed points of the operator F which belongs
to Ω. It can be shown that the set FixF belongs to the family kerψ.

Theorem 2.7 ([11])
Let X1, X2, . . . , Xn be Banach spaces and µ1, µ2, . . . , µn be measures of noncom-
pactness in X1, X2, . . . , Xn, respectively. Assume that the function ξ : Rn+ → R+
is convex with ξ(a1, a2, . . . , an) = 0 if and only if ai = 0 for i = 1, 2, . . . , n. Then

µ(D) = ξ(µ1(D1), µ2(D2), . . . , µn(Dn))

defines a measure of noncompactness in the product space X1 × X2 × · · · × Xn

where Di denotes the natural projection of D into Xi for i = 1, 2, . . . , n.

Example 2.8 ([4])
Let µ be a measure of noncompactness on a Banach space X. Let H1(x, y) =
max(x, y) and H2(x, y) = x + y for any (x, y) ∈ [0,∞)2, then all the condi-
tions of Theorem 2.7 are satisfied, i.e. H1 and H2 are convex with H1(x, y) = 0 or
H2(x, y) = 0 if and only if x = y = 0. We conclude that µ̃(D) = max(µ(D1), µ(D2))
and µ̃(D) = µ(D1)+µ(D2) define measures of noncompactness in the space X×X,
where Di, i = 1, 2 denote the natural projections of X.

Definition 2.9 ([20])
An element (x, y) ∈ X×X is called a coupled fixed point of a mapping F : X×X →
X if F (x, y) = x and F (y, x) = y.

In what follows we will work in the Banach space BC consisting of all real
functions defined, continuous and bounded on J . This space is furnished with the
standard norm

‖u‖ = sup{‖u(x, y)‖ : (x, y) ∈ J}.

The space BC has the structure of a Banach algebra, i.e. if w, v ∈ BC, we write
wv to denote the product of elements u and v, and (wv)(t, s) = w(t, s)v(t, s).

Remark 2.10
It is clear that the product space BC × · · · ×BC︸ ︷︷ ︸

n

turns out to be a Banach space

if equipped with the norm

‖(u1, . . . , un)‖ =
n∑
i=1
‖ui‖BC .
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In order to define a measure of noncompactness in the space BC, fix a non-
empty bounded subset Y of BC and T > 1. For u ∈ Y and ε1, ε2 > 0 let us
denote by ωT (u, ε1, ε2) the modulus of continuity of the function u on the rectangle
[1, T ]× [1, b], i.e.

ωT (u, ε1, ε2) = sup{|u(x2, y2)− u(x1, y1)| : (x1, y1), (x2, y2) ∈ [1, T ]× [1, b],
|x2 − x1| ≤ ε1, |y2 − y1| ≤ ε2};

ωT (Y, ε1, ε2) = sup{ωT (u, ε1, ε2) : u ∈ Y };

ωT0 (Y ) = lim
ε1,ε2→0

ωT (Y, ε1, ε2);

ω0(Y ) = lim
T→∞

ωT0 (Y ).

If (t, s) is a fixed element from J , let us denote Y (t, s) = {u(t, s); u ∈ Y } and

diamY (t, s) = sup{‖u(t, s)− v(t, s)‖ : u, v ∈ Y }.

Finally, consider the function ψ defined on the family MX by the formula

ψ(Y ) = ω0(Y ) + lim
s→∞

sup diam Y (t, s).

It can be shown that the function ψ is a measure of noncompactness in the space
BC. The kernel kerψ consists of nonempty and bounded sets Y such that functions
from Y are locally equicontinuous on J and the thickness of the bundle formed
by functions from Y tends to zero at infinity. This property will permit us to
characterize solutions of the system (1) considered in the next section.

Theorem 2.11 ([10, 13])
The measure of noncompactness ψ satisfies condition (m).

Let L1(J,R) be the Banach space of functions u : J → R that are Lebesgue
integrable with the norm

‖u‖L1 =
∫∫
J

|u(x, y)|dydx.

Definition 2.12
Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For u ∈ L1(J,R), define the Hadamard
partial fractional integral of order r by the expression

(HSIrσu)(x, y) = 1
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1u(t, s)
st

dsdt,

where Γ(·) is the Euler gamma function.

For more details about Hadamard fractional integral see [22].
Let a nondegenerate rectangle I = [a, b] × [c, d] ⊂ R2 be given. We consider

a real function p : I → R defined on I. For a given sub-rectangle I = [a1, b1] ×
[c1, d1] ⊂ I , a ≤ a1 ≤ b1 ≤ b, c ≤ c1 ≤ d1 ≤ d we set

mp(I) = p(b1, d1)− p(b1, c1)− p(a1, d1) + p(a1, c1).
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Let us de define ∨
I

(p) = sup
∑
i

|mp(Ii)|,

where the supremum is taken over all finite systems of nonoverlapping rectangles
Ii ⊂ I (i.e. for the interiors I◦i of the rectangles Ii we assume that I◦i ∩ I

◦
j = ∅,

whenever i 6= j).
If p : I = [a, b] × [c, d] → R and γ ∈ [c, d] (resp. α ∈ [a, b]) is fixed, then we

denote the usual variation of the function p(s, γ) (resp. p(α, t)) in the interval

[a, b] (resp. [c, d]) by
b∨
a
p(·, γ) (resp.

d∨
c
p(α, ·)).

Definition 2.13 ([25])
The real function p : I → R is of bounded variation on I if

∨
I

(p) <∞.

Lemma 2.14 ([25])

Let p : I = [a, b] × [c, d] → R be such that
∨
I

(p) < ∞ and let
b∨
a
p(·, γ0) < ∞ for

some γ0 ∈ [c, d]. Then
b∨
a
p(·, γ) <∞ for all γ ∈ [c, d] and

b∨
a

p(·, γ) ≤
∨
I

(p) +
b∨
a

p(·, γ0).

Theorem 2.15 ([24])
If f : [a, b]→ R is monotone on [a, b], then f is of bounded variation on [a, b] and

b∨
a

(f) = |f(b)− f(a)|.

Let f and g be functions defined on the interval [a, b], the Stieltjes integral of
f with respect to g is designated by∫ b

a

f(x)dg(x).

It is clear that the Riemann integral is a special case of the Stieltjes integral,
obtained by setting g(x) = x. The Stieltjes integral exists under several conditions,
we will restrict ourselves to only one theorem in this direction.

Theorem 2.16 ([24, 25])
The integral ∫ b

a

f(x)dg(x),

exists if the function f is continuous on [a, b] and g is of finite variation on [a, b],
and we have ∣∣∣∣ ∫ b

a

f(x)dg(x)
∣∣∣∣ ≤ sup

x∈[a,b]
|f(x)|

b∨
a

(g).
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Lemma 2.17 ([24])
If the function f is continuous on [a, b] and if the function g has a Riemann
integrable derivative g′ at every point of [a, b], then∫ b

a

f(x)dg(x) =
∫ b

a

f(x)g′(x)dx.

For more properties of the Stieltjes integral see [23, 24, 25, 26].
We consider the Hadamard-Stieltjes fractional integral of a function u : J → R

of order r = (r1, r2) of the form

(HSIru)(x, y)

= 1
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1u(t, s)
st

dsh1(y, s)dth2(x, t),

were h1 : [1, b] × [1, b] → R, h2 : [1,+∞) × [1,+∞) → R, and the symbols dt, ds
indicate the integration with respect to t, s respectively.

Theorem 2.18
Let D be a nonempty, bounded and closed subset of a Banach space X and µ
an arbitrary measure of noncompactness on X. If F : Dn → D is a continuous
operator and there exists a constant k ∈ [0, 1) such that

µ(F (Q1 ×Q2 × · · · ×Qn)) ≤ kmax(µ(Q1), µ(Q2), . . . , µ(Qn))

for any Q1, Q2, . . . , Qn of D, then the operator F has a multiple fixed point in D,
i.e. there exist x∗1, . . . , x∗n ∈ D such that

F (x∗1, x∗2, . . . , x∗n) = x∗1,

F (x∗2, x∗3, . . . , x∗n, x∗1) = x∗2,
...

...
F (x∗n, x∗1, . . . , x∗n−2, x

∗
n−1) = x∗n.

Proof. see [4].

Let us assume that Ω is a nonempty subset of the space BC and F is an
operator on Ωn with values in BCn. Consider the following equation

(u1, . . . , un)(x, y) = F (u1, . . . , un)(x, y), (x, y) ∈ J. (2)

Definition 2.19
A solution u∗ = (u1(x, y), . . . , un(x, y)) of equation (2) is said to be globally at-
tractive if for each solution v∗ = (v1(x, y), . . . , vn(x, y)) of (2) we have

lim
x→∞

sup
1≤i≤n

(ui(x, y)− vi(x, y)) = 0.

In the case when this limit is uniform, i.e. when for each ε > 0 there exists T > 0
such that

sup
1≤i≤n

|ui(x, y)− vi(x, y)| < ε, x ≥ T,

we will say that solutions of (2) are uniformly globally attractive.
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Remark 2.20
This concept of stability in the case of equation (Fu)(x, y) = u(x, y) can be found
in [14, 21].

3. Main results

We will give an existence and stability results for the system (1) applying
Theorem 2.18 under the following assumptions:

(H1) The function g is continuous and there exist continuous and bounded func-
tions pi : J → R+, i = 1, . . . , n such that

|g(x, y, u1, . . . , un)− g(x, y, v1, . . . , vn)| ≤ 1
n

n∑
i=1

pi(x, y)|ui − vi|
max1≤i≤n |ui + vi|+ 1

for all ui, vi ∈ R, i = 1, . . . , n.
(H2) The operator G : BC → BC is a bounded linear operator with spectral

radius rσ(G) < 1.
(H3) The function s 7→ h1(y, s) is continuous and of bounded variation on [1, b]

for each fixed y ∈ [1, b], and the function t 7→ h2(x, t) is continuous and of
bounded variation on [1,+∞) for each x ∈ [1,+∞).

(H4) There exists a constant η > 0 such that

sup
x≥1;1≤y≤b

∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
s

)r1−1
[1+|g(t, s, 0, . . . , 0)|]dsh1(y, s)dth2(x, t)

∣∣∣∣ ≤ η,
with

ρ = ηp∗(ln b)r2

Γ(r1)Γ(r2) < 1 and 1 + ρ

1− ρ‖ϕ‖ < 1,

where p∗ = sup
1≤i≤n

‖pi‖.

Remark 3.1
(i) In view of the assumption (H1) we infer that

|g(x, y, u1, . . . , un)| ≤ 1
n

n∑
i=1

pi(x, y)|ui|
max1≤i≤n |ui|+ 1 + |g(x, y, 0, . . . , 0)|

for all (x, y) ∈ J and ui ∈ R.
(ii) The operator G is a bounded linear operator, i.e. the operator G is linear

and there exists a constant l > 0 such that for each u ∈ BC,

‖Gu‖ ≤ l‖u‖.

If spectral radius of G satisfies rσ(G) < 1, we conclude that sup
‖u‖6=0

‖Gu‖
‖u‖ < 1.
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Theorem 3.2
Under the assumptions (H1)–(H4) the system (1) has at least one solution u∗ =
(u∗1, . . . , u∗n). Moreover, solutions of the system (1) are globally attractive.

Proof. Consider the operator F : BC × · · · ×BC︸ ︷︷ ︸
n

→ BC defined by

(F (u1, . . . , un))(x, y) = ϕ(x, y) + (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× g(t, s, u1(t, s), . . . , un(t, s))
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t).

Observe that in view of our assumptions, for any function u = (u1, . . . , un) of the
space BC × · · · × BC the function F (u1, . . . , un) is continuous on J × · · · × J .
Next, let us take an arbitrary function u = (u1, . . . , un) ∈ BC × · · · ×BC. Using
our assumptions, for a fixed (x, y) ∈ J we have

|(F (u1, . . . , un))(x, y)|

≤ |ϕ(x, y)|+ |(Gu1)(x, y)|
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1(t, s), . . . , un(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

≤ |ϕ(x, y)|+ |u1(x, y)|
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

×
[

1
n

n∑
i=1

pi|ui(t, s)|
max1≤i≤n |ui(t, s)|+ 1 + |g(t, s, 0, · · · , 0)|

]
dsh1(y, s)dth2(x, t)

≤ ‖ϕ‖+ p∗(ln b)r2

Γ(r1)Γ(r2)‖u‖
∫ x

1

∫ y

1

(
ln x
t

)r1−1

× [1 + |g(t, s, 0, . . . , 0)|]dsh1(y, s)dth2(x, t),

hence we obtain

‖F (u1, . . . , un)‖ ≤ ‖ϕ‖+ ηp∗(ln b)r2

Γ(r1)Γ(r2)‖u‖,

so the function F (u1, . . . , un) is bounded on J × · · · × J . Then Fu ∈ BC.
We take

r = ‖ϕ‖
1− ρ .

We deduce that the operator F transforms the set Br × · · · ×Br into the ball Br.
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Further, let (um) = (u1, · · · , un)m ⊂ Br × · · · × Br such that lim
m→∞

uim = ui

for i = 1, . . . , n we get

|(F (u1m
, . . . , unm

))(x, y)− (F (u1, . . . , un))(x, y)|

=
∣∣∣∣ϕ(x, y) + (Gu1m

)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1m
(t, s), . . . , unm

(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

− ϕ(x, y) + (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1(t, s), . . . , un(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

∣∣∣∣
≤
∣∣∣∣(Gu1m

)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1m
(t, s), . . . , unm

(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

− (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1(t, s), . . . , un(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

+ (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1m
(t, s), . . . , unm

(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

− (Gu1)(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× |g(t, s, u1m(t, s), . . . , unm(t, s))|
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t)

∣∣∣∣
≤ ηp∗(ln b)r2

Γ(r1)Γ(r2)‖Gu1m
−Gu1‖+ p∗‖Gu1‖

Γ(r1)Γ(r2) sup
1≤i≤n

‖uim − ui‖

×
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1
dsh1(y, s)dth2(x, t)

≤ ηp∗(ln b)r2

Γ(r1)Γ(r2) sup
1≤i≤n

‖uim − ui‖+ (ln b)r2p∗‖Gu1‖
Γ(r1)Γ(r2) sup

1≤i≤n
‖uim − ui‖

×
∫ x

1

∫ y

1

(
ln x
t

)r1−1
dsh1(y, s)dth2(x, t).
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Since lim
m→∞

sup
1≤i≤n

‖uim − ui‖ = 0, we obtain

lim
m→∞

‖F (u1m
, . . . , unm

)− F (u1, . . . , un)‖ = 0.

Then the operator F is continuous on Br × · · · ×Br.

Remark 3.3
By the hypothesis (H4) we notice that the quantity

sup
(x,y)∈J

∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
t

)r1−1
dsh1(y, s)dth2(x, t)

∣∣∣∣
is finite.

Now, we consider the operator T defined on BC × · · · ×BC by

T (u1, . . . , un)(x, y)

=
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1g(t, s, u1(t, s), . . . , un(t, s))
Γ(r1)Γ(r2)st dsh1(y, s)dth2(x, t).

For an arbitrarily function u = (u1, . . . , un) of the space BC × · · · × BC and a
fixed (x, y) in J , using our assumptions, we get

|T (u1, . . . , un)(x, y)|

=
∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1 g(t, s, u1(t, s), . . . , un(t, s))
Γ(r1)Γ(r2)st

× dsh1(y, s)dth2(x, t)
∣∣∣∣

≤
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1
[

1
n

n∑
i=1

pi|ui|(t, s)
max1≤i≤n |ui(t, s)|+ 1

+ |g(t, s, 0, · · · , 0)|
]
dsh1(y, s)dth2(x, t)

Γ(r1)Γ(r2)

≤ η(ln b)r2p∗

Γ(r1)Γ(r2) sup
1≤i≤n

|ui(t, s)|,

thus
‖T (u1, . . . , un)‖ ≤ ρ sup

1≤i≤n
‖ui‖.

Clearly the operator T transforms the set Br × · · · ×Br into the ball Br and

F (Br × · · · ×Br) ⊆ ϕ+G(Br) · T (Br × · · · ×Br).
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Next, we take a nonempty Y ⊂ Br, using Definition 2.3 and applying Theorem
2.11, we obtain

ψ(F (Y × · · · × Y )) ≤ ψ(G(Y ) · T (Y × · · · × Y ))
≤ ‖G(Y )‖ψ(T (Y × · · · × Y )) + ‖T (Y × · · · × Y )‖ψ(G(Y ))

≤ ‖ϕ‖1− ρψ(Y ) + ρ
‖ϕ‖

1− ρψ(Y ),

hence
ψ(F (Y × · · · × Y )) ≤ 1 + ρ

1− ρ‖ϕ‖ψ(Y ).

Finally, in view of Theorem 2.18 we deduce that F has at least one multiple
fixed point in Br which is a solution of the system (1). Moreover, taking into ac-
count the fact that the set FixF ∈ kerψ and the characterization of sets belonging
to kerψ (Remark 2.6) we conclude that all solutions of the system (1) are globally
attractive in the sense of Definition 2.19.

4. Example

We consider the following system of integral equations



u1(x, y) = 1
5s+ t

+ e−2y−xu1(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× n−1e−3st

(max1≤i≤n |ui(t, s)|+ 1)Γ(r1)Γ(r2)stds(arctan(ys))dt
( 1
tx

)
,

u2(x, y) = 1
5s+ t

+ e−2y−xu2(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× n−1e−3st

(max1≤i≤n |ui(t, s)|+ 1)Γ(r1)Γ(r2)stds(arctan(ys))dt
( 1
tx

)
,

...
...

un(x, y) = 1
5s+ t

+ e−2y−xun(x, y)
∫ x

1

∫ y

1

(
ln x
t

)r1−1(
ln y
s

)r2−1

× n−1e−3st

(max1≤i≤n |ui(t, s)|+ 1)Γ(r1)Γ(r2)stds(arctan(ys))dt
( 1
tx

)
,

(3)

where (x, y) ∈ J = [1,+∞)× [1, π], and (r1, r2) =
( 3

2 ,
3
2
)
. Set

ϕ(x, y) = 1
5s+ t

, ‖ϕ‖ = 1
6 , h1(y, t) = arctan(ys), h2(x, s) = 1

tx
,

(Gui)(x, y) = e−2y−xui(x, y)
and

g(t, s, u1(t, s), . . . , un(t, s)) = n−1e−3st

max1≤i≤n |ui(t, s)|+ 1 , (t, s) ∈ J.
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It is clear that the system (3) can be written as the system (1). Let us show
that conditions (H1)–(H4) hold. The function s 7→ arctan(ys) is continuous and
nondecreasing for each fixed y0 ∈ [1, π], so it is of bounded variation on [1, π]×[1, π],
and

s=π∨
s=1

h2(y, s) ≤ arctan(π2)− arctan(1).

The function t 7→ 1
tx is continuous and decreasing for each fixed x0 ∈ [1,+∞), and

lim
t→+∞

1
tx

= 0,

so it is of bounded variation on [1,+∞)× [1,+∞), and for each fixed x0 ∈ [1,+∞)

dth1(x0, t) = − 1
x0t2

dt.

We have also

|g(t, s, u1, . . . , un) − g(t, s, v1, . . . , vn)|

=
∣∣∣ n−1e−3st

max1≤i≤n |ui|+ 1 −
n−1e−3st

max1≤i≤n |vi|+ 1

∣∣∣
=
∣∣∣n−1e−3st(max1≤i≤n |ui| −max1≤i≤n |vi|)

(max1≤i≤n |ui|+ 1)(max1≤i≤n |vi|+ 1)

∣∣∣
≤ n−1e−3st max1≤i≤n |ui − vi|

max1≤i≤n |ui + vi|+ 1

≤
n−1e−3st∑n

i=1 |ui − vi|
max1≤i≤n |ui + vi|+ 1

≤ 1
n

n∑
i=1

e−3st|ui − vi|
max1≤i≤n |ui + vi|+ 1 ,

so for all i = 1, . . . , n we have pi(t, s) = e−3st and sup
1≤i≤n

‖pi‖ = e−3.

Obviously the operator G is linear and for each u in BC, we get

sup
‖u‖6=0

‖Gu‖
‖u‖

≤ e−3.

Next, for a fixed (x, y) in J , we obtain∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
t

)r1−1
[1 + |g(t, s, 0, . . . , 0)|]dsh1(y, s)dth2(x, t)

∣∣∣∣
=
∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
t

) 3
2−1

n−1e−3stds(arctan(ys))dt
( 1
tx

)∣∣∣∣
+
∣∣∣∣ ∫ x

1

∫ y

1

(
ln x
t

) 3
2−1

ds(arctan(ys))dt
( 1
tx

)∣∣∣∣
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≤
∣∣∣∣ ln x∫ x

1
n−1e−3t

(∫ y

1
ds(arctan(ys))

)
dt

( 1
tx

)∣∣∣∣
≤ ln x[arctan(π2)− arctan(1)]

∣∣∣∣ ∫ x

1
−n
−1e−3t

xt2
dt

∣∣∣∣
≤ ln x[arctan(π2)− arctan(1)]

∣∣∣∣ ∫ x

1

n−1e−3t

x
dt

∣∣∣∣
≤ [arctan(π2)− arctan(1)]

∣∣∣∣− ln x
3xe3x + ln x

3e3x

∣∣∣∣,
since

lim
x→∞

∣∣∣∣− ln x
3xe3x + ln x

3e3x

∣∣∣∣ = 0,

then the function q(x) =
∣∣∣− ln x

3xe3x + ln x
3e3x

∣∣∣ is bounded, i.e. there exists α > 0 such
that sup

x≥1
q(x) ≤ α. We take

η = α[arctan(π2)− arctan(1)].

It follows that
ρ = ηp∗(ln b)r2

Γ(r1)Γ(r2) = η(ln π)3/2

e3Γ(3/2)Γ(3/2) < 1,

and
1 + ρ

1− ρ‖ϕ‖ = 1 + ρ

6(1− ρ) < 1.

Consequently from Theorem 3.2 the system (3) has at least solution in BC and
solutions of the system (3) are globally attractive.
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