

FOLIA 277

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVIII (2019)

Mirosław Ślosarski Multi-invertible maps and their applications

Abstract. In this article, we define multi-invertible, multivalued maps. These mappings are a natural generalization of r-maps (in particular, the singlevalued invertible maps). They have many interesting properties and applications. In this article, the multi-invertible maps are applied to the construction of morphisms and to the theory of coincidence.

1. Introduction

In mathematical literature multivalued admissible maps are known (see [4]). In [8] we defined multivalued locally admissible maps that are an essentially wider class of maps than admissible maps. In this article we define multivalued, multi-invertible maps in the context of locally admissible maps. These maps are a natural, essential generalization of r-maps (see [1]) in particular, the singlevalued invertible maps. The generalized Vietoris maps considered in the article (see [9]) are particularly multi-invertible. Multi-invertible maps have a lot of interesting properties. The composition of multi-invertible maps is multi-invertible. If a map is multi-invertible then there exists exactly one multi-inverse map. Multi-invertible maps have many applications. In this article they are applied to the construction of morphisms and to the theory of coincidence. The property of coincidence of multi-invertible maps can be applied to solving differential inclusions (see [3]). It is worth mentioning that multi-invertible maps can be also applied to the theory of multi-domination (see [9, 10]).

AMS (2010) Subject Classification: 54C60, 54H25, 55M20.

Keywords and phrases: multi-invertible map, locally admissible map, admissible morphism, strongly acyclic space, admissible map.

[36] Mirosław Ślosarski

2. Preliminaries

Throughout this paper all spaces are assumed to be Hausdorff topological spaces. A continuous mapping $f\colon X\to Y$ is called *perfect* if for each $y\in Y$ the set $f^{-1}(y)$ is non-empty and compact and f is a closed map. Let X and Y be two spaces and assume that for every $x\in X$ a non-empty subset $\varphi(x)$ of Y is given. In such a case we say that $\varphi\colon X\multimap Y$ is a *multivalued mapping*. For a multivalued mapping $\varphi\colon X\multimap Y$ and a subset $A\subset Y$ we let

$$\varphi_s^{-1}(A) = \{ x \in X : \ \varphi(x) \subset A \},$$

$$\varphi_b^{-1}(A) = \{ x \in X : \ \varphi(x) \cap A \neq \emptyset \}.$$

Let H_* be the $\check{C}ech$ homology functor with compact carriers and coefficients in the field of rational numbers $\mathbb Q$ from the category of Hausdorff topological spaces and continuous maps to the category of a graded vector space and linear maps of degree zero. Thus $H_*(X) = \{H_q(X)\}$ is a graded vector space, $H_q(X)$ being a q-dimensional $\check{C}ech$ homology group with compact carriers of X. For a continuous map $f: X \to Y$, $H_*(f)$ is the induced linear map $f_* = \{f_q\}$, where $f_q: H_q(X) \to H_q(Y)$ (see [4]).

A set X is acyclic if

- (i) X is non-empty,
- (ii) $H_q(X) = 0$ for every $q \ge 1$ and
- (iii) $H_0(X) \approx \mathbb{Q}$.

A perfect map $p \colon X \to Y$ is called *Vietoris* provided for every $y \in Y$ the set $p^{-1}(y)$ is acyclic. We recall that the composition of two Vietoris mappings is a Vietoris mapping and if $p \colon X \to Y$ is a Vietoris map then $p_* \colon H_*(X) \to H_*(Y)$ is an isomorphism (see [4]). The symbol D(X,Y) will denote the set of all diagrams of the form

$$X \xleftarrow{p} Z \xrightarrow{q} Y,$$

where $p: Z \to X$ denotes a Vietoris map and $q: Z \to Y$ denotes a continuous map. Each such diagram will be denoted by (p,q).

Definition 2.1 (see [4])

Let $(p_1, q_1) \in D(X, Y)$ and $(p_2, q_2) \in D(Y, T)$. The composition of diagrams

$$X \xleftarrow{p_1} Z_1 \xrightarrow{q_1} Y \xleftarrow{p_2} Z_2 \xrightarrow{q_2} T_2$$

is called a diagram $(p,q) \in D(X,T)$,

$$X \xleftarrow{p} Z_1 \triangle_{q_1p_2} Z_2 \xrightarrow{q} T,$$

where

$$Z_1 \triangle_{q_1 p_2} Z_2 = \{ (z_1, z_2) \in Z_1 \times Z_2 : q_1(z_1) = p_2(z_2) \},$$

$$p = p_1 \circ \pi_1, \quad q = q_2 \circ \pi_2,$$

$$Z_1 \xleftarrow{\pi_1} Z_1 \triangle_{q_1 p_2} Z_2 \xrightarrow{\pi_2} Z_2,$$

 $\pi_1(z_1, z_2) = z_1$ (Vietoris map), $\pi_2(z_1, z_2) = z_2$ for each $(z_1, z_2) \in Z$.

It shall be written

$$(p,q) = (p_2,q_2) \circ (p_1,q_1).$$

Let $\varphi \colon X \multimap Y$ be a multivalued map. We recall that the map φ is admissible (resp. s-admissible) (see [4]) if there exist a Vietoris map $p \colon Z \to X$ and a continuous map $q \colon Z \to Y$ such that for each $x \in X$,

$$q(p^{-1}(x)) \subset \varphi(x)$$
 (resp. $q(p^{-1}(x)) = \varphi(x)$),

to simplify the notation we will write $(p,q) \subset \varphi$ (resp. $(p,q) = \varphi$)).

Let $\varphi \colon X \multimap Y$ be a map and let $A \subset X$ be a non-empty set. We denote by $\varphi_A \colon A \multimap X$ a map given by the formula $\varphi_A(x) = \varphi(x)$ for each $x \in A$.

Definition 2.2

A multivalued map $\varphi \colon X \multimap Y$ is called *locally admissible* provided for any compact and non-empty set $K \subset X$ there exists an open set $V \subset X$ such that $K \subset V$ and $\varphi_V \colon V \multimap X$ is admissible.

Proposition 2.3 ([8])

Let $\varphi \colon X \multimap Y$ and $\psi \colon Y \multimap Z$ be locally admissible maps. Then $\psi \circ \varphi \colon X \multimap Z$ is locally admissible.

It is obvious that if a space X is compact then $\varphi \colon X \multimap Y$ is locally admissible if and only if $\varphi \colon X \multimap Y$ is admissible.

Definition 2.4

A topological vector space is called *Klee admissible* provided for every compact $K \subset E$ and for every open neighborhood of zero V in E there exists a continuous map $\pi_V \colon K \to E$ such that

- (2.4.1) $(x \pi_V(x)) \in V$ for every $x \in K$,
- (2.4.2) there exists a natural number $n = n_K$ such that $\pi_V(K) \subset E^n$, where E^n is an *n*-dimensional subspace of E.

It is well known that any locally convex space is Klee admissible. We will write that a space $X \in A_C$ $(X \in NA_C)$ if there exists a Klee admissible space E and a closed embedding $h: X \to E$ such that h(X) is a retract of E (h(X) is a retract of some open set $U \subset E$ such that $h(X) \subset U$.

Proposition 2.5 ([4, 6])

Let $X \in NA_C$ and let $U \subset X$ be an open set. Then $U \in NA_C$.

Theorem 2.6 ([4, 6])

Let $X \in NA_C$. Consider a diagram

$$X \xleftarrow{p} Z \xrightarrow{q} X,$$

where p is Vietoris and q is compact $(\overline{q(Z)} \subset X \text{ is compact})$. Then $q_* \circ p_*^{-1}$ is a Leray endomorphism and $\Lambda(q_* \circ p_*^{-1}) \neq 0$ implies that p and q have a coincidence point, that is, there is a point $z \in Z$ such that p(z) = q(z).

[38] Mirosław Ślosarski

3. Multi-invertible maps

Definition 3.1

We say that a multivalued map $\varphi \colon X \multimap Y$ is *multi-invertible* if there exists a multivalued map $\overleftarrow{\varphi} \colon Y \multimap X$ (multi-inverse map) such that the following conditions are satisfied

- (3.1.1) for each $x \in X$ and for each $y \in Y$ $(y \in \varphi(x) \Rightarrow x \in \overline{\varphi}(y))$,
- (3.1.2) for each $x \in X$ and for each $y \in Y$ $(x \in \overleftarrow{\varphi}(y) \Rightarrow y \in \varphi(x))$.

We observe that if $\varphi \colon X \multimap Y$ is multi-invertible then there exists exactly one multi-inverse map $\varphi \colon Y \multimap X$ given by the formula

$$\overleftarrow{\varphi}(y) = \varphi_b^{-1}(y) = \{x \in X : \ y \in \varphi(x)\}.$$

It is clear that a multivalued map $\varphi\colon X\multimap Y$ is multi-invertible if and only if $\varphi(X)=Y$ and if a singlevalued map $f\colon X\to Y$ is invertible then $f=f^{-1}$. Let $\varphi\colon X\multimap Y$ be a multivalued map. If φ has compact images and for every open $U\subset Y$ the set $\varphi_s^{-1}(U)$ ($\varphi_b^{-1}(Y\backslash U)$) is open (is closed), then φ is called an *upper semi-continuous mapping*; we shall write that φ is u.s.c. We will say that an u.s.c. multivalued map $\varphi\colon X\multimap Y$ is *perfect*, if for each non-empty and compact set $A\subset Y$ the set $\varphi_b^{-1}(A)$ is non-empty and compact and φ is a closed map.

Proposition 3.2

A map $\varphi \colon X \multimap Y$ is perfect if and only if φ is multi-invertible and $\overleftarrow{\varphi}$ is a perfect map.

Proof. It is obvious that

$$\varphi(A) = \overleftarrow{\varphi}_b^{-1}(A)$$
 for each non-empty set $A \subset X$

and

$$\overleftarrow{\varphi}(B) = \varphi_b^{-1}(B)$$
 for each non-empty set $B \subset Y$.

From Proposition 3.2 we get

Proposition 3.3

Let X and Y be compact spaces and let $\varphi \colon X \multimap Y$ such that $\varphi(X) = Y$. A multivalued map $\varphi \colon X \multimap Y$ is u.s.c. if and only if $\varphi \colon Y \multimap X$ is u.s.c..

We will give a few examples. Let \mathbb{K}^n be a closed ball in euclidean space \mathbb{R}^n with the center of 0 and radius 1 and let $\mathbb{S}^n \subset \mathbb{K}^{n+1}$ be a sphere. We denote by \odot a scalar product in \mathbb{R}^n and let I = [0, 1].

Example 3.4

Let $\varphi \colon \mathbb{S}^n \to \mathbb{S}^n$ be a multivalued map given by the formula

$$\varphi(x) = \{ y \in \mathbb{S}^n : x \odot y = 0 \}$$
 for each $x \in \mathbb{S}^n$.

We observe that φ is multi-invertible and $\overline{\varphi} = \varphi$. For n = 2k, φ is not admissible. Indeed, assume the contrary, i.e. that φ is admissible. Then there exist a Vietoris

map $p: Z \to \mathbb{S}^n$ and a continuous map $q: Z \to \mathbb{S}^n$ such that $(p,q) \subset \varphi$. Hence, for each $z \in Z$,

$$p(z) \odot q(z) = 0$$
, so p and q are homotopic.

We have

$$\Lambda(q_* \circ p_*^{-1}) = \Lambda(p_* \circ p_*^{-1}) = \Lambda(Id_{H_*(\mathbb{S}^n)}) = 2.$$

From Theorem 2.6 there exists a point $z \in Z$ such that p(z) = q(z), but it is a contradiction. From the mathematical literature we know that for n = 2k-1 there exists a continuous map $f : \mathbb{S}^n \to \mathbb{S}^n$ such that, for each $x \in \mathbb{S}^n$, $x \odot f(x) = 0$. Hence, φ is admissible, because $(Id_{\mathbb{S}^n}, f) \subset \varphi$.

Example 3.5

Let $\varphi \colon \mathbb{S}^n \to \mathbb{K}^{n+1}$ be a multivalued map given by the formula

$$\varphi(x) = \{t \cdot x : \ t \in I\}.$$

The map φ is u.s.c. and for each $x \in \mathbb{S}^n$ the set $\varphi(x)$ is compact and convex, so φ is s-admissible (in particular, admissible). A multivalued map $\psi \colon \mathbb{K}^{n+1} \multimap \mathbb{S}^n$ given by the formula

$$\psi(x) = \begin{cases} x/\|x\| & \text{for } x \neq 0, \\ \mathbb{S}^n & \text{for } x = 0 \end{cases}$$

is multi-inverse to φ . We observe that ψ it is not an admissible map. Indeed, assume the contrary, i.e. that φ is admissible. Then there exist a Vietoris map $p\colon Z\to \mathbb{K}^{n+1}$ and a continuous map $q\colon Z\to \mathbb{S}^n$ such that $(p,q)\subset \psi$. Let $j\colon \mathbb{S}^n\to \mathbb{K}^{n+1}$ be an inclusion. We have the following diagram

$$H_*(\mathbb{S}^n) \xrightarrow{\ j_* \ } H_*(\mathbb{K}^{n+1}) \xleftarrow{\ p_* \ } H_*(Z) \xrightarrow{\ q_* \ } H_*(\mathbb{S}^n).$$

Hence, it result that

$$(q_* \circ p_*^{-1}) \circ j_* = Id_{H_*(\mathbb{S}^n)},$$

but it is not possible.

Definition 3.6

A locally admissible map $\varphi \colon X \multimap Y$ is *multi-invertible* if there exists a multi-inverse and locally admissible map $\overleftarrow{\varphi} \colon Y \multimap X$.

Proposition 3.7

Let $f\colon X\to Y$ be a continuous map. The map f is multi-invertible if and only if for each compact set $K\subset Y$ there exist an open neighborhood U of K and a continuous map $g\colon U\to X$ such that $f\circ g\colon U\to Y$ is a Vietoris map.

Proof. Let $f\colon X\to Y$ be a continuous and multi-invertible map. From Definition 3.6 the multi-inverse map $f\colon Y\multimap X$ is locally admissible. Let $K\subset Y$ be a compact set. There exists an open neighborhood $U\subset Y$ of K such that $f:U:U\multimap X$ is an admissible map, that is, there exists a diagram $(p,q)\in D(U,X)$ such that $(p,q)\subset f$. Hence we have

$$q(p^{-1}(y)) \subset f^{-1}(y)$$
 for each $y \in U$,

so $f \circ q = p$ is a Vietoris map. The proof in the opposite direction is obvious.

[40] Mirosław Ślosarski

In particular, if a continuous map $f: X \to Y$ is an r-map, that is, there exists $g: Y \to X$ such that $f \circ g = Id_Y$, then it is multi-invertible.

Proposition 3.8

Let $\varphi \colon X \multimap Y$ be an admissible map. Assume that there exist Vietoris maps $p_1 \colon Z \to X$ and $p_2 \colon Z \to Y$ such that $(p_1, p_2) \subset \varphi$. Then φ is multi-invertible.

Proof. We observe that $\varphi(X) = Y$ and $((p_1, p_2) \subset \varphi) \Leftrightarrow ((p_2, p_1) \subset \varphi)$.

We will say that $\varphi \colon \underline{X} \multimap Y$ is relatively proper if for each non-empty and compact set $K \subset Y$ the set $\overline{\varphi_b^{-1}(K)}$ is non-empty and compact.

Proposition 3.9

Let $\varphi \colon X \multimap Y$ be relatively proper. Assume that for each compact set $K \subset X$ there exist an open neighborhood $U \subset X$ of K, an open neighborhood $V \subset Y$ of $\varphi(K)$ and Vietoris maps $p_1 \colon Z \to U$ and $p_2 \colon Z \to V$ such that $(p_1, p_2) \subset \varphi_U$. Then φ is multi-invertible and φ is locally admissible.

Proof. It is easy to observe that φ is locally admissible. We show that the multiinverse map $\overline{\varphi}: \underline{Y} \longrightarrow X$ is locally admissible. Let $K \subset Y$ be a compact set. We denote by $K_1 = \overline{\varphi_b^{-1}(K)} = \overline{\overline{\varphi}(K)}$. From the assumption the set K_1 is compact, so there exist an open neighborhood $U \subset X$ of K_1 , an open neighborhood $V \subset Y$ of $\varphi(K_1)$ and Vietoris maps $p_1: Z \to U$ and $p_2: Z \to V$ such that $(p_1, p_2) \subset \varphi_U$. We have

$$K \subset \varphi(\overleftarrow{\varphi}(K)) \subset \varphi(\overleftarrow{\overleftarrow{\varphi}(K)}) \subset V.$$

Hence $(p_2, p_1) \subset \overleftarrow{\varphi}_V$ and the proof is complete.

A few obvious properties of multi-invertible mappings will follow, which do not require proof.

Proposition 3.10

Let $\varphi, \psi \colon X \multimap Y$, $\eta \colon Y \multimap Z$ and $\theta \colon T \multimap S$ be multi-invertible maps. Then we have

- (3.10.1) for each $x \in X$ and $y \in Y$ $y \in \varphi(\overleftarrow{\varphi}(y))$ and $x \in \overleftarrow{\varphi}(\varphi(x))$,
- $(3.10.2) \ \overleftarrow{\eta \circ \varphi} = \overleftarrow{\varphi} \circ \overleftarrow{\eta},$
- $(3.10.3) \ \overline{(\overleftarrow{\varphi})} = \varphi,$
- (3.10.4) $\varphi \times \theta = \varphi \times \varphi$, where the map $\varphi \times \theta \colon X \times T \multimap Y \times S$ given by the formula

$$(\varphi \times \theta)(x,t) = \varphi(x) \times \theta(t)$$
 for each $(x,t) \in (X \times T)$,

(3.10.5) if $\varphi(x) \cap \psi(x) \neq \emptyset$ for each $x \in X$ and if $\Theta: X \multimap Y$ is a map given by the formula

$$\Theta(x) = \varphi(x) \cap \psi(x)$$
 for each $x \in X$,

then Θ is multi-invertible and $\overleftarrow{\Theta}$: $Y \multimap X$ is given by the formula

$$\overleftarrow{\Theta}(y) = \overleftarrow{\varphi}(y) \cap \overleftarrow{\psi}(y)$$
 for each $y \in Y$.

Remark 3.11 Let

$$X \xrightarrow{f_1} T$$

$$\downarrow \Delta_f \qquad \downarrow Id_T$$

$$Y \xrightarrow{f_2} T$$

be a commutative diagram, where f_1 and f_2 are continuous maps such that $f_1(X) = f_2(Y)$ and $\Delta_f \colon X \multimap Y$ is a multivalued map given by the formula

$$\Delta_f(x) = f_2^{-1}(f_1(x)) \qquad \text{for each } x \in X.$$
 (1)

We observe that the map Δ_f has a closed graph. Furthermore the map Δ_f is multi-invertible and $\stackrel{\longleftarrow}{\Delta}_f: Y \longrightarrow X$ is given by the formula

$$\overleftarrow{\Delta}_f(y) = f_1^{-1}(f_2(y)) \qquad \text{for each } y \in Y.$$
 (2)

Moreover, if f_1 and f_2 are perfect maps then Δ_f is u.s.c.. Let $(p_1, q_1), (p_2, q_2) \in D(X, Y)$ be such that $q_1 \circ \overleftarrow{p_1} = q_2 \circ \overleftarrow{p_2}$ and let

$$X \xleftarrow{p_1} Z_1 \xrightarrow{q_1} Y$$

$$\downarrow Id_X \qquad \downarrow \Delta_{pq} \qquad \downarrow Id_Y$$

$$X \xleftarrow{p_2} Z_2 \xrightarrow{q_2} Y$$

be commutative diagrams, where $\Delta_{pq}\colon Z_1\multimap Z_2$ is a multivalued map given by the formula

$$\Delta_{nq}(x) = \Delta_n(x) \cap \Delta_q(x)$$
 for each $x \in X$

(see (1)). It is easy to show that Δ_{pq} is well defined. From Proposition 3.10 (see (3.10.5)) the map Δ_{pq} is multi-invertible (see (2)) and u.s.c (see [4, 2]). It is clear that

$$p_2 \circ \Delta_{pq} = p_1$$
 and $q_2 \circ \Delta_{pq} = q_1$.

We observe that if $\varphi \colon Z_1 \multimap Z_2$ is a multivalued map such that

$$p_2 \circ \varphi = p_1$$
 and $q_2 \circ \varphi = q_1$,

then $\varphi(x) \subset \Delta_{pq}(x)$ for each $x \in X$.

(i) If there exists a homeomorphism $h: Z_1 \to Z_2$ such that

$$p_2 \circ h = p_1$$
 and $q_2 \circ h = q_1$,

then $(p_1, q_1) \approx_{K1} (p_2, q_2)$ (in the sense of Kryszewski (see [7])) and $(Id_{Z_1}, h) \subset \Delta_{pq}$ and $(Id_{Z_2}, h^{-1}) \subset \overline{\Delta}_{pq}$, where $h^{-1} \colon Z_2 \to Z_1$ is an inverse homeomorphism to h.

[42] Mirosław Ślosarski

(ii) If there exist continuous maps $f: Z_1 \to Z_2$ and $g: Z_2 \to Z_1$ such that

$$p_2 \circ f = p_1, \quad q_2 \circ f = q_1, \quad p_1 \circ g = p_2 \quad \text{and} \quad q_1 \circ g = q_2,$$

then $(p_1,q_1) \approx_G (p_2,q_2)$ (in the sense of Górniewicz (see [5])) and $(Id_{Z_1},f) \subset \Delta_{pq}$ and $(Id_{Z_2},g) \subset \overline{\Delta}_{pq}$.

(iii) If there exist Vietoris maps $v_1: Z \to Z_1$ and $v_2: Z \to Z_2$ such that

$$p_2 \circ v_2 = p_1 \circ v_1 \quad \text{and} \quad q_2 \circ v_2 = q_1 \circ v_1,$$
 (3)

then $(p_1,q_1) \approx_{K2} (p_2,q_2)$ (in the sense of Kryszewski (see [7, 11])) and $(v_1,v_2) \subset \Delta_{pq}$ and $(v_2,v_1) \subset \overleftarrow{\Delta}_{pq}$.

4. Admissible morphisms

Remark 3.11 justify the following definition.

Definition 4.1

Let $(p_1, q_1), (p_2, q_2) \in D(X, Y)$ and let

$$X \xleftarrow{p_1} Z_1 \xrightarrow{q_1} Y, \quad X \xleftarrow{p_2} Z_2 \xrightarrow{q_2} Y.$$

We will say that the diagrams (p_1, q_1) and (p_2, q_2) are in relation in the set D(X, Y) (we will write $(p_1, q_1) \approx_{ad} (p_2, q_2)$) if there exists an admissible and multi-invertible map $\varphi \colon Z_1 \multimap Z_2$ such that $\overline{\varphi}$ is admissible and the following diagram is commutative

$$\begin{array}{cccc} X \xleftarrow{p_1} & Z_1 & \xrightarrow{q_1} & Y \\ \downarrow Id_X & & \downarrow \varphi & & \downarrow Id_Y \\ X \xleftarrow{p_2} & Z_2 & \xrightarrow{q_2} & Y \end{array}$$

that is

$$p_2 \circ \varphi = p_1$$
 and $q_2 \circ \varphi = q_1$.

Proposition 4.2

The relation in the set D(X,Y) introduced in Definition 4.1 is an equivalence relation.

Proof. In the proof of reflexivity of the relation, it is enough to assume that $Z_1 = Z_2$ and $\varphi = Id_{Z_1}$. We observe that if

$$p_2 \circ \varphi = p_1$$
 and $q_2 \circ \varphi = q_1$

then

$$p_1 \circ \overleftarrow{\varphi} = p_2 \quad \text{and} \quad q_1 \circ \overleftarrow{\varphi} = q_2,$$
 (4)

where $\varphi \colon Z_1 \multimap Z_2$ is a multi-invertible and admissible map and $\overline{\varphi}$ is admissible. Hence, the relation is symmetric.

It shall be now proven that the relation is transitive. Suppose that $(p_1, q_1) \approx_{ad} (p_2, q_2)$ and $(p_2, q_2) \approx_{ad} (p_3, q_3)$. Then from the assumption we have the following commutative diagram

$$\begin{array}{cccc} X \xleftarrow{p_1} & Z_1 & \stackrel{q_1}{\longrightarrow} Y \\ \downarrow^{Id} & \downarrow^{\varphi_1} & \downarrow^{Id} \\ X \xleftarrow{p_2} & Z_2 & \stackrel{q_2}{\longrightarrow} Y \\ \downarrow^{Id} & \downarrow^{\varphi_2} & \downarrow^{Id} \\ X \xleftarrow{p_3} & Z_3 & \stackrel{q_3}{\longrightarrow} Y \end{array}$$

that is

$$p_2 \circ \varphi_1 = p_1, \quad q_2 \circ \varphi_1 = q_1, \quad p_3 \circ \varphi_2 = p_2, \quad q_3 \circ \varphi_2 = q_2,$$

where φ_1 and φ_2 are admissible and multi-invertible maps. Let $\varphi = \varphi_2 \circ \varphi_1$. By Proposition 3.10 (see (3.10.2)) φ is an admissible and multi-invertible map. We have

$$p_3 \circ \varphi = p_3 \circ (\varphi_2 \circ \varphi_1) = p_1$$
 and $q_3 \circ \varphi = q_3 \circ (\varphi_2 \circ \varphi_1) = q_1$

and the proof is complete.

Proposition 4.3

Let $(p_1, q_1), (p_2, q_2) \in D(X, Y)$. The relation \approx_{ad} in the set D(X, Y) satisfies the following conditions

$$(4.3.1) ((p_1, q_1) \approx_{ad} (p_2, q_2)) \Rightarrow (q_1 \circ \overleftarrow{p_1} = q_2 \circ \overleftarrow{p_2}),$$

$$(4.3.2) ((p_1, q_1) \approx_{ad} (p_2, q_2)) \Rightarrow (q_{1*} \circ p_{1*}^{-1} = q_{2*} \circ p_{2*}^{-1}),$$

$$(4.3.3)$$
 let $(p_3, q_3), (p_4, q_4) \in D(Y, T),$ then

$$((p_1, q_1) \approx_{ad} (p_2, q_2) \text{ and } (p_3, q_3) \approx_{ad} (p_4, q_4))$$

 $\Rightarrow (((p_3, q_3) \circ (p_1, q_1)) \approx_{ad} ((p_4, q_4) \circ (p_2, q_2))).$

Proof. (4.3.1). Let $(p_1, q_1) \approx_{ad} (p_2, q_2)$. Then there exists a multi-invertible and admissible map φ such that $p_2 \circ \varphi = p_1$ and $q_2 \circ \varphi = q_1$. We observe that if $p_2 \circ \varphi = p_1$ then $\varphi \circ p_2 = p_1$. Hence we have

$$q_1 \circ \overleftarrow{p_1} = q_1 \circ (\overleftarrow{\varphi} \circ \overleftarrow{p_2}) = (q_1 \circ \overleftarrow{\varphi}) \circ \overleftarrow{p_2} = q_2 \circ \overleftarrow{p_2}$$
 (see (4))

(4.3.2). Let $(p_1, q_1) \approx_{ad} (p_2, q_2)$. Then there exists a multi-invertible and admissible map φ such that $p_2 \circ \varphi = p_1$ and $q_2 \circ \varphi = q_1$. Let $(r, s) \subset \varphi$ then (see (4)),

$$q_1 \circ s = q_2 \circ r$$
 and $p_1 \circ s = p_2 \circ r$.

Hence

$$q_{1*} \circ s_* = q_{2*} \circ r_*$$
 and $p_{1*} \circ s_* = p_{2*} \circ r_*$.

We observe that s_* is an isomorphism, so

$$p_{1*} = p_{2*} \circ r_* \circ s_*^{-1}.$$

[44] Mirosław Ślosarski

We have

$$\begin{aligned} q_{1*} \circ p_{1*}^{-1} &= q_{1*} \circ (p_{2*} \circ r_* \circ s_*^{-1})^{-1} = q_{1*} \circ (s_* \circ r_*^{-1} \circ p_{2*}^{-1}) \\ &= (q_{1*} \circ s_*) \circ r_*^{-1} \circ p_{2*}^{-1} = q_{2*} \circ p_{2*}^{-1}. \end{aligned}$$

(4.3.3). We have the following commutative diagrams

$$X \xleftarrow{p_1} Z_1 \xrightarrow{q_1} Y \xleftarrow{p_3} Z_3 \xrightarrow{q_3} T$$

$$\downarrow Id_X \qquad \downarrow \varphi_1 \qquad \downarrow Id_Y \qquad \downarrow \varphi_2 \qquad \downarrow Id_T$$

$$X \xleftarrow{p_2} Z_2 \xrightarrow{q_2} Y \xleftarrow{p_4} Z_4 \xrightarrow{q_4} T$$

that is

$$p_2 \circ \varphi_1 = p_1, \quad q_2 \circ \varphi_1 = q_1, \quad p_4 \circ \varphi_2 = p_3, \quad q_4 \circ \varphi_2 = q_3.$$

We make the following diagram (see Definition 2.1)

$$X \xleftarrow{p} Z_1 \triangle_{q_1p_3} Z_3 \xrightarrow{q} T$$

$$\downarrow Id_X \qquad \qquad \downarrow \psi \qquad \qquad \downarrow Id_T,$$

$$X \xleftarrow{p'} Z_2 \triangle_{q_2p_4} Z_4 \xrightarrow{q'} T$$

where $(p,q) = (p_3,q_3) \circ (p_1,q_1), (p',q') = (p_4,q_4) \circ (p_2,q_2)$ and $\psi(z_1,z_3) = \varphi_1(z_1) \times \varphi_2(z_3)$ for each $(z_1,z_3) \in Z_1 \triangle_{q_1p_3} Z_3$. First we need to prove that the map ψ is well defined. Let $(z_1,z_3) \in Z_1 \triangle_{q_1p_3} Z_3$ and $(z_2,z_4) \in \varphi_1(z_1) \times \varphi_2(z_3)$. We have

$$q_2(z_2) = q_1(z_1) = p_3(z_3) = p_4(z_4).$$

It is clear that (see (3.10.4)) the map ψ is multi-invertible, admissible and $\overline{\psi}$ given by the formula

$$\overleftarrow{\psi}(z_2, z_4) = \overleftarrow{\varphi_2}(z_2) \times \overleftarrow{\varphi_4}(z_4)$$

is admissible. We will show now that the above diagram is commutative. Let $f_1\colon Z_1\bigtriangleup_{q_1p_3}Z_3\to Z_1,\ f_3\colon Z_1\bigtriangleup_{q_1p_3}Z_3\to Z_3,\ f_2\colon Z_2\bigtriangleup_{q_2p_4}Z_4\to Z_2,\ f_4\colon Z_2\bigtriangleup_{q_2p_4}Z_4\to Z_4$ be projections (see Definition 2.1). Note that f_1 and f_2 are Vietoris mappings. We recall that by Definition 2.1 we have

$$p = p_1 \circ f_1$$
 $q = q_3 \circ f_3$, $p' = p_2 \circ f_2$, $q' = q_4 \circ f_4$.

Let $(z_1, z_3) \in Z_1 \triangle_{q_1 p_3} Z_3$ and $(z_2, z_4) \in \varphi_1(z_1) \times \varphi_2(z_3)$. Thus

$$p'(z_2, z_4) = p_2(f_2(z_2, z_4)) = p_2(z_2) = p_1(z_1) = p_1(f_1(z_1, z_3)) = p(z_1, z_3)$$

and similarly

$$q'(z_2, z_4) = q_4(f_4(z_2, z_4)) = q_4(z_4) = q_3(z_3) = q_3(f_3(z_1, z_3)) = q(z_1, z_3)$$

and the proof is complete.

The set of the class of the abstraction of the relation \approx_{ad} will be denoted by the symbol

$$M_{ad}(X,Y) = D(X,Y)_{/\approx_{ad}}.$$

The elements of the set $M_{ad}(X,Y)$ will be called admissible morphisms and denoted by $\varphi_{ad}, \psi_{ad}, \ldots$ The following denotation is assumed

$$\varphi_{ad} = [(p,q)]_{ad}$$
 (we write $(p,q) \in \varphi_{ad}$),

where the diagram (p,q) is representative of the class of the abstraction $[(p,q)]_{ad}$ in the relation \approx_{ad} . We recall that a multivalued u.s.c. map $\varphi \colon X \multimap Y$ is acyclic if for each $x \in X$ the set $\varphi(x)$ is acyclic. The acyclic map φ is determined by an admissible morphism $\varphi_{ad} = [(p_{\varphi}, q_{\varphi})]_{ad} \in M_{ad}(X, Y)$, where

$$X \xleftarrow{p_{\varphi}} \Gamma_{\varphi} \xrightarrow{q_{\varphi}} Y,$$

 $\Gamma_{\varphi} = \{(x,y) \in X \times Y : y \in \varphi(x)\}, p_{\varphi}(x,y) = x \text{ (Vietoris map)}, q_{\varphi}(x,y) = y \text{ for each } (x,y) \in \Gamma_{\varphi} \text{ such that for each } x \in X,$

$$q_{\varphi}(p_{\varphi}^{-1}(x)) = \varphi(x).$$

For singlevalued mappings, there is the following fact (see [11]).

Proposition 4.4

Let $f: X \to Y$ be a continuous mapping and let $(p,q) \in D(X,Y)$, where

$$X \xleftarrow{p} Z \xrightarrow{q} Y.$$

Then the following conditions are equivalent

- (4.4.1) $q = f \circ p$.
- $(4.4.2) (p,q) \approx_{ad} (Id, f),$
- (4.4.3) $q(p^{-1}(x)) = f(x)$ for each $x \in X$.

Proof. $(4.4.1) \Rightarrow (4.4.2)$. There is the following commutative diagram

$$\begin{array}{cccc} X & \stackrel{p}{\longleftarrow} & Z & \stackrel{q}{\longrightarrow} & Y \\ \downarrow^{Id_X} & & \downarrow^p & & \downarrow^{Id_Y}. \\ X & \stackrel{Id_X}{\longleftarrow} & X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

Let $\varphi = p$. Then φ is a multi-invertible and admissible map and $\overleftarrow{\varphi}$ is admissible. Hence $(p,q) \approx_{ad} (Id,f)$.

 $(4.4.2) \Rightarrow (4.4.3)$. This implication is the result of Proposition 4.3 (see 4.3.1).

 $(4.4.3) \Rightarrow (4.4.1)$. Let $(p,q) \in D(X,Y)$ such that for each $x \in X$ $q(p^{-1}(x)) = f(x)$ and let $z \in Z$. Then there exists a point $x_1 \in X$ such that $z \in p^{-1}(x_1)$. Hence we get

$$q(z) = f(x_1) = f(p(z)),$$

and the proof is complete.

[46] Mirosław Ślosarski

Let $(p_1, q_1), (p_2, q_2) \in D(X, Y)$ and let $(p_1, q_1) \approx_{K_2} (p_2, q_2)$ (see (3)). If $\varphi = v_2 \circ \overleftarrow{v_1}$ then $\overleftarrow{\varphi} = v_1 \circ \overleftarrow{v_2}$ and

$$p_2 \circ \varphi = p_1$$
 and $q_2 \circ \varphi = q_1$.

Hence $(p_1, q_1) \approx_{ad} (p_2, q_2)$.

Example 4.5

Let J = [-1, 1].

$$I \xleftarrow{p_1} I \times J \xrightarrow{q_1} I$$

$$\downarrow Id_I \qquad \qquad \downarrow \varphi \qquad \qquad \downarrow Id_I,$$

$$I \xleftarrow{p_2} I \times I \xrightarrow{q_2} I$$

where $p_1(x,y) = x$, $q_1(x,y) = y^2$ for each $(x,y) \in I \times J$, $p_2(x,y) = x$, $q_2(x,y) = y$ for each $(x,y) \in I \times I$ and $\varphi(x,y) = (x,y^2)$ for each $(x,y) \in I \times J$. It is clear that

$$(p_1, q_1) \approx_{ad} (p_2, q_2).$$

Assume that $(p_1, q_1) \approx_{K_2} (p_2, q_2)$. Then there exist Vietoris maps $v_1 : Z \to I \times J$ and $v_2 : Z \to I \times I$ such that $q_1 \circ v_1 = q_2 \circ v_2$. Let $y \in I$. We have

$$q_1^{-1}(y) \, \xleftarrow{\ v_1 \ } \, v_1^{-1}(q_1^{-1}(y)) = v_2^{-1}(q_2^{-1}(y)) \, \xrightarrow{\ v_2 \ } \, q_2^{-1}(y).$$

Hence, $H_*(q_1^{-1}(y)) \cong H_*(q_2^{-1}(y))$ for each $y \in I$, but this is not possible.

Definition 4.6

For any $\varphi_{ad} \in M_{ad}(X,Y)$, the set $\varphi(x) = q(p^{-1}(x))$ where $\varphi_{ad} = [(p,q)]_{ad}$ is called an image of point x in an admissible morphism φ_{ad} .

We denote by

$$\varphi \colon X \to_{ad} Y$$

a multivalued map (see, Definition 4.6) determined by an admissible morphism $\varphi_{ad} = [(p,q)]_{ad} \in M_{ad}(X,Y)$.

Let \mathbf{TOP} denote categories in which Hausdorff topological spaces are objects and continuous mappings are category mappings. Let $\mathbf{TOP_{ad}}$ denote categories in which Hausdorff topological spaces are objects and multivalued maps determined by admissible morphisms are category mappings. According to Proposition 4.3, (4.4.3) the category of $\mathbf{TOP_{ad}}$ is well defined and $\mathbf{TOP} \subset \mathbf{TOP_{ad}}$. Let $\mathbf{VECT_G}$ denote categories in which linear graded vector spaces are objects and linear mappings of degree zero are category mappings.

THEOREM 4.7 (see [12])

The mapping $\widetilde{\mathbf{H}}_* \colon \mathbf{TOP_{ad}} \to \mathbf{VECT_G}$ given by the formula

$$\widetilde{\mathbf{H}_*}(\varphi) = q_* \circ p_*^{-1},$$

where φ is a multivalued map determined by $\varphi_{ad} = [(p,q)]_{ad}$ is a functor and the extension of the functor of the Čech homology $\mathbf{H}_* \colon \mathbf{TOP} \to \mathbf{VECT_G}$.

5. The strongly acyclic spaces

We will say that a space X is strongly acyclic if for each compact set $K \subset X$ there exists a compact and acyclic set $A \subset X$ such that $K \subset A$. We observe that from the construction of the Čech homology with compact carriers, we get:

Proposition 5.1

If X is a strongly acyclic space then X is an acyclic space.

Proof. Let

$$C(X) = \{K \subset X : K \text{ is compact}\}\$$

and let

$$CA(X) = \{A \subset X : A \text{ is compact and acyclic}\}.$$

From the assumption the set CA(X) is cofinal in the set C(X) and the proof is complete.

The following fact results from the Mazur's Lemma.

Proposition 5.2

If E is a Banach space then it is a strongly acyclic space.

Proposition 5.3

Let $\{X_t, \pi_s^t, \Sigma\}$ be an inverse system, where Σ is a directed set and for each $t \in \Sigma$ a space X_t is strongly acyclic. Assume that for each $t \in \Sigma$ and for any compact set $K_t \subset X_t$ there exists an acyclic set $A_t \subset X_t$ such that $K_t \subset A_t$ and $\{A_t, (\pi_A)_s^t, \Sigma\}$ is an inverse system, where for $s \leq t$ the map $(\pi_A)_s^t$ is a restriction of π_s^t . Then a space

$$Y = \lim_{\leftarrow} \{X_t, \pi_s^t, \Sigma\}$$

is strongly acyclic.

Proof. Let $K \subset Y$ be a compact set and let $t \in \Sigma$. We denote by $f_t \colon Y \to X_t$ a restriction of projection map. The set $K_t = f_t(K) \subset X_t$ is compact. From the mathematical literature (see [2]) we know that

$$K = \lim_{\leftarrow} \{ K_t, (\pi_K)_s^t, \Sigma \},$$

where for $s \leq t$ the map $(\pi_K)_s^t$ is a restriction of π_s^t . In turn, from the assumption there exists an acyclic and compact set $A_t \subset X_t$ such that $K_t \subset A_t$ and $\{A_t, (\pi_A)_s^t, \Sigma\}$ is an inverse system, where for $s \leq t$ the map $(\pi_A)_s^t$ is a restriction of π_s^t . The set

$$A = \lim_{\leftarrow} \{ A_t, (\pi_A)_s^t, \Sigma \} \subset Y$$

is compact and from the continuity of the Čech homology it results that A is acyclic. It is clear that $K \subset A$ and the proof is complete.

Proposition 5.4

If X_1, X_2, \ldots, X_n are strongly acyclic spaces then $X_1 \times X_2 \times \cdots \times X_n$ is a strongly acyclic space.

[48] Mirosław Ślosarski

Proof. Let X_1, X_2, \ldots, X_n be strongly acyclic spaces and let $K \subset X_1 \times X_2 \times \cdots \times X_n$ be a compact set. We denote by $K_i = \pi_i(K)$, where $\pi_i \colon X_1 \times X_2 \times \cdots \times X_n \to X_i$ is a projection, $i = 1, 2, \ldots, n$. The set K_i is compact, so there exists an acyclic and compact set $A_i \subset X_i$ such that $K_i \subset A_i, i = 1, 2, \ldots, n$. Let $A = A_1 \times A_2 \times \cdots \times A_n$. Then A is compact and acyclic (see [4]), $K \subset A$ and the proof is complete.

From Proposition 5.3 and Proposition 5.4 we get the following fact.

Proposition 5.5

Let S be a non-empty set and let for each $s \in S$ a space X_s be strongly acyclic. Then the cartesian product

$$X = \prod_{s \in S} X_s$$

is a strongly acyclic space.

Proof. Let $\Sigma = \{ \xi \subset S : \xi \text{ is a finite set} \}$. Then (Σ, \leq) is a directed set, where \leq is an inclusion. From the mathematical literature we know that

$$X = \lim_{\leftarrow} \{ Y_{\xi}, \pi_{\zeta}^{\xi}, \Sigma \},$$

where $Y_{\xi} = X_{s_1} \times X_{s_2} \times \cdots \times X_{s_n}$, $\xi = \{s_1, s_2, \dots, s_n\} \subset S$ and for each $\zeta \leq \xi$, $\pi_{\zeta}^{\xi} \colon Y_{\xi} \to Y_{\zeta}$ is a projection. From Proposition 5.4 the space Y_{ξ} for each $\xi \in \Sigma$ is strongly acyclic. We observe that the inverse system satisfies the assumption of Proposition 5.3 (see proof of Proposition 5.4) and the proof is complete.

Proposition 5.6

Let Σ be a non-empty, directed set and let E_t be a Banach space for each $t \in \Sigma$. Let $\{E_t, \pi_s^t, \Sigma\}$ be an inverse system. Assume that

$$E = \lim_{\leftarrow} \{ E_t, \pi_s^t, \Sigma \}$$

is a linear space. Then E is a strongly acyclic space.

Proof. Let $K \subset E$ be a compact set and let $t \in \Sigma$. We denote by $f_t : E \to E_t$ a restriction of a projection map. The set $K_t = f_t(K) \subset E_t$ is compact. We have (see proof of Proposition 5.3),

$$K = \lim_{\leftarrow} \{ K_t, (\pi_K)_s^t, \Sigma \},$$

where for $s \leq t$ the map $(\pi_K)_s^t$ is a restriction of π_s^t . From the assumption E_t is a Banach space, so the set $\overline{\text{conv}}(K_t) \subset E_t$ is compact and convex. Let

$$A = \prod_{t \in \Sigma} \overline{\operatorname{conv}}(K_t).$$

Then A is compact and convex. The space E is a closed subset in the cartesian product $\prod_{t\in\Sigma} E_t$, so the set $A\cap E\subset E$ is compact and, from the assumption, is convex. Hence the set $f_t(A\cap E)=A_t\subset E_t$ is compact and convex (in particular, acyclic), $K_t\subset A_t$ and $\{A_t,(\pi_A)_s^t,\Sigma\}$ is an inverse system, where for $s\leq t$ the map $(\pi_A)_s^t$ is a restriction of π_s^t . From Proposition 5.3 it results that E is strongly acyclic and the proof is complete.

The next fact is obvious.

Proposition 5.7

Let X and Y be homeomorphic spaces. The space X is strongly acyclic if and only if the space Y is strongly acyclic.

We will give the following important example.

Example 5.8

By $C^k([0,m],\mathbb{R}^n)$, where $m \in \mathbb{N}$, $k = 0,1,\ldots$, we denote the Banach space of all C^k -functions with the usual maximum norm

$$||x||_m = \sum_{i=0}^k \max\{||x^{(i)}(t)||, \ t \in [0, m]\}.$$

Here $x^{(k)}$ denotes the k-th derivative of x and we also put $x^{(1)} = x'$, $x^{(0)} = x$. Let $C^k([0,\infty],\mathbb{R}^n)$ be a Fréchet space of all C^k -functions with the metric

$$d(x,y) = \sum_{m=1}^{\infty} 2^{-m} \frac{\|x - y\|_m}{1 + \|x - y\|_m}.$$

Let $\{C_m^k, \pi_m^p, \mathbb{N}\}$ be an inverse system, where $\pi_m^p = x|_{[0,m]}$ for every $x \in C_p^k$. One can easily check that

$$E = \lim \{C_m^k, \pi_m^p, \mathbb{N}\}$$
 is homeomorphic to $C^k([0, \infty], \mathbb{R}^n)$

and E is a linear space. From Proposition 5.6 and Proposition 5.7 the space $C^k([0,\infty],\mathbb{R}^n)$ is strongly acyclic.

6. The points of coincidence

We observe that a map $\varphi \colon X \multimap Y$ is admissible if and only if there exists a map $\Delta_{\varphi} \colon X \to_{ad} Y$ such that $\Delta_{\varphi}(x) \subset \varphi(x)$ (we write $\Delta_{\varphi} \subset \varphi$) for each $x \in X$. We say that a map φ is compact if $\overline{\varphi(X)} \subset Y$ is a compact set. Let $\varphi \colon X \to_{ad} X$. By the symbol $\Lambda(\varphi)$ we will denote a generalized Lefschetz number of φ (see [4]), that is

$$\Lambda(\varphi) = \Lambda(\varphi_*) = \Lambda(q_* \circ p_*^{-1})$$
 (provided that it is well defined),

where $(p,q) \in \varphi_{ad}$ (see Proposition 4.3). Let $\varphi, \psi \colon X \multimap Y$ be multivalued maps. We recall that the maps φ and ψ have a coincidence point if there exists a point $x \in X$ such that

$$\varphi(x) \cap \psi(x) \neq \emptyset$$
.

Let $\varphi \colon X \to_{ad} X$ be a multivalued map given by $\varphi_{ad} = [(p,q)]_{ad} \in M_{ad}(X,Y)$. It is easy to see that $p,q \colon Z \to X$ have a coincidence point if and only if there exists a fixed point of φ , that is, there exists $x_0 \in X$ such that $x_0 \in \varphi(x_0)$.

[50] Mirosław Ślosarski

THEOREM 6.1

Let $\varphi \colon X \multimap Y$ be a multi-invertible and locally admissible map and let $\psi \colon X \multimap Y$ be a compact and locally admissible map. Let $X \in NA_C$ $(Y \in NA_C)$. Then there exists an open set $U \subset X$ $(U \subset Y)$ and $\Delta \colon U \to_{ad} U$, $\Delta \subset (\overline{\varphi} \circ \psi)_U$ $(\Delta \subset (\psi \circ \overline{\varphi})_U)$ such that $\Lambda(\Delta)$ is well defined and if $\Lambda(\Delta) \neq 0$ then φ and ψ have a coincidence point.

Proof. Let $X \in NA_C$. From the assumption the map $\overleftarrow{\varphi}: Y \multimap X$ is locally admissible. Let $\psi\colon X \multimap Y$ be a compact and locally admissible map. The set $K_1 = \overline{\psi(X)} \subset Y$ is compact, so there exists an open neighborhood $V \subset Y$ of K_1 such that $\overleftarrow{\varphi}_V\colon V \multimap X$ is admissible. Hence, there exists a multivauled map $\Phi_V\colon V \to_{ad} X$ such that $\Phi_V \subset \overleftarrow{\varphi}_V$. Let $K = \Phi_V(K_1) \subset X$. It is clear that K is compact. There exists an open neighborhood $U \subset X$ of K such that $\psi_U\colon U \multimap V \subset Y$ is admissible. Let $\Psi_U\colon U \to_{ad} V$ be a map such that $\Psi_U \subset \psi_U$. We have the following diagram

$$U \xrightarrow{\Psi_U} V \xrightarrow{\Phi_V} X.$$

Let $\Delta = \Phi_V \circ \Psi_U$. We observe that Δ is compact, $\overline{\Delta(U)} \subset U$ and $\Delta \subset (\overleftarrow{\varphi} \circ \psi)_U$. Hence and from Proposition 2.5 and Theorem 2.6 $\Lambda(\Delta)$ is well defined. Assume that $\Lambda(\Delta) \neq 0$ then there exists a point $x \in U$ such that

$$x \in \Delta(x) \subset \overleftarrow{\varphi}(\psi(x)).$$

There exists a point $y \in \psi(x)$ such that $x \in \overleftarrow{\varphi}(y)$. Hence, $y \in \varphi(x)$, so

$$\varphi(x) \cap \psi(x) \neq \emptyset$$
.

Let $Y \in NA_C$ and let $\psi \colon X \multimap Y$ be a compact and locally admissible map. From Proposition 2.3 the map $\psi \circ \overleftarrow{\varphi} \colon Y \multimap Y$ is locally admissible. From the assumption the set $K = \overline{\psi}(\overleftarrow{\varphi}(Y))$ is compact, so there exists an open neighborhood $U \subset Y$ of K such that $(\psi \circ \overleftarrow{\varphi})_U \colon U \multimap U \subset Y$ is admissible. Hence, there exists $\Delta \colon U \to_{ad} U$ such that $\Delta \subset (\psi \circ \overleftarrow{\varphi})_U$. It is obvious that Δ is compact and $\Lambda(\Delta)$ is well defined. Assume that $\Lambda(\Delta) \neq 0$ then there exists a point $y \in U$ such that

$$y \in \Delta(y) \subset \psi(\overleftarrow{\varphi}(y)).$$

There exists a point $x \in \overleftarrow{\varphi}(y)$ such that $y \in \psi(x)$. Hence, $y \in \varphi(x)$, so

$$\varphi(x) \cap \psi(x) \neq \emptyset$$

and the proof is complete.

The following fact results from Theorem 6.1.

Proposition 6.2

Let $\varphi \colon X \multimap Y$ be a multi-invertible and locally admissible map and let $\psi \colon X \multimap Y$ be a compact and locally admissible map. Assume that $X \in NA_C$ is strongly acyclic or $Y \in NA_C$ is strongly acyclic, then φ and ψ have a coincidence point.

Proof. In the proof of Theorem 6.1 it is enough to replace the set K with the set of acyclic and compact A such that $K \subset A$. Then $\Lambda(\Delta) = 1$ and the proof is complete.

From the last fact and Proposition 5.2, we get

Proposition 6.3

Let E be a Banach space. Let $\varphi \colon X \multimap E$ be a multi-invertible and locally admissible map and let $\psi \colon X \multimap E$ be a compact and locally admissible map. Then φ and ψ have a coincidence point.

The next fact is the simple conclusion of Proposition 6.2.

Proposition 6.4

Let $\varphi \colon X \multimap Y$ be a multi-invertible and admissible map and let $\psi \colon X \multimap Y$ be a compact and admissible map. Furthermore, assume that an inverse map $\overleftarrow{\varphi}$ is admissible. If $X \in A_C$ or $Y \in A_C$ then the maps φ and ψ have a coincidence point.

7. Conclusion

In the third paragraph we have proposed the definition of a multivalued invertible mapping. In the context of such a definition if a mapping is multi-invertible then there exists exactly one multi-inverse mapping. Moreover, if a single-valued mapping $f\colon X\to Y$ is invertible, then it is multi-invertible and $f=f^{-1}$. Multi-invertible mappings constitute a wide class of mappings and have many interesting applications. In paragraph four we have applied multi-invertible mappings for the construction of morphisms. Then, in paragraph six, it was proven that multi-invertible mappings have coincidence properties.

References

- [1] Borsuk, Karol. *Theory of retracts*. Vol. 44 of *Mathematical Monographs*. Warsaw: PWN Polish Scientific Publishers, 1967. Cited on 35.
- [2] Engelking, Ryszard. General topology. Vol. 60 of Mathematical Monographs. Warsaw: PWN Polish Scientific Publishers, 1977. Cited on 41 and 47.
- [3] Gabor, Grzegorz, Lech Górniewicz and Mirosław Ślosarski. "Generalized topological essentiality and coincidence points of multivalued maps." Set-Valued Var. Anal. 17, no. 1 (2009): 1-19. Cited on 35.
- [4] Górniewicz, Lech. Topological fixed point theory of multivalued mappings. Second edition. Vol. 4 of Topological Fixed Point Theory and Its Applications. Dordrecht: Springer, 2006. Cited on 35, 36, 37, 41, 48 and 49.
- [5] Górniewicz, Lech. "Topological degree and its applications to differential inclusions." Raccolta di Seminari del Dipartimento di Matematica dell'Universita degli Studi della Calabria, March-April, 1983. Cited on 42.
- [6] Górniewicz, Lech and Danuta Rozpłoch-Nowakowska. "The Lefschetz fixed point theory for morphisms in topological vector spaces." *Topol. Methods Nonlinear* Anal. 20, no. 2 (2002): 315-333. Cited on 37.

[52] Mirosław Ślosarski

[7] Kryszewski, Wojciech. Topological and approximation methods of degree theory of set-valued maps. Vol. 336 of Dissertationes Mathematicae. Warsaw: Instytut Matematyczny Polskiej Akademii Nauk, 1994. Cited on 41 and 42.

- [8] Ślosarski, Mirosław. "Locally admissible multi-valued maps." *Discuss. Math. Dif*fer. Incl. Control Optim. 31, no. 1 (2011): 115-132. Cited on 35 and 37.
- [9] Ślosarski, Mirosław. "A generalized Vietoris mapping." British Journal of Mathematics and Computer Science 8, no. 2 (2015): 89-100. Cited on 35.
- [10] Ślosarski, Mirosław. "Multidomination of metric spaces in the context of multi-morphisms." J. Fixed Point Theory Appl. 17, no. 4 (2015): 641-657. Cited on 35
- [11] Ślosarski, Mirosław. "The multi-morphisms and their properties and applications." Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 5–25. Cited on 42 and 45.
- [12] Ślosarski, Mirosław. "The fixed points of abstract morphisms." *British Journal of Mathematics and Computer Science* 24, no. 22 (2014): 3077-3089. Cited on 46.

Koszalin University of Technology Śniadeckich 2 PL-75-453 Koszalin Poland E-mail: miroslaw.slosarski@tu.koszalin.pl

Received: July 5, 2018; final version: November 16, 2018; available online: April 4, 2019.