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Multi-invertible maps and their applications

Abstract. In this article, we define multi-invertible, multivalued maps. These
mappings are a natural generalization of r-maps (in particular, the singleval-
ued invertible maps). They have many interesting properties and applica-
tions. In this article, the multi-invertible maps are applied to the construc-
tion of morphisms and to the theory of coincidence.

1. Introduction

In mathematical literature multivalued admissible maps are known (see [4]).
In [8] we defined multivalued locally admissible maps that are an essentially wider
class of maps than admissible maps. In this article we define multivalued, multi-
invertible maps in the context of locally admissible maps. These maps are a nat-
ural, essential generalization of r-maps (see [I]) in particular, the singlevalued
invertible maps. The generalized Vietoris maps considered in the article (see [9])
are particularly multi-invertible. Multi-invertible maps have a lot of interesting
properties. The composition of multi-invertible maps is multi-invertible. If a map
is multi-invertible then there exists exactly one multi-inverse map. Multi-invertible
maps have many applications. In this article they are applied to the construction
of morphisms and to the theory of coincidence. The property of coincidence of
multi-invertible maps can be applied to solving differential inclusions (see [3]). It
is worth mentioning that multi-invertible maps can be also applied to the theory
of multi-domination (see [9] [10]).
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2. Preliminaries

Throughout this paper all spaces are assumed to be Hausdorff topological
spaces. A continuous mapping f: X — Y is called perfect if for each y € Y the
set f~1(y) is non-empty and compact and f is a closed map. Let X and Y be two
spaces and assume that for every z € X a non-empty subset ¢(z) of Y is given.
In such a case we say that ¢: X —o Y is a multivalued mapping. For a multivalued
mapping ¢: X — Y and a subset A C Y we let

0 (A) ={r € X : p(x) C A},
v, (A) ={zeX: px)nA#0}.

Let H, be the Cech homology functor with compact carriers and coefficients
in the field of rational numbers Q from the category of Hausdorff topological
spaces and continuous maps to the category of a graded vector space and linear
maps of degree zero. Thus H,(X) = {H,(X)} is a graded vector space, H,(X)
being a g-dimensional Cech homology group with compact carriers of X. For a
continuous map f: X — Y, H.(f) is the induced linear map f. = {f,}, where
far Hy(X) = Hy(Y) (see []).

A set X is acyclic if

(1) X is non-empty,
(1) Hy(X) =0 for every ¢ > 1 and
(ii1) Ho(X) ~ Q.

A perfect map p: X — Y is called Vietoris provided for every y € Y the set
p~1(y) is acyclic. We recall that the composition of two Vietoris mappings is a
Vietoris mapping and if p: X — Y is a Vietoris map then p,: H,(X) — H,.(Y) is
an isomorphism (see [4]). The symbol D(X,Y’) will denote the set of all diagrams
of the form

X2z 1.,y
where p: Z — X denotes a Vietoris map and ¢: Z — Y denotes a continuous
map. Each such diagram will be denoted by (p, q).

DEFINITION 2.1 (see [4])
Let (p1,q1) € D(X,Y) and (p2,q2) € D(Y,T). The composition of diagrams

X p1 Z1 q1 Y P2 22 qz T,
is called a diagram (p,q) € D(X,T),
X 2 21Ny 22 —5 T,

where
Zh Dgypy Zo ={(21,22) € Z1 X Za : q1(21) = p2(22)},

p=p10m, {g=(20T2,

s 2
Z1 (—1 Z1 Aq1p2 Zg 4 Zg,
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m1(21, 22) = z1 (Vietoris map), ma(21,22) = 22 for each (21, 22) € Z.

It shall be written
(p,q) = (p2,q2) © (p1, q1)-

Let ¢: X — Y be a multivalued map. We recall that the map ¢ is admis-
sible (resp. s-admissible) (see [4]) if there exist a Vietoris map p: Z — X and
a continuous map ¢q: Z — Y such that for each z € X,

a(p™"(2)) € p(x) (resp. q(p™"(2)) = (),

to simplify the notation we will write (p,q) C ¢ (resp. (p,q) = @)).
Let ¢: X — Y be a map and let A C X be a non-empty set. We denote by
pa: A —o X a map given by the formula p4(z) = ¢(x) for each x € A.

DEFINITION 2.2

A multivalued map ¢: X —o Y is called locally admissible provided for any compact
and non-empty set K C X there exists an open set V' C X such that K C V and
wy: V —o X is admissible.

ProrosiTION 2.3 ([8])
Let o: X —Y and ¢:' Y —o Z be locally admissible maps. Then pop: X —o Z is
locally admissible.

It is obvious that if a space X is compact then ¢: X —o Y is locally admissible if
and only if p: X — Y is admissible.

DEFINITION 2.4

A topological vector space is called Klee admissible provided for every compact
K C FE and for every open neighborhood of zero V in E there exists a continuous
map 7y : K — FE such that

(24.1) (z —my(z)) €V for every z € K,
(2.4.2) there exists a natural number n = ng such that 7y (K) C E™, where
E™ is an n-dimensional subspace of E.

It is well known that any locally convex space is Klee admissible. We will write
that a space X € Ac (X € NAc) if there exists a Klee admissible space E and
a closed embedding h: X — F such that h(X) is a retract of F (h(X) is a retract
of some open set U C E such that A(X) C U).

PROPOSITION 2.5 ([4} [6])
Let X € NA¢ and let U C X be an open set. Then U € NAc.

THEOREM 2.6 (4 [0])
Let X € NAg. Consider a diagram

X« 7z %X,
where p is Vietoris and q is compact (q(Z) C X is compact). Then g, op;* is a
Leray endomorphism and A(q. o p;t) # 0 implies that p and q have a coincidence
point, that is, there is a point z € Z such that p(z) = q(z).
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3. Multi-invertible maps

DEFINITION 3.1

We say that a multivalued map ¢: X — Y is multi-invertible if there exists a mul-
tivalued map 35: Y — X (multi-inverse map) such that the following conditions
are satisfied

(3.1.1) for each 2 € X and for each y € Y (y € () = z € 5 (y)),
(3.1.2) for each 2 € X and for each y € Y (z € & (y) = y € o(z)).

We observe that if ¢: X — Y is multi-invertible then there exists exactly one
multi-inverse map $: Y — X given by the formula

T =0, () ={reX: ycp@)}

It is clear that a multivalued map ¢: X — Y is multi-invertible if and only if

©(X) =Y and if a singlevalued map f: X — Y is invertible then ? = 71 Let
@: X — Y be a multivalued map. If ¢ has compact images and for every open
U CY the set 97 2(U) (¢, '(Y\U)) is open (is closed), then ¢ is called an upper
semi-continuous mapping; we shall write that ¢ is u.s.c. We will say that an u.s.c.
multivalued map ¢: X — Y is perfect, if for each non-empty and compact set
A CY the set gpgl(A) is non-empty and compact and ¢ is a closed map.

PROPOSITION 3.2
A map ¢: X —o Y is perfect if and only if ¢ is multi-invertible and $ is a perfect
map.

Proof. 1t is obvious that

p(A4) = 35;1(/1) for each non-empty set A C X

and
SE(B) = <pb_1(B) for each non-empty set B C Y.

From Proposition [3:2| we get

PROPOSITION 3.3
Let X andY be compact spaces and let ¢: X —o Y such that o(X) =Y. A mul-
tivalued map ¢: X —o Y is u.s.c. if and only if p: Y —o X is u.s.c..

We will give a few examples. Let K" be a closed ball in euclidean space R™ with
the center of 0 and radius 1 and let S® C K"*! be a sphere. We denote by ©®
a scalar product in R™ and let I = [0, 1].

EXAMPLE 3.4
Let ¢: S™ — S™ be a multivalued map given by the formula

o) ={yeS": zoy=0} for each z € S".

We observe that ¢ is multi-invertible and ? = ¢. For n = 2k, ¢ is not admissible.
Indeed, assume the contrary, i.e. that ¢ is admissible. Then there exist a Vietoris
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map p: Z — S™ and a continuous map ¢: Z — S™ such that (p, q) C . Hence, for
each z € Z,

p(z) ®¢q(z) =0, so p and ¢ are homotopic.
We have

Agiopy ') = AMp.op, ) = Aldp, sn) = 2.
From Theorem there exists a point z € Z such that p(z) = ¢(z), but it is a
contradiction. From the mathematical literature we know that for n = 2k —1 there
exists a continuous map f: S™ — S™ such that, for each x € S”, x ® f(z) = 0.
Hence, ¢ is admissible, because (Idgn, f) C .

EXAMPLE 3.5
Let : S — K"*! be a multivalued map given by the formula

olx)={t-z: tel}.

The map ¢ is u.s.c. and for each x € S™ the set ¢(x) is compact and convex, so
¢ is s-admissible (in particular, admissible). A multivalued map 1: K"+l — §”
given by the formula
sy = [/ oo,
xT) =
S forx =0
is multi-inverse to ¢. We observe that i it is not an admissible map. Indeed,
assume the contrary, i.e. that ¢ is admissible. Then there exist a Vietoris map

p: Z — K"l and a continuous map ¢: Z — S" such that (p,q) C . Let
j: S® = K**! be an inclusion. We have the following diagram

H.(S") —Z— H (K" «2— H,.(Z) —%— H,(S").
Hence, it result that
(g opy ") 0 ju = Idp, (),
but it is not possible.
DEFINITION 3.6

A locally admissible map ¢: X —o Y is multi-invertible if there exists a multi-
inverse and locally admissible map ?: Y — X.

ProrosITION 3.7

Let f: X = Y be a continuous map. The map [ is multi-invertible if and only
if for each compact set K C Y there exist an open neighborhood U of K and a
continuous map g: U — X such that fog: U =Y is a Vietoris map.

Proof. Let f: X — Y be a continuous and multi-invertible map. From Definition
the multi-inverse map ?: Y — X is locally admissible. Let K C Y be a
compact set. There exists an open neighborhood U C Y of K such that 7(] U —o
X is an admissible map, that is, there exists a diagram (p, ¢) € D(U, X) such that

%
(p,q) C f. Hence we have

ap~'(y)) C f7(y)  foreachy €U,

so f oq = pis a Vietoris map. The proof in the opposite direction is obvious.
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In particular, if a continuous map f: X — Y is an r-map, that is, there exists
g:Y — X such that f o g = Idy, then it is multi-invertible.

PROPOSITION 3.8
Let ¢: X — Y be an admissible map. Assume that there exist Vietoris maps
p1: Z— X and ps: Z =Y such that (p1,p2) C @. Then o is multi-invertible.

Proof. We observe that ¢(X) =Y and ((p1,p2) C ) < ((p2,p1) C ?)

We will say that ¢: X —o Y is relatively proper if for each non-empty and compact

set K CY the set gob_l(K ) is non-empty and compact.

PRrROPOSITION 3.9

Let p: X —o Y be relatively proper. Assume that for each compact set K C X
there exist an open neighborhood U C X of K, an open neighborhood V- C Y of
©(K) and Vietoris maps p1: Z — U and p2: Z — V such that (p1,p2) C ¢u-
Then ¢ is multi-invertible and sﬁ is locally admissible.

Proof. 1t is easy to observe that ¢ is locally admissible. We show that the multi-
inverse map 35: Y — X is locally admissible. Let K C Y be a compact set. We

denote by K, = ¢, ' (K) = % (K). From the assumption the set K; is compact,
so there exist an open neighborhood U C X of K7, an open neighborhood V C Y
of p(Ky) and Vietoris maps p1: Z — U and py: Z — V such that (p1,p2) C ¢u-

We have
K co(p(K)) c o(B(K)) cV.

Hence (p2,p1) C sZV and the proof is complete.

A few obvious properties of multi-invertible mappings will follow, which do
not require proof.

ProrosIiTION 3.10
Let p,0: X — Y , n:Y — Z and 0: T — S be multi-invertible maps. Then we
have

(3.10.1
3.10.2

(
(3.10.3
(3.10.4

foreachze X andyeY y € go(?(y)) and x € sZ((p(x)),
iop="1p o,

<_

(%) =¥,

- —
@X@zsfx 0, where the map ¢ x : X xT — Y x S given by the
formula

—_— — ~— ~—

(o x 0)(z,t) = p(x) x 6(¢t) for each (z,t) € (X xT),

(3.10.5) if p(z) Np(x) # O for each x € X and if ©: X — Y is a map given by
the formula

O(x) = p(z) NY(x) for each x € X,

<_
then © is multi-invertible and © : Y —o X is given by the formula

OW) =FWn¥y) foreachyeY.
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REMARK 3.11

Let

x "7

lAf JIdT

y 2,71

be a commutative diagram, where f; and f; are continuous maps such that
filX) = fo(Y) and Ay: X — YV is a multivalued map given by the formula

Ap(z) = f3 1 (f1(2)) for each =z € X. (1)

We observe that the map Ay has a closed graph. Furthermore the map Ay is
F
multi-invertible and A¢: Y —o X is given by the formula

A1) = fi1(f2(y)  foreach y €Y. (2)

Moreover, if f; and fo are perfect maps then Ay is u.s.c.. Let (p1,q1), (p2,q2) €
D(X,Y) be such that g o D1 = qo 0 s and let

X p1 Zl q1 Y

lIdX lA,,q lldy

X P2 Z2 q2 Y

be commutative diagrams, where Ap,: Z; — Zs is a multivalued map given by
the formula

Apg(x) = Ap(z) N Ay(x) for each z € X

(see (1)). It is easy to show that A, is well defined. From Proposition (see
3.10.5)) the map A, is multi-invertible (see (2)) and u.s.c (see [4, 2]). It is clear
that

p2olAp,=p1 and groA,, =qi.
We observe that if ¢: Z7 — Zs is a multivalued map such that
p2op=p1 and gzop=q,
then ¢(z) C Apq(x) for each z € X.
(¢) If there exists a homeomorphism h: Z; — Z5 such that
p2oh=p1 and gxoh=q,

then (p1,q1) ~x1 (P2, g2) (in the sense of Kryszewski (see [7])) and (Idz,, h) C
Ay, and (Idgz,,h™') € A,,, where h=': Zy — Z; is an inverse homeomor-
phism to h.
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(#i) If there exist continuous maps f: Z; — Z5 and g: Zy — Z; such that

p2of=p1, @of=q, piog=p2 and g og=q,

then (p1,q1) =g (p2, qﬁ) (in the sense of Gérniewicz (see [5])) and (Idgz,, f) C
Apg and (Idz,,9) C Apq -
(#i1) If there exist Vietoris maps vi: Z — Z; and vq: Z — Z5 such that

ppove =pirov; and @gpove = g0y, (3)

then (p1,q1) ~k2 (p2,¢2) (in the sense of Kryszewski (see [7), [II])) and

0
(v1,v2) C Apq and (ve,v1) C A

pq-

4. Admissible morphisms

Remark [3:11] justify the following definition.

DEFINITION 4.1
Let (p1,q1), (p2,92) € D(X,Y) and let

X p1 Zl q1 Y, X P2 Z2 q2 Y.

We will say that the diagrams (p1,q1) and (ps, g2) are in relation in the set D(X,Y)
(we will write (p1, q1) aa (P2, ¢2)) if there exists an admissible and multi-invertible
map ¢: Z1 —o Zy such that ¥ is admissible and the following diagram is commu-
tative

X P1 Zl q1

[

X b2 Z2 q2 Y

that is
peop=p1 and g20p =q.
PROPOSITION 4.2

The relation in the set D(X,Y) introduced in Definition is an equivalence
relation.

Proof. In the proof of reflexivity of the relation, it is enough to assume that Z; =
Zy and ¢ = Idz, . We observe that if
prop=p1 and @op=q
then
profp=p and go% =g, (4)

where ¢: Z7 — Z5 is a multi-invertible and admissible map and $ is admissible.
Hence, the relation is symmetric.
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It shall be now proven that the relation is transitive. Suppose that (p1,q1) <ad
(p2, q2) and (p2,q2) ~aa (P3,q3). Then from the assumption we have the following
commutative diagram

X p1 Zl q1

b o
J

Y
lld
X P2 22 q2 Y
Y

Id

Id LPQ

X p3 23 q3

that is
b2op1r=pP1, @20¢1=4q1, P3C¥2=DpP2, (3°P2={(qz,
where 1 and @, are admissible and multi-invertible maps. Let ¢ = @2 0 1. By

Proposition [3.10] (see |(3.10.2)]) ¢ is an admissible and multi-invertible map. We
have

p3op=p3o(paopr)=p1 and gzop=gzo(p20p1)=q

and the proof is complete.

PROPOSITION 4.3
Let (p1,q1), (p2,q2) € D(X,Y). The relation /244 in the set D(X,Y) satisfies the
following conditions

((p1>@1) Raa (P2,42)) = (10 P1 = g2 0 P2),
(43 2) ((plvql) ad (anq2)) = (ql* Opl_*l = G2« Op2_*1)7
(4.3.3) let (ps,q3), (pa,qa) € DY, T), then

((p1,q1) =ada(p2,q2) and (p3,qs) Rad (P4, qa))
= (((p3,a3) © (P1,91)) Rad ((Pa;94) © (P2, G2)))-

Proof. Let (p1,¢1) =ad (P2,q2). Then there exists a multi-invertible and
admissible map ¢ such that ps o ¢ = p; and g2 0o ¢ = ¢;. We observe that if

p2 © ¢ = p1 then %OE Zﬁ. Hence we have
(hoﬁtho(goﬁ):(Q1O$)OEZQ2OE (see).

(4.3.2)l Let (p1,q1) ~aa (p2,q2). Then there exists a multi-invertible and
admissible map ¢ such that p, o p = p; and gz 0 ¢ = ¢1. Let (r,5) C % then (see

1)),

qros=gor and pios=pyor.

Hence
(1 O Sx = (2, OTx and P14 O Sy = Poy O Ty.

We observe that s, is an isomorphism, so

-1
Plx = P2x OTx 0S8, .
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We have

-1 —1y—1 1 . -1
15 0P1 = Qe © (P2c 0T 08, ) =que0(sx 07, 0Py, )

-1, -1 -1
= (qux084) 0T, 0P, = G2« 0Dy, -

(4.3.3)] We have the following commutative diagrams

X p1 Z1 q1 Y P3 23 q3

N

X P2 Zg q2 Y Ppa Z4 qa T

that is
p20p1 =pP1, QG2°¥1 =41, Pa°P2=DpP3, (G4°¢P2=4gs.
We make the following diagram (see Definition

X 2 — 21 Nyp, Z3 —2= T
lmx lw lmT,
X ¥ 2D Zs —L s T
where (p, q) = (p3,g3)o(p1,q1), (P',4") = (pa, qa) o (p2, g2) and (21, 23) = p1(21) X

p2(z3) for each (21,23) € Z1 Ng,py Z3. First we need to prove that the map ¢ is
well defined. Let (21,23) € Z1 Dgips Z3 and (22,24) € @1(21) X @a(z3). We have

QQ(Z2) = Q1(Z1) = p3(23) = p4(24)-

(_
It is clear that (see|(3.10.4)) the map 1 is multi-invertible, admissible and 1 given
by the formula

?(22724) = $a(22) x Palz4)

is admissible. We will show now that the above diagram is commutative. Let
i1 21 Dgips Z3 — 21, f31 21 Dgipy Z3 — 23, foi Lo Dgypy Za — Za, fa: Za Dgypy
Zy — Zy be projections (see Definition [2.1)). Note that f; and fo are Vietoris
mappings. We recall that by Definition [2.1] we have

p=piofi ¢=gofs, p=pofo, ¢ =qofus
Let (z1,23) € Z1 Ngyps Z3 and (22, 24) € p1(21) X p2(z3). Thus
P (22, 21) = p2(fa(22, 21)) = p2(22) = p1(21) = p1(fi(z1,23)) = p(21, 23)
and similarly
q'(22,21) = qa(fa(22,24)) = qa(24) = q3(23) = q3(f3(21, 23)) = q(21, 23)

and the proof is complete.
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The set of the class of the abstraction of the relation ~,4 will be denoted by
the symbol
Mua(X,Y) =D(X,Y) )~ .-

The elements of the set M,4(X,Y") will be called admissible morphisms and de-
noted by ©qud, Yad, - - .. The following denotation is assumed

Cad = [(0,@)]aa  (we write (p,q) € Yaa),

where the diagram (p, ¢) is representative of the class of the abstraction [(p, q)]ad
in the relation ~,4. We recall that a multivalued u.s.c. map p: X — Y is acyclic
if for each x € X the set ¢(z) is acyclic. The acyclic map ¢ is determined by an
admissible morphism ¢uq = [(Py; 4p)]ad € Maa(X,Y), where

Py qp
X r, Y,

I'y={(z,y) € X xY : y€ o)}, pp(x,y) = x (Vietoris map), g, (z,y) =y for
each (z,y) € I'y, such that for each z € X,

2. (p, " () = ().
For singlevalued mappings, there is the following fact (see [I1]).

PROPOSITION 4.4
Let f: X =Y be a continuous mapping and let (p,q) € D(X,Y), where

X 2 z 1,y

Then the following conditions are equivalent

(44.1) g= fop,
(442) (pa Q) ~ad (Id7 f);
(4.4.3) q(p~Y(z)) = f(x) for each z € X.

Proof. [(4.4.1)| = |(4.4.2)] There is the following commutative diagram

X2 7z 1,y

X

Let ¢ = p. Then ¢ is a multi-invertible and admissible map and % is admissible.

Hence (pa q) ~ad (Ida f)

(4.4.2)| = |(4.4.3)l This implication is the result of Proposition (see [4.3]1).
(4.4.3)[=|(4.4.1)| Let (p,q) € D(X,Y) such that for each x € X ¢(p~!

f(z) and let z € Z. Then there exists a point ;7 € X such that z €

Hence we get

4(z) = f(z1) = f(p(2)),

and the proof is complete.
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Let (p1,q1), (p2,q2) € D(X,Y) and let (p1,q1) =Ko (p2,q2) (see ) If p =
UQOEthengzvloEand

p2op=p1 and gz20p=q.

Hence (p1,q1) Rad (P2, q2).

EXAMPLE 4.5
Let J =[-1,1].
I+ 1xg 257

ol |

I 2 Ix1 27

where pi(z,y) = =, q(z,y) =y for each (z,y) € I x J, pa(2,y) = x, g2(z,y) =y
for each (z,y) € I x I and ¢(x,y) = (z,y?) for each (z,y) € I x J. It is clear that

(P1,q1) ~ad (P2, 92)-

Assume that (p1,q1) k2 (p2,g2). Then there exist Vietoris maps v1: Z — I x J
and vy: Z — I x I such that g1 ov; = ga o vy, Let y € I. We have

G W) —— W) =v (' W) — ¢ W)
Hence, H.(q; ' (y)) = H.(g5 *(y)) for each y € I, but this is not possible.

DEFINITION 4.6
For any paq € M,q(X,Y), the set o(x) = q(p~1(z)) where puq = [(p, ¢)]aq is called
an image of point x in an admissible morphism @uq.

We denote by
©: X =Y

a multivalued map (see, Definition determined by an admissible morphism
Pad = [(I% q)]ad € Mad(Xa Y)

Let TOP denote categories in which Hausdorff topological spaces are objects
and continuous mappings are category mappings. Let TOP,q denote categories
in which Hausdorff topological spaces are objects and multivalued maps deter-
mined by admissible morphisms are category mappings. According to Proposition
the category of TOP,q is well defined and TOP C TOP,q. Let
VECTg denote categories in which linear graded vector spaces are objects and
linear mappings of degree zero are category mappings.

THEOREM 4.7 (see [12])

The mapping H,: TOP,q — VECTg given by the formula

H*(QO) = G« op;la

where ¢ is a multivalued map determined by ©aa = [(p,@)lad is a functor and the
extension of the functor of the Cech homology H,: TOP — VECTg.
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5. The strongly acyclic spaces

We will say that a space X is strongly acyclic if for each compact set K C X
there exists a compact and acyclic set A C X such that K C A. We observe that
from the construction of the Cech homology with compact carriers, we get:

PROPOSITION 5.1
If X is a strongly acyclic space then X is an acyclic space.

Proof. Let
C(X)={K Cc X: K is compact}

and let
CA(X)={AC X : Aiscompact and acyclic}.

From the assumption the set C A(X) is cofinal in the set C'(X) and the proof is
complete.

The following fact results from the Mazur’s Lemma.

PROPOSITION 5.2
If E is a Banach space then it is a strongly acyclic space.

PROPOSITION 5.3
Let {X;, 7L, 2} be an inverse system, where X is a directed set and for each t € ¥
a space Xy is strongly acyclic. Assume that for each t € 3 and for any compact set
K, C X; there exists an acyclic set Ay C X; such that Ky C Ay and {As, (ma)t, 3}
is an inverse system, where for s <t the map (7). is a restriction of wt. Then
a space

Y = ligl{Xt,wz7 x}

is strongly acyclic.

Proof. Let K C Y be a compact set and let t € X. We denote by f;: Y — X,
a restriction of projection map. The set K; = fi(K) C X; is compact. From the

<

mathematical literature (see [2]) we know that

K = hm{Ktv (WK); E}a
i

where for s < ¢ the map (7x)¢ is a restriction of #f. In turn, from the assump-
tion there exists an acyclic and compact set A; C X; such that K; C A; and
{A, (ma)t, X} is an inverse system, where for s <t the map (74)% is a restriction
of L. The set

A= lgn{Ata (71—14)1;’ cy

is compact and from the continuity of the Cech homology it results that A is
acyclic. It is clear that K C A and the proof is complete.

PROPOSITION 5.4
If X1, Xo, ..., X, are strongly acyclic spaces then X1 X Xo X ---x X,, is a strongly
acyclic space.
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Proof. Let X1, Xo, ..., X, be strongly acyclic spaces and let K C X7 x X X---X
X, be a compact set. We denote by K; = 7;(K), where m;: X1 xXox---xX,, = X;
is a projection, i = 1,2,...,n. The set K; is compact, so there exists an acyclic and
compact set A; C X; such that K; C A;,i=1,2,...,n. Let A= A; xAsx---XA,.
Then A is compact and acyclic (see [4]), K C A and the proof is complete.

From Proposition and Proposition we get the following fact.

PROPOSITION 5.5
Let S be a non-empty set and let for each s € S a space X be strongly acyclic.
Then the cartesian product

X =[x

sesS
is a strongly acyclic space.

Proof. Let ¥ = {& C S: ¢ is a finite set}. Then (X, <) is a directed set, where <
is an inclusion. From the mathematical literature we know that

—_ 1 3
X = hin{y;évﬂgv E},

where Yy = X, x X, x -+ x X, € = {s1,52,...,5,} C S and for each ¢ < ¢,
7r§: Ye — Y¢ is a projection. From Proposition the space Y for each £ € ¥ is

strongly acyclic. We observe that the inverse system satisfies the assumption of
Proposition (see proof of Proposition [5.4])) and the proof is complete.

PROPOSITION 5.6
Let ¥ be a non-empty, directed set and let E; be a Banach space for each t € X.
Let {E;,7t, X} be an inverse system. Assume that

E = lim{E;, !, %}

is a linear space. Then E is a strongly acyclic space.

Proof. Let K C E be a compact set and let t € . We denote by f;: £ — E;
a restriction of a projection map. The set K; = f;(K) C E; is compact. We have
(see proof of Proposition ,

K = hm{Kt, (WK)Za Z}a
—
t

where for s < t the map (7mx)" is a restriction of 7f. From the assumption F} is
a Banach space, so the set conv(K;) C E; is compact and convex. Let

A = [ conv(K,).

texy

Then A is compact and convex. The space F is a closed subset in the cartesian
product [],cy, £, so the set AN E C E is compact and, from the assumption, is
convex. Hence the set fi(ANE) = A; C E; is compact and convex (in particular,
acyclic), K; C A; and {4, (74)%,X} is an inverse system, where for s < ¢ the
map (74)% is a restriction of 7f. From Proposition it results that E is strongly
acyclic and the proof is complete.
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The next fact is obvious.

PROPOSITION 5.7
Let X andY be homeomorphic spaces. The space X is strongly acyclic if and only
if the space Y 1is strongly acyclic.

We will give the following important example.

EXAMPLE 5.8
By C*([0,m],R"), where m € N, k = 0,1,..., we denote the Banach space of all
C*-functions with the usual maximum norm

k
lzllm =D max{[|lz@ ()], ¢ € [0,m]}.
=0

Here z(®) denotes the k-th derivative of z and we also put z(M) = 2/, (9 = 2. Let
C*([0,00],R™) be a Fréchet space of all C*¥-functions with the metric

o0
- ||JS _yHm
@)= 2 2"

Let {CF,, @7 N} be an inverse system, where 78, = x[jo ,,) for every z € C¥. One
can easily check that

E =1im{C* , 7P ,N} is homeomorphic to C*([0, oc], R™)
«—

and E is a linear space. From Proposition [5.6] and Proposition the space

C*([0,00], R") is strongly acyclic.

6. The points of coincidence

We observe that a map ¢: X — Y is admissible if and only if there exists
amap Ay,: X —4q Y such that Ay, (x) C ¢(z) (we write A, C ¢) for each € X.
We say that a map ¢ is compact if ¢(X) C Y is a compact set. Let ¢: X —.q X.
By the symbol A(p) we will denote a generalized Lefschetz number of ¢ (see [4]),
that is

A(p) = Alp,) = A(gs o p;t)  (provided that it is well defined),

where (p, q) € paaq (see Proposition 4.3)). Let ¢, : X — Y be multivalued maps.
We recall that the maps ¢ and ¥ have a coincidence point if there exists a point
x € X such that

p(z) NyY(x) # 0.
Let ¢: X —,4 X be a multivalued map given by vuq = [(p, ¢)]ad € Maa(X,Y). Tt

is easy to see that p,q: Z — X have a coincidence point if and only if there exists
a fixed point of ¢, that is, there exists ¢ € X such that z¢ € ¢(xg).
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THEOREM 6.1

Let p: X — Y be a multi-invertible and locally admissible map and let: X — Y
be a compact and locally admissible map. Let X € NAc (Y € NA¢g). Then
there exists an open set U C X (U C Y) and A: U —4q U, A C (P o9y
(A C (o P)y) such that A(A) is well defined and if A(A) # 0 then ¢ and
have a coincidence point.

Proof. Let X € NAg. From the assumption the map 35: Y — X is locally
admissible. Let 1¢: X — Y be a compact and locally admissible map. The set
K, = ¢(X) C Y is compact, so there exists an open neighborhood V' C Y of
K1 such that %V: V —o X is admissible. Hence, there exists a multivauled
map By : V —.q X such that &y € oy, Let K = &y (K;) C X. It is clear
that K is compact. There exists an open neighborhood U C X of K such that
Yy: U — V CY is admissible. Let Uy: U —4q V be a map such that ¥y C ¢y
We have the following diagram

Uy Dy

U

v X.

Let A = &y o Uy . We observe that A is compact, A(U) € U and A € (¥ o9y,
Hence and from Proposition and Theorem A(A) is well defined. Assume
that A(A) # 0 then there exists a point x € U such that

z e Az) C B ((x)).

There exists a point y € ¥(x) such that = € % (y). Hence, y € ¢(z), so

p(x) Np(z) # 0.

Let Y € NAg and let ¢: X — Y be a compact and locally admissible map. From

Proposition the map wo$: Y —o Y is locally admissible. From the assumption
the set K = (% (Y)) is compact, so there exists an open neighborhood U C Y of

K such that (wog)U: U — U C Y is admissible. Hence, there exists A: U —,q U
such that A C (Yo %)y It is obvious that A is compact and A(A) is well defined.
Assume that A(A) # 0 then there exists a point y € U such that

y € Aly) < v(B ().

There exists a point = € {5 (y) such that y € ¥(z). Hence, y € ¢(z), so

p(x) Np(x) # 0
and the proof is complete.
The following fact results from Theorem

PROPOSITION 6.2

Let p: X — Y be a multi-invertible and locally admissible map and let: X — Y
be a compact and locally admissible map. Assume that X € NAc is strongly
acyclic or'Y € NAg is strongly acyclic, then ¢ and 1 have a coincidence point.
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Proof. In the proof of Theorem [6.1] it is enough to replace the set K with the set
of acyclic and compact A such that K € A. Then A(A) = 1 and the proof is
complete.

From the last fact and Proposition [5.2] we get

PROPOSITION 6.3

Let E be a Banach space. Let p: X — E be a multi-invertible and locally admis-
stble map and let p: X — E be a compact and locally admissible map. Then ¢
and ¥ have a coincidence point.

The next fact is the simple conclusion of Proposition [6.2

PROPOSITION 6.4

Let ¢: X — Y be a multi-invertible and admissible map and let ¢: X — Y be
a compact and admissible map. Furthermore, assume that an inverse map 35 18
admissible. If X € Ac or'Y € Ac then the maps ¢ and ¥ have a coincidence
point.

7. Conclusion

In the third paragraph we have proposed the definition of a multivalued invert-
ible mapping. In the context of such a definition if a mapping is multi-invertible
then there exists exactly one multi-inverse mapping. Moreover, <if a singlevalued
mapping f: X — Y is invertible, then it is multi-invertible and f = f~'. Multi-
invertible mappings constitute a wide class of mappings and have many interesting
applications. In paragraph four we have applied multi-invertible mappings for the
construction of morphisms. Then, in paragraph six, it was proven that multi-
invertible mappings have coincidence properties.
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