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A new application of almost increasing sequences

Abstract. In this paper, a known result dealing with |N, pn|r summability
of infinite series has been generalized to the ¢ — |N,p,; |, summability of
infinite series by using an almost increasing sequence.

1. Introduction

A positive sequence (b,,) is said to be almost increasing if there exists a positive
increasing sequence (¢,,) and two positive constants L and M such that

Le, < b, < Mc,

(see [1]). Let > a, be a given infinite series with partial sums (s,). Let (p,) be
a sequence of positive numbers such that

Pn:va—>oo as n — oo, (P;=p_;=0,i>1).
v=0

The sequence-to-sequence transformation

1 n
Wp = Fn 7;)pvsv

defines the sequence (wy,) of the (N, p,,) means of the sequence (s,), generated by
the sequence of coefficients (p,) (see [8]).
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The series > ay, is said to be summable |N, p,|,, k > 1, if (see [2]),

o0

P\ k-1
Z (—") |wy, — wn_1|" < 0.
n=1

Pn

Let (@) be any sequence of positive real numbers. The series ) a, is said to
be summable ¢ — [N, py;6|,, k> 1 and § > 0, if (see [14]),

Z¢5k+k Yaw,, —wn,1|”C < 0.
n=1

If we take @, = & then ¢ — |N,p,;d|, summability is the same as |N, p,;d],

summability (see [ ]) Also, if we take ¢, = : and 0 = 0, then we get [N, p,|x
summability.

2. The known result

The following theorem is known dealing with |N, Pnl, summability factors of
infinite series.

THEOREM 2.1 ([6])
Let (X,,) be an almost increasing sequence and let there be sequences (A,) and (By)
such that

[AAn| < B, (1)
Brn =0 as n — oo, (2)
> n|AB, X, < oo, (3)
n=1
[AnlXn =0(1) as n— oo. (4)
If
1
ZE\)\M:O(I) as m — oo (5)
n=1
ZE't | (Xm) as m— o0 (6)
n=1
and .
Zp—t I =0(X,,) as m — oo, (7)
P,
n=1
where (t,,) is the n-th (C,1) mean of the sequence (na,), then the series ) any,

is summable |N,py|,, k > 1.
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3. The main result

Some works dealing with generalized absolute summability methods of infinite
series have been done (see [4, 5} [7, @, [T0, [T} 12, 13} 15, 16, [17]). The aim of this
paper is to generalize Theorem to ¢ — | N, pn; 0| summability, in the following
form.

THEOREM 3.1
Let (X,,) be an almost increasing sequence and let (vy,) be a sequence of positive
real numbers such that

onpn = O(Pn), (8)
m+1
1
Z k= 17 :O(wvék—) as m — oo. (9)
n=v-+1 n 1 P’u

If conditions 7 of the Theorem and

m

Z k|t| O(X,,) as m — oo, (10)
i Sk=lip ¥ = O(X,) as m— oo (11)

are satisfied, then the series Y. anp\, is summable ¢ — |N,p,;dlx, k > 1 and
0<dk < 1.

We need the following lemma for the proof of Theorem

LEMMA 3.2 ([6])
Under the conditions on (X,), (Bn) and (N\,) as taken in the statement of the
theorem, we have that

nXpfn =0(1) as n— oo, (12)

i PrnXn < 00. (13)

Proof of Theorem[3.1. Let (J,,) indicate (N, p,,) means of the series > a,\,. Then,
for n > 1, we obtain

AJ, =

vlavv
Ul
n

_ Pn P’ufl)\v
- PnPn—l ; v vitv:
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Applying Abel’s formula, we get

D n—1 A D n—1 v+ 1
AJ, = =2 Y Pty — =t oAty
Pnljnfl,ug1 v PnPnflg v P

Dn v+1 n+1
Pt , AN, nAntn
+P7LP”—1U; + P np, ?

= Jn,l + Jn,2 + Jn,3 + Jn,4~

For the proof of Theorem it is sufficient to show that

Zwk*’“ YpolF <00 forr=1,2,3,4.

By using Holder’s inequality and Abel’s formula, we have
m—+1 m—+1 s k n—1 ‘)\ +1| k
Z Q=117 |F = Z i 1( 1) (va|tv| - )

n=2
m—+1

Zsﬁék 1 (Zp|t |>\u+1|)
mir:l(psk 1 (Zp|t |k|)‘v+1|>

v=1

( 1 ZP|>\v+1|)

n 1 v=1
= Sk— 1 k|)‘v+1|
M2 e ZP [t
| |k m+1 1
Pyl X1 | =2 -
Z by Z+ e
ty
Z@§k|)\v+ || ‘
v=1
- 6k| 6k|t B
1) 2 ARy \Zso IZ@
v=1
m—1
1) Y Bost Xopt + O() A1 [ X
v=1

=0(1) as m — oo,

by virtue of , , , f and .
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Again, using Hoélder’s inequality and Abel’s formula, we obtain

m+1 m—+1
Z e T AL Z POkt 1( ) (va/\ |t1,|)
m—+1 1 n—1
— 0(1) Z (pflklpk(zpv)\v|t“|)
n=2 n—1 =1
m—+1
WY g (Zm i)
v=1
| ol k—1
X DPov
<p S
m—+1 1 n—1
ODIi e T
m—+1
ZPUM Fleol® > @k 17
v=1 n=v+1 Py
sk P
=0(1)) & I/\ 5 A [t
v=1

1)Z‘ng_l|)‘v||tv‘k
ZA\A IZsoﬁ’“ e+ o1 IAmIZwi’“ el

Z@JX + O(1)| A | Xom

v=1

=0(1) as m — oo,

in view of , , , @, and . Also, we have
m+1 m+1

Z Bar N L Z i 1( ) (ZP Ito|| AN, |>

m+1

1 (=
—om Y (X )
n— v=1

n=2

m+1

n—1
41
—o) Y g (X nin )
n— v=1

n=2

k—1
( Z Pvﬁv)
n 1 v—1
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m+1 1 n—1
Zsa‘”“ ' ZPU@, t,[*
n—l v—1

m m4+1
W2 Pohultel® 3 0 L
n=v+1 n71
o [tol”
)Y et = up
v=1
m—1

— v |tr|k m tv k
DY aws) Y e owms, S
r=1 v=1

v=1
m—1
=0(1) > A@WB) Xy + O(1)mBm Xom
v=1
m—1 m—1
=0(1) Y 0[AB Xy +0(1) Y Bup1 Xup1 + O(1)mBn X
v=1 v=1

=0(1) as m — oo.

by means of , , 7, and . Finally, as in J, 2, we have
- L (PaN\F L e
Zwék—i-k 1|Jn,4|k :O(l)zwik—l-k 1(3) |)\n|k 1‘)\n||tn|k

Z%’“ Al ftal®

=0(1) as m — oo,

in view of , , , and . Thus the proof of Theoremis completed.

4. Conclusion

If we take ¢, = 5—" and § = 0 in Theorem 3.1} then we get Theorem [2.1{ In
this case, conditions ([10) and reduce to conditions @ and , respectively.
3

Also, the condition (8] is automatically satisfied.
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