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Abstract. We present a description of all binomial sequences of polynomials
in one variable over a field of characteristic zero.

1. Introduction

Throughout this article K is a field of characteristic zero, K[x] is the ring of
polynomials in one variable x over K, and K[x, y] is the ring of polynomials in
two variables x, y over K. Moreover, K[x][[t]] is the ring of formal power series in
one variable t over K[x].

Let F = (Fn(x))n>0 be a nonzero sequence of polynomials in K[x]. We say
that F is a binomial sequence if

Fn(x+ y) =
n∑
k=0

(n
k

)
Fk(x)Fn−k(y)

for all n > 0. The equalities are in the ring K[x, y]. The assumption that F is
nonzero means that there exists a nonnegative integer n such that Fn(x) 6= 0. We
will say that a binomial sequence F = (Fn(x))n>0 is strict if every polynomial
Fn(x) is nonzero.

The well known binomial theorem can be stated by saying that (xn)n>0 is
a strict binomial sequence. Several other such strict sequences exist. The sequence
of lower factorials (x(n))n>0, defined by x(0) = 1 and

x(n) = x(x− 1)(x− 2) · · · (x− n+ 1) for n > 1
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is a strict binomial sequence. The same property has the sequence of upper facto-
rials (x(n))n>0, defined by x(0) = 1 and

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) for n > 1.

The sequence of Abel’s polynomials (An(x))n>0, defined byA0(x) = 1 andAn(x) =
x(x − n)n−1 for n > 1, is a strict binomial sequence (see Subsection 7.3). Many
interesting results concerning binomial sequences can be find for example in [3],
[5], [13], [15], [17], [20], [21], [23] and others.

There exists a full description of all strict binomial sequences. The important
role of such description play results of I. M. Sheffer [24], on linear operators of type
zero, published in 1939. Later, in 1957, H. L. Krall [13], applying these results,
proved that F = (Fn(x))n>0 is a strict binomial sequence if and only if there
exists a formal power series H(t) =

∑∞
n=1 ant

n, belonging to K[[t]] with a1 6= 0
and without the constant term, such that

∞∑
n=0

Fn(x)
n! tn = exH(t).

In Section 6 we present his proof and some basic properties of linear operators of
type zero. Several other proofs and applications of this result can be find; see for
example: [21], [20] and [12]. We have here the assumption that F is strict. In the
known proofs this assumption is very important. In this case every polynomial
Fn(x) is nonzero and moreover, degFn(x) = n for all n > 0.

However, there exist non-strict binomial sequences. We have the obvious ex-
ample F = (1, 0, 0, . . . ). The sequence (Fn(x))n>0 defined by

F2m(x) = (2m)!
m! xm and F2m+1(x) = 0 for all m > 0,

is also a non-strict binomial sequence. Some other such examples are in Section 7.
In this article we present a description of all binomial sequences. We prove

(see Theorem 5.5) that if in the above mentioned result of Krall [13] we omit the
assumption a1 6= 0, then this result is also valid for non-strict binomial sequences.

2. Notations and preliminary facts

We denote by N the set {1, 2, 3, . . . }, of all natural numbers, and by N0 the
set {0, 1, 2, . . . } = N ∪ {0}, of all nonnegative integers. If i1, . . . , is ∈ N0, where
s > 1, then we denote by 〈i1, . . . , is〉 the generalized Newton integer

(i1 + · · ·+ is)!
i1! · · · is!

.

In particular, 〈i1〉 = 1, 〈i1, i2〉 =
(
i1+i2
i1

)
, 〈i1, i2, i3〉 = 〈i1 + i2, i3〉〈i1, i2〉.

Let F = (Fn)n>0 be a nonzero sequence of polynomials belonging to K[x].
Let us repeat that F is a binomial sequence if

Fn(x+ y) =
∑
i+j=n

〈i, j〉Fi(x)Fj(y) for all n > 0.
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We shall say that F is a principal sequence, if

Fn(x+ y) =
∑
i+j=n

Fi(x)Fj(y) for all n > 0.

Here the sums range over all pairs of nonnegative integers (i, j) such that i+j = n.
Recall that a binomial sequence F is strict if all the polynomials Fn are nonzero.
Moreover, we say that a principal sequence F is strict if all the polynomials Fn
are nonzero.

Proposition 2.1
Let F = (Fn)n>0 and P = (Pn)n>0 be nonzero sequences of polynomials from K[x]
such that

Pn = 1
n!Fn for n > 0.

The sequence F is binomial if and only if the sequence P is principal. Moreover,
F is a strict binomial sequence if and only if P is a strict principal sequence.

Proof. Assume that F is binomial. Then we have

Pn(x+ y) = 1
n!Fn(x+ y) = 1

n!
∑
i+j=n

〈i, j〉Fi(x)Fj(y)

=
∑
i+j=n

( 1
i!Fi(x)

)( 1
j!Fj(y)

)
=
∑
i+j=n

Pi(x)Pj(y).

Hence, it is clear that P is principal. The opposite implication is also clear.

Thus, if we have a result for principal sequences, then by the above proposition
we obtain a similar result for binomial sequences.

Let R be a commutative ring with identity. We shall denote by R〈〈t〉〉 the ring
of formal power series with divided powers ([2], [18]). Every element of this ring
is an ordinary formal power series of the form

∑∞
n=0 rnt

n with rn ∈ R. It is the
ring with the usual addition and with the multiplication ∗ defined by the formulas
a ∗ tn = tn ∗ a = atn for a ∈ R, and

tn ∗ tm = 〈n,m〉 tn+m =
(n+m

n

)
tn+m.

This multiplication ∗ is called the binomial convolution ([10], [18]).
If f =

∑∞
n=0 ant

n and g =
∑∞
n=0 bnt

n are elements of R〈〈t〉〉, then the binomial
convolution of f and g is

f ∗ g =
∞∑
n=0

( ∑
i+j=n

〈i, j〉aibj
)
tn.

The ring R〈〈t〉〉 is commutative with identity. Note that if f =
∑∞
n=0 ant

n, g =∑∞
n=0 bnt

n and h =
∑∞
n=0 cnt

n, then

(f ∗ g) ∗ h = f ∗ (g ∗ h) =
∞∑
n=0

( ∑
i+j+k=n

〈i, j, k〉aibjck
)
tn.
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If R is a domain containing Q, then R〈〈t〉〉 is also a domain.

Proposition 2.2
If Q ⊂ R, then the rings R〈〈t〉〉 and R[[t]] are isomorphic. More exactly, the
mapping σ : R〈〈t〉〉 → R[[t]] defined by

σ
( ∞∑
n=0

fnt
n
)

=
∞∑
n=0

fn
n! t

n

is an isomorphism of rings.

Proof. It is clear that σ is a bijection, σ(1) = 1 and σ(f + g) = σ(f) + σ(g) for
f, g ∈ R〈〈t〉〉. Put f =

∑∞
n=0 fnt

n and g =
∑∞
n=0 gnt

n. Then f∗g =
∑∞
n=0(f∗g)ntn

and we have

σ(f ∗ g) =
∞∑
n=0

1
n! (f ∗ g)nt

n =
∞∑
n=0

1
n!

( ∑
i+j=n

〈i, j〉figj
)
tn

=
∞∑
n=0

( ∑
i+j=n

(fi
i!

)(gj
j!

))
tn =

( ∞∑
n=0

fn
n! t

n
)( ∞∑

n=0

gn
n! t

n
)

= σ(f)σ(g).

This completes the proof.

3. Initial properties of principal sequences

Proposition 3.1
If P = (Pn)n>0 is a principal sequence, then P0 = 1.

Proof. Suppose P0 = 0. Let n > 1 and assume that P0 = P1 = · · · = Pn−1 = 0.
Then

Pn(x) = Pn(x+ 0) = P0(x)Pn(0) + Pn(x)P0(0) +
n−1∑
k=1

Pk(x)Pn−k(0)

= 0 + 0 +
n−1∑
k=1

0 = 0.

Hence, by induction, Pn = 0. Thus, if P0 = 0 then P is the zero sequence; but it is a
contradiction because by definition every principal sequence is nonzero. Therefore,
P0 6= 0. Let P0 = pnx

n + pn−1x
n−1 + · · ·+ p0, where n > 0, p0, . . . , pn ∈ K, and

pn 6= 0. Since P0(x+ x) = P0(x)P0(x), we have the equality

2npnxn + 2n−1pn−1x
n−1 + · · ·+ 2p1x+ p0 = p2

nx
2n + · · ·+ p2

0.

If n > 1, then p2
n = 0 but this contradicts the assumption pn 6= 0. Thus, n = 0

and P0 = p0 ∈ K \ {0}. Moreover, p0 = p2
0, because P0(0) = P0(0 + 0) = P0(0)2.

Hence, P0 = p0 = 1.
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Proposition 3.2
If P = (Pn)n>0 is a principal sequence, then Pn(0) = 0 for all n > 1.

Proof. We already know from Proposition 3.1 that P0 = 1. Let n > 1 and assume
that P1(0) = P2(0) = · · · = Pn(0) = 0. Then

Pn+1(0) = Pn+1(0 + 0) =
∑

i+j=n+1
Pi(0)Pj(0) = Pn+1(0) + Pn+1(0)

and so, Pn+1(0) = 0.

Assume that P = (Pn)n>0 is an arbitrary principal sequence. We do not
assume that P is strict. There exist many non-strict such sequences. For example
P = (1, 0, 0, . . . ) is a non-strict principal sequence. Next such examples we may
obtain by the following proposition.

Proposition 3.3
Let (Pn)n>0 be a principal sequence and let s be a positive integer. Let (Rn)n>0
be a sequence of polynomials defined by

Rms = Pm for m > 0,

and Rn = 0 when s 6 |n. Then (Rn)n>0 is a non-strict principal sequence.

Proof. It is obvious that

Rn(x+ y) = 0 =
∑
i+j=n

Ri(x)Rj(y)

in the case when s 6 |n. If n = sm with m ∈ N0, then∑
i+j=sm

Ri(x)Rj(y) =
∑

si+sj=sm
Rsi(x)Rsj(y) =

∑
i+j=m

Pi(x)Pj(y)

= Pm(x+ y) = Rsm(x+ y).

Note also the following general property of principal sequences.

Proposition 3.4
Let (Pn(x))n>0 be a principal sequence of polynomials from K[x] and let 0 6= a ∈
K. Let

Rn(x) = anPn(x) for n > 0.
Then (Rn(x))n>0 is a principal sequence.

Proof. We have

Rn(x+ y) = anPn(x+ y) = an
∑
i+j=n

Pi(x)Pj(y)

=
∑
i+j=n

(aiPi(x))(ajPj(y)) =
∑
i+j=n

Ri(x)Rj(y).

This completes the proof.
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In the next proposition we characterize strict principal sequences.

Proposition 3.5
Let (Pn(x))n>0 be a strict principal sequence. Then

(1) P1(x) = ax for some 0 6= a ∈ K;
(2) degPn(x) = n for all n > 0;
(3) the initial monomial of each Pn(x) is equal to 1

n!a
nxn.

Proof. Let P1(x) = amx
m+am−1x

m−1+· · ·+a0, wherem > 0 and a0, . . . , am ∈ K
with am 6= 0. Since P1(x+ y) = P0(x)P1(y) + P1(x)P0(y) and P0(x) = P0(y) = 1,
we have (putting y = x) P1(2x) = 2P1(x) and so, (2m − 2)am = 0. Hence, m = 1
because am 6= 0. We know also that P1(0) = 0 (see Proposition 3.2). Therefore,

P1(x) = ax for some 0 6= a ∈ K.

Now let s > 2 and assume that the initial monomial of every Pk(x), for k =
1, . . . , s− 1, is equal to 1

k!a
kxk. Look at the equality

Ps(2x)− 2Ps(x) =
s−1∑
k=1

Pk(x)Ps−k(x).

On the right side we have a polynomial and its initial monomial is equal to
s−1∑
k=1

( 1
k!a

kxk
)( 1

(s− k)!a
s−kxs−k

)
= 1
s!a

sxs
s−1∑
k=1

( s
k

)
= 2s − 2

s! asxs 6= 0.

This implies that Ps(x) 6= 0. Let Ps(x) = amx
m+am−1x

m−1 +· · ·+a0, wherem >
0 and a0, . . . , am ∈ K with am 6= 0. Then the initial monomial of Ps(2x)− 2Ps(x)
is equal to (2m − 2)amxm. Hence,

(2m − 2)amxm = 2s − 2
s! asxs

and hence, m = s and am = 1
s!a

s. Therefore, degPs(x) = s and the initial
monomial of Ps(x) equals 1

s!a
sxs. This completes the proof.

Colorary 3.6
A principal sequence (Pn)n>0 is strict if and only if P1 6= 0.

4. Principal power series

In this section K[x][[t]] is the ring of formal power series over K[x] in one
variable t. Every element of this ring is of the form

P (x) =
∞∑
n=0

Pn(x)tn,

where (Pn(x))n>0 is a sequence of polynomials belonging to K[x]. We shall say
that the series P (x) is principal if (Pn(x))n>0 is a principal sequence.



Binomial sequences [99]

Proposition 4.1
Let P (x) =

∑∞
n=0 Pn(x)tn ∈ K[x][[t]]. The series P (x) is principal if and only if

in the ring K[x, y][[t]] it satisfies the equality

P (x+ y) = P (x)P (y).

Proof. Assume that the series P (x) is principal. Then (Pn(x))n>0 is a principal
sequence, and then

P (x+ y) =
∞∑
n=0

Pn(x+ y)tn =
∞∑
n=0

( ∑
i+j=n

Pi(x)Pj(y)
)
tn

=
( ∞∑
n=0

Pn(x)tn
)( ∞∑

n=0
Pn(y)tn

)
= P (x)P (y).

Thus if P (x) is principal, then it is clear that P (x+ y) = P (x)P (y). The opposite
implication is also clear.

Let F =
∑∞
n=0 Fnt

n be a formal power series belonging to K[x][[t]], and let
G =

∑∞
n=1 Gnt

n ∈ K[x][[t]] be a formal power series without the constant term.
Consider the substitution

F (G) =
∞∑
n=0

Fn

( ∞∑
j=1

Gjt
j
)n
.

Since G has no the constant term, F (G) is a formal power series belonging to
K[x][[t]]. Let us use this substitution for the power series F = et =

∑∞
n=0

1
n! t

n

and G = xH(t), where H(t) =
∑∞
n=1 ant

n ∈ K[[t]]. Denote this substitution by
P (x). Thus, we have

P (x) = exH(t) = P0(x) + P1(x)t1 + P2(x)t2 + P3(x)t3 + · · · ,

where each Pj(x) is a polynomial belonging to K[x]. Initial examples

P0(x) = 1,
P1(x) = a1x,

P2(x) = 1
2a

2
1x

2 + a2x,

P3(x) = 1
6a

3
1x

3 + a1a2x
2 + a3x,

P4(x) = 1
24a

4
1x

4 + 1
2a

2
1a2x

3 + a1a3x
2 + 1

2a
2
2x

2 + a4x,

P5(x) = 1
120a

5
1x

5 + 1
6a

3
1a2x

4 + 1
2(a2

1a3 + a1a
2
2)x3 + (a1a4 + a2a3)x2 + a5x.
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Proposition 4.2
Let H(t) ∈ K[[t]] be a formal power series without the constant term, and let

P (x) = exH(t).

Then P (x) is a formal power series belonging to K[x][[t]] and this series is princi-
pal. Moreover, if P (x) =

∑∞
n=0 Pn(x)tn and H(t) =

∑∞
n=1 ant

n, then an = P ′n(0)
for all n > 1, where each P ′n(x) is the derivative of Pn(x).

Proof. Since H(t) is without the constant term, the substitution exH(t) is well
defined and it is really an element of K[x][[t]]. Moreover,

P (x+ y) = e(x+y)H(t) = exH(t)+yH(t) = exH(t)eyH(t) = P (x)P (y).

Hence, by Proposition 4.1, the series P (x) is principal.
Now we use the derivation d

dx of the ring K[x][[t]], and we have

∞∑
n=1

P ′n(x)tn = P ′(x) = (exH(t))′ = H(t)exH(t).

Hence,
∞∑
n=1

P ′n(0)tn = H(t)e0 = H(t) =
∞∑
n=1

ant
n

and hence, an = P ′n(0) for all n > 1.

Now we shall prove that every principal power series is of the above form
exH(t), where H(t) ∈ K[[t]] is a power series without the constant term. Before
our proof, let us recall some well known properties of formal power series.

Assume that R is a commutative ring with identity containing the field Q, of
rational numbers, and let R[[t]] be the ring of formal power series over R. Denote
byM the ideal tR[[t]], and let 1 +M = {1 + f ; f ∈M}. Note thatM is the set
of all power series from R[[t]] without the constant terms, and 1 +M is the set of
all power series from R[[t]] with constant terms equal to 1. We have two classical
functions Log : 1 +M→M and Exp : M→ 1 +M, defined by

Log (1 + ξ) = ξ − 1
2ξ

2 + 1
3ξ

3 − 1
4ξ

4 + · · · =
∞∑
n=1

(−1)n+1

n
ξn,

Exp (ξ) = 1 + ξ + 1
2!ξ

2 + 1
3!ξ

3 + · · · =
∞∑
n=0

1
n!ξ

n = eξ

for all ξ ∈M. It is well known that Log (Exp (ξ)) = ξ and Exp (Log (1+ξ)) = 1+ξ,
for all ξ ∈M. As a consequence of these facts we obtain
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Lemma 4.3
With the above notations:

(1) if ξ, ν ∈M and eξ = eν , then ξ = ν;
(2) for every ξ ∈M there exists a unique ν ∈M such that eν = 1 + ξ.

Now let R be the polynomial ring K[x], where K is a field of characteristic
zero.

Lemma 4.4
Let F (x) be a polynomial from K[x] such that

(x+ y)F (x+ y) = xF (x) + yF (y).

Then F (x) ∈ K.

Proof. Suppose that F (x) 6∈ K. Let degF (x) = n > 1, and let F (x) = anx
n +

an−1x
n−1 + · · · + a0, where a0, . . . , an ∈ K with an 6= 0. Putting y = x, we have

2xF (2x) = 2xF (x) and so, F (2x) = F (x). This implies that 2nan = an, so 2n = 1
and we have the contradiction: 0 = n > 1.

Now we are ready to prove the following main result of this section.

Theorem 4.5
Let P = (Pn(x))n>0 be a nonzero sequence of polynomials from K[x]. Then P is
a principal sequence if and only if there exists a formal power series H(t), belonging
to K[[t]] and without the constant term, such that

∞∑
n=0

Pn(x)tn = exH(t).

Proof. Put P (x) =
∑∞
n=0 Pn(x)tn. We already know (see Proposition 4.2) that

if P (x) = exH(t) where H(t) ∈ K[[t]] is without the constant term, then P is
principal.

Now assume that P is principal. Since P is nonzero, we know by Proposition
3.1 that P0(x) = 1. Thus, by Lemma 4.3(2), there exists a formal power series
B(x) ∈ K[x][[t]], without the constant term, such that P (x) = eB(x). Put B(x) =∑∞
n=1 Bn(x)tn, where each Bn(x) is a polynomial from K[x]. Observe that, by

Proposition 3.2, we have P (0) = 1. Hence, 1 = P (0) = eB(0) and hence, by Lemma
4.3(1), we have the equality B(0) = 0. Therefore, Bn(0) = 0 for all n > 1. This
implies that for every n > 1 there exists a polynomial An(x) ∈ K[x] such that
Bn(x) = xAn(x). Put A(x) =

∑∞
n=1 An(x)tn. Then B(x) = xA(x), and we have

P (x) = exA(x),

where A(x) is a power series from K[x][[t]] without the constant term. Since P is
principal, we know, by Proposition 4.1, that P (x+ y) = P (x)P (y). Hence

e(x+y)A(x+y) = P (x+ y) = P (x)P (y) = exA(x)eyA(y) = exA(x)+yA(y)
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and hence, (x+ y)A(x+ y) = xA(x) + yA(y) (see Lemma 4.3(1)), that is,

∞∑
n=1

((x+ y)An(x+ y))tn =
∞∑
n=1

(xAn(x) + yAn(y))tn.

So (x+y)An(x+y) = xAn(x) +yAn(y) for all n > 1 and so, by Lemma 4.4, every
An(x) is a constant an belonging to K. Consequently A(x) =

∑∞
n=1 ant

n. Thus,
P (x) = exH(t), where H(t) =

∑∞
n=1 ant

n. This completes the proof.

The next propositions are consequences of the above theorem.

Proposition 4.6
If A(x), B(x) ∈ K[x][[t]] are principal power series, then the product A(x)B(x) is
a principal power series.

Proof. It follows from Theorem 4.5 that A(x) = exH1(t) and B(x) = exH2(t), where
H1(t), H2(t) are some formal power series from K[[t]] without the constant terms.
Then A(x)B(x) = exH(t), where H(t) = H1(t) + H2(t) is a formal power series
from K[[t]] without the constant term. Hence, again by Theorem 4.5, the power
series A(x)B(x) is principal.

Proposition 4.7
Let P (x) =

∑∞
n=0 Pn(x)tn ∈ K[x][[t]] be a principal power series. Then P (x) is

invertible in K[x][[t]], and the inverse P (x)−1 is a principal power series. More-
over,

P (x)−1 =
∞∑
n=0

Pn(−x)tn.

Proof. It follows from Theorem 4.5 that P (x) = exH(t), where H(t) is a for-
mal power series from K[[t]] without the constant term. Then P (x)P (−x) =
exH(t)e−xH(t) = e0 = 1, and hence P (x)−1 = P (−x) = ex(−H(t)), and, again by
Theorem 4.5, the series P (x)−1 is principal.

Thus, the set of all principal power series from K[x][[t]] is a subgroup of the
multiplicative group of the ring K[x][[t]].

5. Properties of binomial sequences

In the previous sections we proved several essential properties of principal
sequences. Let us recall (see Proposition 2.1) that a sequence of polynomials
(Pn(x))n>0 is principal if and only if (n!Pn(x))n>0 is a binomial sequence. The
following propositions are immediate consequences of Proposition 2.1 and the suit-
able propositions from Section 3.
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Proposition 5.1
Let F = (Fn(x))n>0 be a binomial sequence. Then

(1) F0(x) = 1;

(2) Fn(0) = 0 for all n > 1.

(3) Let s be a positive integer, and let G = (Gn(x))n>0 be a sequence defined by

Gms(x) = (ms)!
m! Fm(x) for m > 0,

and Gn(x) = 0 when s 6 |n. Then G is a binomial sequence.

(4) Let 0 6= a ∈ K. Let Gn(x) = anFn(x) for n > 0. Then (Gn(x))n>0 is
a binomial sequence.

Proposition 5.2
If F = (Fn(x))n>0 is a strict binomial sequence, then

(1) F1(x) = ax for some 0 6= a ∈ K;

(2) degFn(x) = n for all n > 0;

(3) the initial monomial of each Fn(x) equals anxn.

Proof. Use Propositions 3.5 and 2.1.

Colorary 5.3
A binomial sequence (Fn)n>0 is strict if and only if F1 6= 0.

Proposition 5.4
Let H(t) ∈ K[[t]] be a formal power series without the constant term, and let

exH(t) =
∞∑
n=0

Fn(x)
n! tn.

Then (Fn(x))n>0 is a binomial sequence. Moreover, if H(t) =
∑∞
n=1 ant

n, then
n!an = F ′n(0) for all n > 1, where each F ′n(x) is the derivative of Fn(x).

The following theorem is the main result of this article. It is an extension of
Krall’s result [13] mentioned in Introduction.

Theorem 5.5
Let F = (Fn(x))n>0 be a nonzero sequence of polynomials from K[x]. Then F is
a binomial sequence if and only if there exists a formal power series H(t), belonging
to K[x][[t]] and without the constant term, such that

∞∑
n=0

Fn(x)
n! tn = exH(t).

Proof. Use Theorem 4.5 and 2.1.
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Let us recall (see Section 2) that we denote byK[x]〈〈t〉〉 the ring of formal power
series with divided powers over K[x]. If

∑∞
n=0 Fn(x)tn is a formal power series

belonging to K[x]〈〈t〉〉, then we shall say that this series is binomial if (Fn(x))n>0
is a binomial sequence.

The following propositions are immediate consequences of Proposition 2.1 and
the suitable facts from the previous section.

Proposition 5.6
If F,G ∈ K[x]〈〈t〉〉 are binomial power series, then the binomial convolution F ∗G
is a binomial power series.

Proposition 5.7
Let F =

∑∞
n=0 Fn(x)tn be a formal power series belonging to K[x]〈〈t〉〉. If F is

binomial, then F is invertible in K[x]〈〈t〉〉, and the inverse F−1 is a binomial
power series, and moreover

F−1 =
∞∑
n=0

Fn(−x)tn.

Proposition 5.8
The set of all binomial series from K[x]〈〈t〉〉 is a subgroup of the multiplicative
group of the ring K[x]〈〈t〉〉.

It follows from Theorem 5.5 that every binomial sequence (Fn(x))n>0 is uni-
quely determined by the formula

∑∞
n=0

Fn(x)
n! tn = exH(t), where H(t) ∈ K[[t]]

is a formal power series without the constant term. Thus for every sequence
H = (h1, h2, . . . ) of elements of K we obtain the unique nonzero binomial sequence
F = (Fn(x))n>0 defined by the formula

∑∞
n=0

Fn(x)
n! tn = exH(t), where H(t) =∑∞

n=1 hnt
n. In this case we shall say that F is the binomial sequence determined

by H(t).

Proposition 5.9
Let H(t) =

∑∞
n=1 hnt

n ∈ K[[t]], and let (Fn)n>0 be the binomial sequence de-
termined by H(t). Let 0 6= a ∈ K. Then (anFn)n>0 is the binomial sequence
determined by H(at) =

∑∞
n=1 hna

ntn.

Proof. This proposition follows from Theorem 5.5 and Proposition 5.1(4).

6. Linear operators of type zero

In this section we consider strict binomial sequences. We recall some impor-
tant results of I. M. Sheffer [24] and H. L. Krall [13], mentioned in Introduction.
Throughout this section we denote by d the ordinary derivative d

dx .
Assume that F is a polynomial belonging to K[x]. We know that dn(F ) = 0

for all n > degF . Moreover, dn(xn) = n! and

dn(xm) = m(m− 1) · · · (m− n+ 1)xm−n for n 6 m.
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Proposition 6.1
Let J : K[x] → K[x] be a K-linear map. Then there exists a unique sequence
(Ln(x))n>0 of polynomials from K[x], such that

J(F ) =
∞∑
n=0

Ln(x)dn(F )

for every F ∈ K[x].

Proof. Put Fn = J(xn) for all n ∈ N0. We define the Ln(x) recurrently by the
relation

Fn = J(xn) =
n∑
k=0

Lk(x) · n(n− 1) · · · (n− k + 1)xn−k,

for n > 0. That is,

L0 = F0,

L1 = F1 − xL0,

L2 = 1
2(F2 − x2L0 − 2xL1),

L3 = 1
6(F3 − x3L0 − 3x2L1 − 6xL2),

L4 = 1
24(F4 − x4L0 − 4x3L1 − 12x2L2 − 24xL3),

and so on. Then, for every m ∈ N0, we have the equality

J(xm) =
∞∑
n=0

Ln(x)dn(xm).

But the mappings J and d are K-linear, hence J(F ) =
∑∞
n=0 Ln(x)dn(F ), for all

F ∈ K[x]. It is obvious that such sequence (Ln(x))n>0 is unique.

Thus, for every K-linear mapping J : K[x] → K[x] we have the unique se-
quence (Ln(x))n>0 associated with J . In this case the mapping J is said to be an
operator of type zero ([24], [13]) if its associated sequence is of the following form:
Ln(x) = cn ∈ K for all n > 0 with c0 = 0 and c1 6= 0, that is, if

J(F ) = c1d(F ) + c2d
2(F ) + c3d

3(F ) + · · ·

for all F ∈ K[x], where cn ∈ K for n > 1 and c1 6= 0. There are many interesting
papers on operators of type zero, their generalizations and applications ([1], [25]).

Now we present some properties of operators of type zero.

Proposition 6.2 ([24])
Let J be an operator of type zero. If F ∈ K[x] is a nonzero polynomial of degree
n > 1, then J(F ) is a nonzero polynomial of degree n− 1.
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Proof. Put J = c1d+ c2d
2 + · · · , with c1 6= 0, and let F = anx

n + · · ·+ a1x+ a0,
where a0, . . . , an ∈ K, an 6= 0. Then d(F ) = nanx

n−1+· · · is a nonzero polynomial
of degree n−1, and the degrees of all the polynomials d2(F ), d3(F ), . . . are smaller
than n−1. Since c1 6= 0, the polynomial J(F ) = c1d(F )+ c2d

(F )+ · · · is nonzero,
and its degree is equal to n− 1.

Proposition 6.3
Let J be an operator of type zero, and let G ∈ K[x] be a nonzero polynomial of
degree n−1 > 0. Then there exists a unique polynomial F ∈ K[x] of degree n such
that J(F ) = G and F (0) = 0.

Proof. (I). Put J = c1d+c2d
2+· · · , with c1 6= 0, and G = g0+g1x+· · ·+gn−1x

n−1,
where g0, . . . , gn−1 ∈ K, gn−1 6= 0. We shall construct a polynomial

F = f1x+ f2x
2 + · · ·+ fnx

n

with f1, . . . , fn ∈ K and fn 6= 0, such that J(F ) = G.
If 1 6 j 6 m, the we use the notation:

w(m, j) = m(m− 1) · · · (m− j + 1).

Observe that, for all j−1, . . . , n, we have dj(F ) =
n∑
k=j

w(k, j)fkxk−j . If G = J(F ),

then we have the following equalities:

G =
n∑
j=1

cjd
j(F ) =

n∑
j=1

cj

n∑
k=j

w(k, j)fkxk−j

= c1
(
w(1, 1)f1x

0 + w(2, 1)f2x
1 + w(3, 1)f3x

2 + · · ·+ w(n, 1)fnxn−1)
+ c2

(
w(2, 2)f2x

0 + w(3, 2)f3x
1 + w(4, 2)f4x

2 + · · ·+ w(n, 2)fnxn−2)
+ c3

(
w(3, 3)f3x

0 + w(4, 3)f4x
1 + w(5, 3)f5x

2 + · · ·+ w(n, 3)fnxn−3)
...

+ cn−1
(
w(n− 1, n− 1)fn−1x

0 + w(n, n− 1)fnx1)
+ cn

(
w(n, n)fnx0).

Comparing the coefficients of xn−1, we have gn−1 = c1w(n, 1)fn = nc1fn. But
nc1 6= 0, so fn = 1

nc1
gn−1. Thus, if J(F ) = G, then the coefficient fn uniquely de-

termined. Now compare the coefficients of xn−2. We have gn−2 = (n−1)c1fn−1 +
c2w(n, 2)fn. But fn is already constructed and (n − 1)c1 6= 0, so the coefficient
fn−1 is also uniquely determined. Repeating this procedure we obtain the coeffi-
cients fn, fn−1, . . . , f2. In the final step, we compare the coefficients of x0 and we
obtain the equality

g0 = c1f1 + (2!)c2f2 + · · ·+ (n!)cnfn.

But the coefficients f2, f3, . . . , fn are already uniquely determined and c1 6= 0, so
the coefficient f1 is also uniquely determined. This completes the proof.
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One of the reviewers suggests to prove Proposition 6.3 by induction on n. He
presents the following very short proof.

Proof. II. Let G be the polynomial of degree n. One can easily check that J(xn+1)
has also degree n. Hence there exists a constant c such that the polynomial

G′ = G− cJ(xn+1)

has a smaller degree. By the inductive assumption there is a polynomial F ′ such
that J(F ′) = G′. Then G = J(F ′ + cxn+1).

As a consequence of Proposition 6.3 we obtain

Proposition 6.4 ([24])
If J is an operator of type zero, then there exists a unique sequence (Bn(x))n>0,
of nonzero polynomials from K[x], such that

(1) B0(x) = 1;
(2) Bn(0) = 0 for n > 1;
(3) J(Bn(x)) = Bn−1(x) for n > 0, where B−1(x) = 0.

Proof. Put B0(x) = 1. Then of course J(B0(x)) = 0 = B−1(x). Let n > 0 and
assume that the polynomials B0(x), B1(x), . . . , Bn(x) are already defined. Then,
by Proposition 6.3, there exists a unique nonzero polynomial Bn+1(x) ∈ K[x]
such that Bn+1(0) = 0 and J(Bn+1(x)) = Bn(x). Thus, by induction, we obtain
a uniquely determined sequence (Bn(x))n>0 satisfying the given conditions.

The polynomial sequence (Bn(x))n>0 from the above proposition is said to
be the basic sequence of J (see [24], [13]). We will prove that this sequence is
principal.

Let J = c1d + c2d
2 + . . . be a fixed operator of type zero. Let us recall that

c1 6= 0 and cn ∈ K for n > 1. Denote by M(t) the formal power series from K[[t]],
defined by

M(t) = c1t
1 + c2t

2 + c3t
3 + · · · .

Since M(t) is without the constant term and c1 6= 0, there exists a unique formal
power series

H(t) = s1t
1 + s2t

2s3t
3 + · · · ∈ K[[t]]

such that s1 = c−1
1 6= 0 and H(M(t)) = M(H(t)) = t. Consider the formal power

series A(x) = exH(t). This series belongs to K[x][[t]]. Put

A(x) = exH(t) = A0(x) +A1(x)t+A2(x)t2 + · · · ,

where An ∈ K[x] for all n > 0. It is clear that A0(x) = 1, An(0) = 0 for n > 1.
Moreover, each An(x) is nonzero and degAn(x) = n.

Lemma 6.5 ([24])
If J and A are as above, then

J(An(x)) = An−1(x) for n > 1.



[108] Andrzej Nowicki

Proof. Let us extend the derivative d = d
dx : K[x] → K[x] to the derivative

d : K[x][[t]]→ K[x][[t]] putting d(t) = 0. Then

d
( ∞∑
n=0

fn(x)tn
)

=
∞∑
n=0

d(fn(x))tn

and, for every k > 0, we have

dk
( ∞∑
n=0

fn(x)tn
)

=
∞∑
n=0

dk(fn(x))tn.

Let us extend also the operator J : K[x] → K[x] to the K[[t]]-linear mapping
J : K[x][[t]]→ K[x][[t]] defined by

J(ϕ) =
∞∑
n=1

cnd
n(ϕ),

for ϕ ∈ K[x][[t]. Since for every F ∈ K[x] there exists an m such that dm(F ) =
0, the extended operator J is well defined. Observe that J(

∑∞
p=0 Ap(x)tp) =∑∞

p=0 J(Ap(x))tp. In fact,

J
( ∞∑
p=0

Ap(x)tp
)

=
∞∑
n=1

cnd
n
( ∞∑
p=0

Ap(x)tp
)

=
∞∑
n=1

cn

( ∞∑
p=0

dn(Ap(x))tp
)

=
∞∑
n=1

∞∑
p=0

cnd
n(Ap(x))tp =

∞∑
p=0

( ∞∑
n=1

cnd
n(Ap(x))

)
tp

=
∞∑
p=0

J(Ap(x))tp.

Observe also that d(exH(t)) = H(t)exH(t) and dk(exH(t)) = H(t)kexH(t) for all
k > 0. Hence,

J
( ∞∑
p=0

Ap(x)tp
)

= J
(
exH(t)) =

∞∑
n=1

cnd
n
(
exH(t)) =

∞∑
n=1

cnH(t)nexH(t)

=
( ∞∑
n=1

cnH(t)n
)
exH(t) = M(H)exH(t) = texH(t)

= t
( ∞∑
p=0

Ap(x)tp
)

=
∞∑
p=1

Ap−1(x)tp.

Hence, we proved that
∞∑
p=1

J(Ap(x))tp =
∞∑
p=1

Ap−1(x)tp

and this implies that J(An(x)) = An−1(x) for all n > 1. This completes the
proof.
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Theorem 6.6 ([24])
If (Bn(x))n>0 is the basic sequence of an operator J =

∑
n=1 cnd

n of type zero,
then

∞∑
n=0

Bn(x)tn = exH(t),

where H(t) ∈ K[[t]] is the formal power series (without the constant term) such
that M(H) = H(M) = t, where M(t) =

∑∞
n=1 cnt

n.

Proof. Put exH(t) =
∑∞
n=0 An(x)tn. It is clear that A0(x) = 1 and An(0) = 0

for n > 1. Moreover we know, by Lemma 6.5, that J(An(x)) = An−1(x) for all
n > 0. Hence, by Proposition 6.4, the sequence (An(x))n>0 is the basic sequence
of J . Thus, Bn(x) = An(x) for n > 0, and we have the equality

∑∞
n=0 Bn(x)tn =

exH(t).

Theorem 6.7 ([24], [13])
The basic sequence of every operator of type zero is a strict principal sequence.

Proof. This is an immediate consequence of Theorem 6.6 and Proposition 4.2.

Now we shall prove that every strict principal sequence is the basic sequence
of an operator of type zero. For this aim, first we prove two lemmas. Let us recall
that K is a field of characteristic zero.

Lemma 6.8
Let F (x), G(x) be two polynomials from K[x] such that

F (x+ y)− F (x)− F (y) = G(x+ y)−G(x)−G(y).

Then F (x) = G(x) + px for some p ∈ K.

Proof. Let F (x) = anx
n+an−1x

n−1+· · ·+a1x+a0 and G(x) = bnx
n+bn−1x

n−1+
· · · + b1x + b0, where a0, . . . , an, b0, . . . , bn ∈ K. We do not assume that an 6= 0
and bn 6= 0. Putting y = x, we have the equality F (2x)− 2F (x) = G(2x)− 2G(x),
that is,

(2n − 2)anxn + (2n−1 − 2)an−1x
n−1 + · · ·+ 4a2x

2 + a0

= (2n − 2)bnxn + (2n−1 − 2)bn−1x
n−1 + · · ·+ 4b2x

2 + b0.

Observe that we do not have the monomials a1x and b1x. This equality implies
that aj = bj for j = 2, 3, . . . , n and a0 = b0. Thus, F (x) = G(x) + px where
p = a1 − b1 ∈ K.

Lemma 6.9
Let (Pn)n>0 be a strict principal sequence. Then there exists a sequence (cn)n>1,
of elements of K, such that c1 6= 0, and for every n > 1,

Vn(Pj) = Pj−1 for j = 1, 2, . . . , n,

where Vn = c1d+ c2d
2 + · · ·+ cnd

n.
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Proof. ([13]). We define the sequence (cn)n>1 recurrently by the following way.
We know (see Proposition 3.5) that P1 = ax for some 0 6= a ∈ K, and the initial
coefficient of each polynomial Pn, for n > 1, is equal to 1

n!a
n. Let c1 = 1

a and
V1 = c1d. Then

V1(P1) = 1
a
d(ax) = a

a
= 1 = P0.

Thus, c1 is determined. Let n > 2 and assume that the elements c1, . . . , cn−1 are
already determined. Consider the operator Vn−1 = c1d + c2d

2 + · · · + cn−1d
n−1.

We already know that Vn−1(Pj) = Pj−1 for j = 1, 2, . . . , n − 1. Since Vn−1
is an operator of type zero, there exists the basic sequence (Bm)m>0 of Vn−1
(see Proposition 6.4). It follows from Proposition 6.3 that then Bj = Pj for
all j = 0, 1, . . . , n − 1. Moreover, we know from Theorem 6.7 that (Bm)m>0 is
a principal sequence. Hence,

Pn(x+ y)− Pn(x)− Pn(y) =
n−1∑
k=1

Pk(x)Pn−k(y) =
n−1∑
k=1

Bk(x)Bn−k(y)

= Bn(x+ y)−Bn(x)−Bn(y)

and hence, by Lemma 6.9, Pn = Bn + px for some p ∈ K. Moreover, since
B1 = P1 = ax, the initial coefficient of Bn is equal to 1

n!a
n (see Proposition 3.5).

We define
cn = − p

an+1 .

Let Vn = c1d+ · · ·+ cnd
n = Vn−1 + cnd

n. Then it is clear that Vn(Pj) = Pj−1 for
all j = 1, 2, . . . , n − 1. We shall show that it is also true for j = n, that is, that
Vn(Pn) = Pn−1. In fact,

Vn(Pn) = Vn−1(Pn) + cnd
n(Pn) = Vn−1(Bn + px) + cnd

n(Bn + px)

= Vn−1(Bn) + pVn−1(x) + cnd
n(Bn) = Bn−1 + pc1 −

p

an+1 a
n

= Bn−1 + p

a
− p

a
= Bn−1 = Pn−1.

This completes the proof.

Theorem 6.10 ([13])
Every strict principal sequence is the basic sequence of an operator of type zero.

Proof. Let P = (Pn)n>0 be a strict principal sequence. Let (cn)n>1 be the se-
quence of elements from K, defined in Lemma 6.9. It follows from this lemma
that P is the basic sequence of the operator

∑∞
n=1 cnd

n.

Now, by Proposition 2.1 and the above facts, we obtain

Theorem 6.11 ([13])
A sequence (Fn)n>0 of polynomials from K[x], is a strict binomial sequence if and
only if

(
Fn

n!
)
n>0 is the basic sequence of an operator of type zero.
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We will say that (cn)n>1 is a strict sequence, if cn ∈ K for all n > 1 and c1 6= 0.
Given an arbitrary strict sequence C = (cn)n>1, we obtain a unique strict binomial
sequence (Fn)n>0 such that

(
Fn

n!
)
n>0 is the basic sequence of the operator

J = c1d+ c2d
2 + c3d

3 + · · · .

We call it the C-sequence. Recall that d is the ordinary derivative d
dx . Every

polynomial Fn(x) is here nonzero, and its degree equals n. Moreover, every strict
binomial sequence is a C-sequence for some strict sequence C.

7. Examples of binomial sequences

7.1. Successive powers of x

It is well known that (xn)n>0 is a strict binomial sequence of polynomials. It is
the first classical example of binomial sequences. It is not difficult to verify that it
is the C-sequence for C = (1, 0, 0, . . . ), and it is the binomial sequence determined
by H(t) = t. The binomial sequence (anxn)n>0, where 0 6= a ∈ K, is determined
by H(t) = at.

Example 7.1
Let F2n(x) = (2n)!

n! x
n and F2n+1(x) = 0 for all n > 0. Then (Fn(x))n>0 is the

binomial sequence determined by H(t) = t2. This sequence is non-strict.
Let 0 6= a ∈ K and let s be a positive integer. Let F = (Fn(x))n>0, where

Fms(x) = (ms)!
m! anxn for m > 0,

and Fn(x) = 0 when s 6 |n. Then F is the binomial sequence determined by
H(t) = (at)s. If s > 2, then this sequence is non-strict.

7.2. Lower and upper factorials

Let a ∈ K. Consider the polynomial sequence (Wn(x))n>0 defined by

Wn(x) =
{

1, for n = 0,
x(x+ a)(x+ 2a) · · · (x+ (n− 1)a), for n > 1.

In particular, W1(x) = x, W2(x) = x2 + ax, W3(x) = x3 + 3ax2 + 2a2x, and

Wn+1(x) = (x+ na)Wn(x) for all n > 0.

Proposition 7.2
The sequence (Wn(x))n>0 is binomial.

Proof. We shall show, by induction, that for all n > 0,

Wn(x+ y) =
∑
i+j=n

〈i, j〉Wi(x)Wj(y).
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It is obvious for n 6 1. Assume that it is true for some n > 1. Then

Wn+1(x+ y) = (x+ y + na)Wn(x+ y)

= (x+ y + na)
n∑
k=0

(n
k

)
Wk(x)Wn−k(y)

=
n∑
k=0

(n
k

)
(x+ ka)Wk(x)Wn−k(y)

+
n∑
k=0

(n
k

)
(y + (n− k)a)Wk(x)Wn−k(y)

=
n∑
k=0

(n
k

)
Wk+1(x)Wn−k(y) +

n∑
k=0

(n
k

)
Wk(x)Wn+1−k(y)

= Wn+1(x) +Wn+1(y) +
n−1∑
k=0

(n
k

)
Wk+1(x)Wn−k(y)

+
n∑
k=1

(n
k

)
Wk(x)Wn+1−k(y)

= Wn+1(x) +Wn+1(y) +
n∑
k=1

( n

k − 1

)
Wk(x)Wn+1−k(y)

+
n∑
k=1

(n
k

)
Wk(x)Wn+1−k(y)

= Wn+1(x) +Wn+1(y) +
n∑
k=1

(( n

k − 1

)
+
(n
k

))
Wk(x)Wn+1−k(y)

= Wn+1(x) +Wn+1(y) +
n∑
k=1

(n+ 1
k

)
Wk(x)Wn+1−k(y)

=
n+1∑
k=0

(n+ 1
k

)
Wk(x)Wn+1−k(y).

This completes the proof.

Note that (Wn(x))n>0 is the binomial sequence determined by

H(t) =
∞∑
n=1

an−1

n
tn.

Two special cases of such sequences (Wn(x))n>0 are well known. For a = −1 we
have the sequence (x(n))n>0 of lower factorials, defined by x(0) = 1 and

x(n) = x(x− 1)(x− 2) · · · (x− n+ 1) for n > 1.
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In particular, x(1) = x, x(2) = x2−x, x(3) = x3−3x2+2x, and x(n+1) = (x−n)x(n).
For a = 1 we have the sequence (x(n))n>0 of upper factorials, defined by x(0) = 1
and

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) for n > 1.

In particular, x(1) = x, x(2) = x2+x, x(3) = x3+3x2+2x, and x(n+1) = (x+n)x(n).
It follows from Proposition 7.2 that (x(n))n>0 and (x(n))n>0 are strict binomial
sequences. Moreover,

Proposition 7.3
The sequence (x(n))n>0 is the C-sequence for C = ( 1

n! )n>1, and it is the binomial
sequence determined by H(t) =

∑∞
n=1

(−1)n−1

n tn.
The sequence (x(n))n>0 is the C-sequence for C =

( (−1)n+1

n!
)
n>1, and it is the

binomial sequence determined by H(t) =
∑∞
n=1

1
n t
n.

7.3. Abel polynomials

Now we examine the sequence (An(x))n>0 of Abel polynomials, defined by

An(x) = x(x− an)n−1,

where a is an element of K. The first few polynomials are

A0(x) = 1, A1(x) = x, A2(x) = x(x− 2a), A3(x) = x(x2 − 6ax+ 9a2).

We will show that this sequence is binomial. We will prove this fact trough a series
of lemmas below. Let

Bn(x) = 1
n!An(x) for n > 0.

Lemma 7.4
For every n > 1 and all 0 6 k 6 n− 1,

B(k)
n (x) = 1

(n− k)! (x− ka)(x− na)n−1−k.

Here B(k)
n (x) is the k-th derivative of Bn(x).

Proof. By induction on k. It is obvious for k = 0. Assume that it is true for some
k > 0. Then

B(k+1)
n (x) =

(
B(k)
n (x)

)′ =
( 1

(n− k)! (x− ka)(x− na)n−1−k
)′

= 1
(n− k)! ((x− na)n−1−k + (n− 1− k)(x− ka)(x− na)n−2−k)

= 1
(n− k)! (x− na)n−2−k((x− na) + (n− 1− k)(x− ka))
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= 1
(n− k)! (x− na)n−2−k(n− k)(x− a(1 + k))

= 1
(n− (k + 1))! (x− na)n−1−(k+1)(x− a(1 + k)).

This completes the proof of this lemma.

Lemma 7.5
n∑
p=1

(n
p

)
pan−pzp−1 = n(z + a)n−1.

Proof. Use the derivative d
dz for the equality

∑n
p=1

(
n
p

)
an−pzp = (z + a)n − 1.

Lemma 7.6
n∑
p=1

(n
p

)
(z + pa)an−pzp−1 = (z + a+ an)(z + a)n−1 − an.

Proof. By Lemma 7.5, we have
n∑
p=1

(n
p

)
an−p(z + pa)zp−1 =

n∑
p=1

(n
p

)
an−pzp + a

n∑
p=1

(n
p

)
pan−pzp−1

= (z + a)n − an + an(z + a)n−1

= (z + a+ an)(z + a)n−1 − an.

This completes the proof.

Lemma 7.7

n−1∑
k=0

(n
k

)
ak(x− (k + 1)a)(x− (n+ 1)a)n−1−k = x(x− an)n−1 − an.

Proof. Using Lemma 7.6 for z = x− (n+ 1)a, we obtain that the left side of the
above equality is equal to

n−1∑
k=0

(n
k

)
ak(z + (n− k)a)zn−k−1 =

n∑
p=1

(n
p

)
an−p(z + pa)zp−1

= (z + a+ an)(z + a)n−1 − an

= x(x− an)n−1 − an.

Proposition 7.8
(An(x))n>0 is a strict binomial sequence. It is the C-sequence for

C =
(

1, a, 1
2!a

2,
1
3!a

3,
1
4!a

4, . . .
)
.
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Proof. Put c1 = 1 and cn = 1
(n−1)!a

n−1 for all n > 2, and let J = c1d+ c2d
2 + · · · .

We need to show that J(Bn+1(x)) = Bn(x), that is, that

Bn(x) = c1B
(1)
n+1(x) + c2B

(2)
n+1(x) + · · ·+ cn+1B

(n+1)
n+1 (x)

for all n > 0. For n = 0 and n = 1 it is obvious. Assume that n > 2. Then, by
the previous lemmas, we have

J(Bn+1(x)) =
∑
k=1

B
(k)
n+1(x)

=
n∑
k=1

ak−1

(k − 1)!(n− (k − 1))! (x− ka)(x− (n+ 1)a)n−k + 1
n!a

n

=
n−1∑
k=0

ak

k!(n− k)! (x− (k + 1)a)(x− (n+ 1)a)n−(k+1) + 1
n!a

n

= 1
n!

n−1∑
k=0

(n
k

)
ak(x− (k + 1)a)(x− (n+ 1)a)n−(k+1) + 1

n!a
n

= 1
n! (x(x− an)n−1 − an + an) = 1

n!x(x− an)n−1 = Bn(x).

This completes the proof.

Thus, we already know that (An(x))n>0 is a binomial sequence. It is not
difficult to check that this sequence is determined by

H(t) =
∞∑
n=1

(−na)n−1

n! tn.

The fact that (An(x))n>0 is a binomial sequence means that in the polynomial
ring K[x, y] we have the equalities An(x + y) =

∑n
k=0

(
n
k

)
Ak(x)An−k(y) for all

n > 0. Hence, for a ∈ K and n > 0, the following identity holds

(x+ y)(x+ y − na)n−1 =
n∑
k=0

(n
k

)
x(x− ka)k−1y(y − (n− k)a)n−k−1. (1)

Now we present a second proof of the above identity (1). In 1826, Abel deduced
an identity which is

(x+ y)n =
n∑
k=0

(n
k

)
x(x− ka)k−1(y + ka)n−k, (2)

for a ∈ K. Many authors offered different proofs of this identity ([9], [7], [22], [8]).
In 2004, M. Lipnowski [14] and G. Zheng [27] presented elegant and short proofs in
Solutions of Problem 310 of Mathematical Olympiads’ Correspondence Program.
There are many applications of the Abel identity ([7], [22], [11], [19], [26]).
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Proposition 7.9
The identity (1) follows from the Abel identity.

Proof. Substitute in (2) the element −a to the places of a, and next substitute
y + na to the places of y. Then we get

n∑
k=0

(n
k

)
x(x+ ka)k−1(y + (n− k)a)n−k = (x+ y + na)n. (3)

Call Un(x, y, a) the left hand side of (3). Then Un(x, y, a) = (x + y + na)n, and
looking at Un−1(x, y + a, a), we obtain the identity

n−1∑
k=0

(n− 1
k

)
x(x+ ka)k−1(y + (n− k)a)n−1−k = (x+ y + na)n−1. (4)

Put P =
∑n
k=0

(
n
k

)
x(x+ ka)k−1y(y + (n− k)a)n−k−1. Then we have

(x+ y + na)n =
n∑
k=0

(n
k

)
x(x+ ka)k−1(y + (n− k)a)n−k

=
n∑
k=0

(n
k

)
x(x+ ka)k−1(y + (n− k)a)n−1−k(y + (n− k)a)

= P +Q,

where Q =
∑n
k=0

(
n
k

)
x(x + ka)k−1(n − k)a(y + (n − k)a)n−1−k. Using (4) and

the identity (n − k)
(
n
k

)
= n

(
n−1
k

)
we get Q = na(x + y + na)n−1. Hence, P =

(x+ y+ na)n−Q = (x+ y+ na)n− na(x+ y+ na)n−1 = (x+ y+ na)n−1(x+ y),
and hence,

(x+ y)(x+ y + na)n−1 =
n∑
k=0

(n
k

)
x(x+ ka)k−1y(y + (n− k)a)n−k−1.

Now, putting −a instead of a, we obtain (1). This completes the proof.

Note also the following proposition.

Proposition 7.10
The Abel identity follows from the identity (1).

Proof. Substitute in (1) the element −a to the places of a, and next substitute
y + na to the places of y. Then we get

(x+ y + na)(x+ y)n−1 =
n∑
k=0

(n
k

)
x(x− ka)k−1(y + na)(y + ka)n−k−1. (5)

We prove the Abel identity (2) by induction. When n = 0, then it is obvious.
Assume that for n > 1,

(x+ y)n−1 =
n−1∑
k=0

(n− 1
k

)
x(x− ka)k−1(y + ka)n−1−k. (6)
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Then, by (5), (6) and the identity n
(
n−1
k

)
= (n− k)

(
n
k

)
, we have

(x+ y)n = (x+ y + na)(x+ y)n−1 − na(x+ y)n−1

=
n∑
k=0

(n
k

)
x(x− ka)k−1((y + ka) + (n− k)a)(y + ka)n−k−1

− na
n−1∑
k=0

(n− 1
k

)
x(x− ka)k−1(y + ka)n−1−k

=
n∑
k=0

(n
k

)
x(x− ka)k−1(y + ka)n−k

+ na

n−1∑
k=0

(n− 1
k

)
x(x− ka)k−1(y + ka)n−1−k

− na
n−1∑
k=0

(n− 1
k

)
x(x− ka)k−1(y + ka)n−1−k

=
n∑
k=0

(n
k

)
x(x− ka)k−1(y + ka)n−k.

This completes the proof.

7.4. Laguerre polynomials

Let (Ln(x))n>0 be the sequence of polynomials fromK[x] defined by L0(x) = 1
and

Ln(x) =
n∑
k=1

n!
k!

(n− 1
k − 1

)
xk for n > 1.

They are called the Laguerre1 polynomials ([4], [6], [20], [12]). The first few poly-
nomials are

L1(x) = x,

L2(x) = (x+ 2)x,

L3(x) = (x2 + 6x+ 6)x,

L4(x) = (x3 + 12x2 + 36x+ 24)x,

L5(x) = (x4 + 20x3 + 120x2 + 240x+ 120)x,

L6(x) = (x5 + 30x4 + 300x3 + 1200x2 + 1800x+ 720)x,

L7(x) = (x6 + 42x5 + 630x4 + 4200x3 + 12600x2 + 15120x+ 5040)x.

Proposition 7.11
(Ln(x))n>0 is the a strict binomial sequence. This sequence is determined by

H(t) =
∞∑
n=1

tn.

1Edmond Nicolas Laguerre (1834-1886), a French mathematician.
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7.5. Other examples

Example 7.12 ([13])
Consider the strict sequence C = (1, 0,− 1

3! , 0,
1
5! , 0,−

1
7! , 0, . . . ). The initial terms

of the C-sequence (Fn(x)) are

F0(x) = 1, F3(x) = x3 + x,

F1(x) = x, F4(x) = x4 + 4x2,

F2(x) = x2, F5(x) = x5 + 10x3 + 9x.

Example 7.13
Initial terms of the C-sequence for C = (1, 1, 0, 0, 0, . . . ) are

F0(x) = 1,
F1(x) = x,

F2(x) = x(x− 2),

F3(x) = x(x2 − 6x+ 12),

F4(x) = x(x3 − 12x2 + 60x− 120),

F5(x) = x(x4 − 20x3 + 180x2 − 840x+ 1680),

F6(x) = x(x5 − 30x4 + 420x3 − 3360x2 + 15120x− 30240),

F7(x) = x(x6 − 42x5 + 840x4 − 10080x3 + 75600x2 − 332640x+ 665280).

Example 7.14
Initial terms of the C-sequence for C = (1, 0, 1, 0, 0, 0, . . . ) are

F0(x) = 1,
F1(x) = x,

F2(x) = x2,

F3(x) = (x2 − 6)x,

F4(x) = (x2 − 24)x2,

F5(x) = (x4 − 60x2 + 360)x,

F6(x) = (x2 − 120x2 + 2520)x2,

F7(x) = (x6 − 210x4 + 10080x2 − 60480)x.

Example 7.15
Initial terms of the C-sequence for C = (1, 0, 0, 1, 0, 0, 0, . . . ) are

F0(x) = 1, F4(x) = (x3 − 24)x,

F1(x) = x, F5(x) = (x3 − 120)x2,

F2(x) = x2, F6(x) = (x3 − 360)x3,

F3(x) = x3, F7(x) = (x6 − 840x3 + 20160)x.
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In [16], we find a description of C-sequences for J = ad−bdp+1 where a, b ∈ R,
a 6= 0 and p > 1.

Example 7.16
Initial terms of the C-sequence for C = (1, 1, 1, 0, 0, 0, 0, . . . ) are

F0(x) = 1,
F1(x) = x,

F2(x) = (x− 2)x,

F3(x) = (x2 − 6x+ 6)x,

F4(x) = (x2 − 6)2x,

F5(x) = (x4 − 20x3 + 120x2 − 120x− 480)x,

F6(x) = (x5 − 30x4 + 300x3 − 840x2 − 2520x+ 10080)x,

F7(x) = (x6 − 42x5 + 630x4 − 3360x3 − 5040x2 + 90720x− 151200)x.

Example 7.17
Let (Fn(x))n>0 be the binomial sequence determined by H(t) = t − 1

120 t
5. Then

Fn(x) = xn for 0 6 n 6 4 and

F5(x) = (x4 − 1)x, F8(x) = (x4 − 56)x4,

F6(x) = (x4 − 6)x2, F9(x) = (x4 − 126)x5,

F7(x) = (x4 − 21)x3, F10(x) = (x8 − 252x4 + 126)x2.

The next example is a generalization of the previous example.

Example 7.18
Let (Fn(x))n>0 be the binomial sequence determined by H(t) = t− 1

(s+1)! t
s+1 with

s > 1. Then Fn(x) = xn for 0 6 n 6 s and

Fs+k(x) =
(
xs −

(s+ k

s+ 1

))
xk,

for k = 1, 2, . . . , s+ 1.

In the next examples we present initial terms of two non-strict binomial se-
quences.

Example 7.19
Let (Fn(x))n>0 be the binomial sequence determined by H(t) = 1

2 t
2 + 1

6 t
3. Then

F0(x) = 1, F7(x) = 105x3,

F1(x) = 0, F8(x) = 35(3x+ 8)x3,

F2(x) = x, F9(x) = 140(9x+ 2)x3,

F3(x) = x, F10(x) = 315(3x+ 20)x4,
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F4(x) = 3x2, F11(x) = 1925(9x+ 8)x4,

F5(x) = 10x2, F12(x) = 385(27x2 + 360x+ 40)x4,

F6(x) = 5(3x+ 2)x2, F13(x) = 30030(9x+ 20)x5.

Example 7.20
Let (Fn(x))n>0 be the binomial sequence determined by H(t) = 1

6 t
3 + 1

24 t
4. Then

F0(x) = 1, F13(x) = a13x
4,

F1(x) = 0, F14(x) = a14x
4,

F2(x) = 0, F15(x) = a15(8x+ 15)x4,

F3(x) = x, F16(x) = a16(32x+ 3)x4,

F4(x) = 3x, F17(x) = a17x
5,

F5(x) = 0, F18(x) = a18(8x+ 45)x5,

F6(x) = 10x2, F19(x) = a19(32x+ 15)x5,

F7(x) = 35x2, F20(x) = a20(80x+ 3)x5,

F8(x) = 35x2, F21(x) = a21(8x+ 105)x6,

F9(x) = 280x3, F22(x) = a22(32x+ 45)x6,

F10(x) = 2100x3, F23(x) = a23(16x+ 3)x6,

F11(x) = 5775x3, F24(x) = a24(128x2 + 3360x+ 63)x6,

F12(x) = 1925(8x+ 3)x3, F25(x) = a25(32x+ 105)x7,

where a13, a14, . . . , a25 are some positive integers.

Acknowledgement. The author thanks the reviewers for their careful reports with
so many clever remarks.
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