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The 18th International Conference on Functional Equations and In-
equalities (18th ICFEI) took place in the Mathematical Research and Conference
Center in Będlewo (Poland) on June 9–15, 2019. It was organized by the Depart-
ment of Mathematics of the Pedagogical University of Kraków.

The Scientific Committee of the 18th ICFEI consisted of Professors: Nicole
Brillouët-Belluot (France), Janusz Brzdęk (Poland) – chairman, Jacek Chmieliński
(Poland), Roman Ger (Poland), Zsolt Páles (Hungary), Dorian Popa (Romania),
Ekaterina Shulman (Poland/Russia), Henrik Stetkær (Denmark), László Székely-
hidi (Hungary) and Marek Cezary Zdun (Poland).

The Organizing Committee consisted of Jacek Chmieliński (chairman), Zbig-
niew Leśniak (vice-chairman), Beata Deręgowska (managing secretary), Paweł
Pasteczka (scientific secretary), Paweł Wójcik (scientific secretary) and Paweł So-
larz (web & technical support).

There were 56 participants who came from 15 countries: Austria (2 partici-
pants), China (2), Denmark (1), Finland (1), France (1), Germany (2), Hungary
(6), India (1), Israel (1), Morocco (1), Poland (30), Romania (5), Serbia (1), South
Africa (1), USA (1).

The conference was opened on Monday, June 10, by Professors Janusz Brzdęk,
the Chairman of the Scientific Committee, and Jacek Chmieliński, the Chairman
of the Organizing Committee. The opening ceremony was followed by the plenary
lecture of Professor Roman Ger.

During 20 scientific sessions 44 talks were presented, including longer plenary
lectures delivered by Professors Roman Ger, Justyna Sikorska, Kazimierz Nikodem
and Eliza Jabłońska. The talks were devoted mainly to functional equations and
inequalities, convexity, stability of functional equations, means, as well as to related
topics, in particular in real and functional analysis, and applications. Additionally,
apart from regular talks, Problems and Remarks sessions were scheduled.
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Several social events accompanied the conference. On Wednesday afternoon
participants could enjoy an excursion to the Museum of First Piasts at Lednica,
including the archaeological reservation at Ostrów Lednicki (Lednicki Island), and
to the Wielkopolski Ethnography Park. A picnic with a bonfire was organized on
Tuesday evening and a banquet on Thursday. On Friday evening a piano concert
was performed by Dr. Marek Czerni.

The conference was closed on Saturday, June 15, by Professor Janusz Brzdęk.
As it was announced, the subsequent 19th ICFEI will be organized on September
12–18, 2021, again in Będlewo.

1. Abstracts of Talks

Mirosław Adamek On Hermite-Hadamard type inequalities for F -convex func-
tions

Let I be a nonempty and open interval of R and F : R→ R be a fixed function.
A function f : I → R will be called F -convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t)F (x− y)

for all x, y ∈ I and t ∈ (0, 1).
The classical Hermite-Hadamard inequality says that for any convex function

f : I → R we have

f
(x+ y

2

)
≤ 1
y − x

∫ y

x

f(u)du ≤ f(x) + f(y)
2

for all different x, y ∈ I.
In this talk we present Hermite-Hadamard type inequalities for F -convex func-

tions. As a consequence of our investigations we get the following inequality

f
(x+ y

2

)
+ 1
y − x

∫ y

x

F
(
u− x+ y

2

)
du ≤ 1

y − x

∫ y

x

f(u) du

≤ f(x) + f(y)
2 − 1

6F (x− y)

for all different x, y ∈ I.

Nutefe Kwami Agbeko On some lattice-valued functional equations and in-
equalities

Since early 90’s we have considered lattice-valued functions and operators de-
fined on diverse sets with algebraic structures, by replacing the addition with
lattice operations. In this perspective, the addition in the definition of the proba-
bility measure as well as in the definition of the Lebesgue’s integral (or mathemat-
ical expectation) is substituted with the supremum operation and the so-defined
functions (optimal measure, resp. optimal average) behave similarly like their coun-
terparts in Measure Theory. From 2012 the Cauchy functional equation has also
been studied for lattice-valued functions (which we can term lattice-valued Cauchy
functional equation), where the supremum replaces the addition in the Cauchy
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functional equation, focusing on the Ulam’s type stability. The main goal of our
presentation is to talk about morphisms between sets with an algebraic structure
and an order structure, through associated functional equations and inequalities:
we discuss the separation problem for the inequalities and the Hyers-Ulam stability
of the main equation.
References
[1] N.K. Agbeko, On optimal averages, Acta Math. Hung. 63(1-2) (1994), 1–15.
[2] N.K. Agbeko, On the structure of optimal measures and some of its applications,

Publ. Math. Debrecen 46(1-2) (1995), 79–87.
[3] N.K. Agbeko, Stability of maximum preserving functional equations on Banach lat-

tices, Miskolc Math. Notes, 13(2) (2012), 187–196.
[4] N.K. Agbeko and S.S. Dragomir, The extension of some Orlicz space results to the

theory of optimal measure, Math. Nachr. 286(8-9) (2013), 760–771.
[5] N.K. Agbeko, The Hyers-Ulam-Aoki type stability of some functional equation on

Banach lattices, Bull. Polish Acad. Sci. Math. 63(2)(2015), 177–184.
[6] N.K. Agbeko, A remark on a result of Schwaiger, Indag. Math. 28(2) (2017), 268–275.
[7] N.K. Agbeko, W. Fechner and E. Rak, On lattice-valued maps stemming from the

notion of optimal average. Acta Math. Hungar. 152 (2017), 72–83.

Pekka Alestalo Sharp extension results for bilipschitz maps
An L-bilipschitz map f : A→ Rn satisfies the double inequality

‖x− y‖/L ≤ ‖f(x)− f(y)‖ ≤ L‖x− y‖

for all x, y ∈ A ⊂ Rn. For topological reasons, these maps cannot usually be
extended to a homeomorphism F : Rn → Rn. In the other extreme, it is sometimes
possible to find an L-bilipschitz extension F with the same constant L. We present
some positive results and examples related to this problem.
Reference
[1] P. Alestalo and D.A. Trotsenko, Radial extensions of bilipschitz maps between unit

spheres, Siberian Electronic Mathematical Reports 15 (2018), 839–843.
DOI: 10.17377/semi.2018.15.071.

Alina Ramona Baias On the best Ulam constant of a third order linear differ-
ence equation

Let X be a Banach space over the field K ∈ {R, C}. We give a result on Ulam
stability for the linear difference equation

xn+3 = axn+2 + bxn+1 + cxn, n ≥ 0, (1)

where a, b, c ∈ K, x0, x1, x2 ∈ X. Moreover, if all the roots of the characteristic
equation of (1) have the modulus greater then 1, we obtain the best Ulam constant
of the equation.
References
[1] J. Brzdęk, D. Popa, I. Raşa and B. Xu, Ulam Stability of Operators, Academic Press,

2018.
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[2] A.R. Baias, F. Blaga and D. Popa, Best Ulam constant for a linear difference equation,
Carpathian J. Math. 35 (2019), 13–22.

[3] A.R. Baias and D. Popa, On Ulam stability of a linear difference equation in Banach
spaces, Bull. Malays. Math. Sci. Soc. DOI: 10.1007/s40840-019-00744-6.

[4] J. Brzdęk, D. Popa and I. Raşa, Hyers Ulam stability with respect to gauges, J. Math.
Anal. Appl. 453 (2017), 620–628.

Karol Baron Remarks on continuous solutions of an iterative functional equation
AssumeX is a real separable Hilbert space, Λ: X → X is linear and continuous

with ‖Λ‖ < 1, and µ is a probability Borel measure on X with finite first moment.
We examine continuous at zero solutions ϕ : X → C of the equation

ϕ(x) = µ̂(x)ϕ(Λx).

Liviu Cădariu-Brăiloiu Generalized Hyers-Ulam stability of some functional
equations

The aim of this talk is to present several generalized Hyers-Ulam stability
properties for some functional equations, by using the fixed point method.
References
[1] J. Brzdęk, L. Cădariu and K. Ciepliński, Fixed point theory and the Ulam stability,

J. Function Spaces 2014 (2014), Article ID 829419, 16 pp.
[2] J. Brzdęk and L. Cădariu, Stability for a family of equations generalizing the equation

of p-Wright affine functions, Applied Mathematics and Computation 276 (2016),
158–171.

[3] K. Ciepliński, Applications of fixed point theorems to the Hyers-Ulam stability of
functional equations – a survey, Ann. Funct. Anal. 3(1) (2012), 151–164.

Jacek Chudziak Convexity and quasi-convexity of the zero utility principle
Assume that X+ is a family of all nonnegative bounded random variables on

a given probability space. The elements of X+ represent the risks to be insured
by an insurance company. An important question of the theory of insurance risk
premiums is to assign to every X ∈ X+ a premium for the insurance contract. One
of the methods of determining the premium is the zero utility principle. It defines
the premium for a risk X ∈ X+ as a real number Hu(X) satisfying equation

E[u(Hu(X)−X)] = 0 (1)

where u : R → R is a strictly increasing continuous function with u(0) = 0. It
turns out that, for every X ∈ X+, such a number Hu(X) exists and it is unique.
Therefore equation (1) determines in an implicit way a functional Hu : X+ → R.

Several results concerning properties of the functional Hu can be found, e.g. in
[1, 2, 3] and [6]. It is known that, for every strictly increasing continuous function
u : R → R satisfying u(0) = 0, Hu is monotone and conditionally translation
invariant. However, in general, it is not convex. In this talk we present a char-
acterization of convexity and quasi-convexity of Hu. A fundamental role in our
investigations is played by quasideviation means (cf. [4, 5]).
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R.D. Irwin Inc., Homewood Illinois, 1979.
[4] Zs. Páles, Characterization of quasideviation means, Acta. Math. Sci. Hungar. 40

(1982), 243–260.
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(1988), 32–56.
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Włodzimierz Fechner Sincov’s inequalities on topological spaces
During the talk we will discuss the multiplicative Sincov’s inequality

G(a, b) ≤ G(a, x) ·G(x, b), a, x, b ∈ X.

We assume that X is a topological space and G is a continuous map. We also
study the reverse inequality

F (a, b) ≥ F (a, x) · F (x, b), a, x, b ∈ X

and the additive version of the original inequality

H(x, z) ≤ H(x, y) +H(y, z), x, y, z ∈ X.

A corollary for generalized metric is derived.
Reference

[1] W. Fechner, Sincov’s inequalities on topological spaces (manuscript),
arXiv: 1811.00303v3 [math.FA] 21 Nov 2018, 10 pp.

Roman Ger On convex type functional inequalities
The lecture focuses on some weak regularity requirements forcing the auto-

matic continuity of real convex functionals on normed spaces and, more gener-
ally, on locally convex linear topological spaces, supporting and separation theo-
rems (i.e. geometric counterpats of various generalizations of the celebrated Hahn-
Banach extension theorem). In some situations, groups will be considered as po-
tential domains and the related problem of their classification with respect to the
question whether or not they admit invariant means (amenability).

Because of the significant role and good geometry of strictly convex spaces
some characterizations of them in terms of solutions of the fundamental Cauchy
functional equation assumed to be satisfied modulo a norm with the emphasis
given to the factorization of these solutions into the additive and isometric parts.
Several further necessary and sufficient conditions for the strict convexity of the
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given space will be analyzed as well along with some characterizations of inner
product spaces with the aid of suitable iterations of the difference operators.

Delta-convex mappings between normed linear spaces provide a generalization
of functions which are representable as a difference of two convex functions to the
case of vector valued maps. Following L. Veselý and L. Zajíček, (Delta-convex map-
pings between Banach spaces and applications, Dissertationes Math. 289, Polish
Scientific Publishers, Warszawa, 1989) we show that this class of mappings has very
good properties proving that a generalization proposed is well established. Strict
connections with the Hyers-Ulam stability in the theory of functional equations
and inequalities will be revealed. We look also for possibly mild regularity condi-
tions upon the maps whose vector convex differences are controlled by their scalar
counterparts, forcing these maps to be delta-convex. Finally, vector analogues of
the celebrated Hermite-Hadamard type inequalities will also be presented.

Moshe Goldberg Extending the spectral radius to finite-dimensional power-asso-
ciative algebras

The purpose of this talk is to introduce a new concept, the radius of elements
in arbitrary finite-dimensional power-associative algebras over the field of real or
complex numbers. It is an extension of the well known notion of the spectral radius.

As examples, we shall discuss this new radius in the setting of matrix algebras,
where it indeed reduces to the spectral radius, and then in the Cayley-Dickson
algebras, where it is something quite different.

Richárd Grünwald Characterization of the equality of generalized Bajraktarević
means

The purpose of the talk is to investigate the equality problem of generalized
Bajraktarević means, i.e. to solve the functional equation

f (−1)
(
p1(x1)f(x1)+···+pn(xn)f(xn)

p1(x1)+···+pn(xn)

)
= g(−1)

(
q1(x1)g(x1)+···+qn(xn)g(xn)

q1(x1)+···+qn(xn)

)
, (*)

which holds for all x = (x1, . . . , xn) ∈ In, where n ≥ 2, I is a nonempty open real
interval, the unknown functions f, g : I → R are strictly monotone, f (−1) and g(−1)

denote their generalized left inverses, respectively, and p = (p1, . . . , pn) : I → Rn+
and q = (q1, . . . , qn) : I → Rn+ are also unknown functions. This equality problem
in the symmetric two-variable (i.e. when n = 2) case was already investigated and
solved under sixth-order regularity assumptions by Losonczi in 1999. In the non-
symmetric two-variable case, assuming three times differentiability of f , g and the
existence of i ∈ {1, 2} such that either pi is twice continuously differentiable and
p3−i is continuous on I, or pi is twice differentiable and p3−i is once differentiable
on I, we prove that (*) holds if and only if there exist four constants a, b, c, d ∈ R
with ad 6= bc such that

cf + d > 0, g = af + b

cf + d
and q` = (cf + d)p` (` ∈ {1, . . . , n}).
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In the case n ≥ 3, we obtain the same conclusion with weaker regularity
assumptions. Namely, we suppose that f and g are three times differentiable, p is
continuous and there exist i, j, k ∈ {1, . . . , n} with i 6= j 6= k 6= i such that pi, pj ,
pk are differentiable.
References

[1] J. Aczél and Z. Daróczy, Über verallgemeinerte quasilineare Mittelwerte, die mit
Gewichtsfunktionen gebildet sind, Publ. Math. Debrecen 10 (1963), 171–190.

[2] M. Bajraktarević, Sur une équation fonctionnelle aux valeurs moyennes, Glasnik
Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13 (1958), 243–248.

[3] M. Bajraktarević, Sur une généralisation des moyennes quasilinéaires, Publ. Inst.
Math. (Beograd) (N.S.) 3(17) (1963), 69–76.

[4] Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. De-
brecen 17 (1970), 289–297.

[5] Z. Daróczy and Zs. Páles, On comparison of mean values, Publ. Math. Debrecen 29
(1982), 107–115.

[6] C. Gini, Di una formula compressiva delle medie, Metron 13 (1938), 3–22.
[7] R. Grünwald and Zs. Páles, On the equality problem of generalized Bajraktarević

means, (2019), submitted.
[8] G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,

Cambridge, 1934 (first edition), 1952 (second edition).
[9] L. Losonczi, Equality of two variable weighted means: reduction to differential equa-

tions, Aequationes Math. 58 (1999) 223–241.
[10] L. Losonczi, Equality of two variable means revisited, Aequationes Math. 71 (2006),

228–245.
[11] L. Losonczi, Homogeneous non-symmetric means of two variables, Demonstratio

Math. 40 (2007), 169–180.
[12] L. Losonczi, Homogeneous symmetric means of two variables, Aequationes Math. 74

(2007), 262–281.
[13] Zs. Páles and A. Zakaria, On the equality of Bajraktarević means to quasi-arithmetic

means, Acta Math. Hungar. (2019), to appear.

László Horváth Sharp Gronwall-Bellman type integral inequalities with delay
Various attempts have been made to give an upper bound for the solutions of

the delayed version of the Gronwall-Bellman integral inequality, but the obtained
estimations are not sharp. In this talk a new approach is presented to get sharp
estimations for the nonnegative solutions of the considered delayed inequalities.
The results are based on the idea of the generalized characteristic inequality. Our
method gives sharp estimation, and therefore the results are more exact than the
earlier ones.

Eliza Jabłońska Haar ‘small’ sets in abelian Polish groups
It is well known [1] that a subset A of an abelian Polish group X is called

Haar null if there are a universally measurable set B ⊂ X with A ⊂ B and
a Borel probability measure µ on X such that µ(x + B) = 0 for all x ∈ X. In
[2] Darji introduced another family of ‘small’ sets in an abelian Polish group X;
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he called a set A ⊂ X Haar meager if there is a Borel set B ⊂ X with A ⊂ B,
a compact metric space K and a continuous function f : K → X such that

f−1(B + x) is meager in K for every x ∈ X.

In a locally compact group these two definitions are equivalent to definitions of
Haar measure zero sets and meager sets, respectively. That is why we can say that
the notion of a Haar meager set is a topological analog to the notion of a Haar null
set. Since lots of similarities between meager sets and sets of Haar measure zero
are well known in locally compact groups (see e.g. [3]), we would like to present
some analogies between Haar meager sets and Haar null sets.
References
[1] J.P.R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J.

Math. 13 (1972), 255–260.
[2] U.B. Darji, On Haar meager sets, Topology Appl. 160 (2013), 2396–2400.
[3] J.C. Oxtoby, Measure and Category, Springer–Verlag, New York–Heidelberg-Berlin,

1971.

Zbigniew Leśniak On fixed points of functions with values in a dq-metric space
(joint work with Janusz Brzdęk and El-sayed El-hady)

We present a fixed-point theorem for an operator acting on some classes of
functions with values in a dq-metric space and show its applications to prove the
stability in Ulam sense of some types of functional and difference equations. The
fixed points of such operators turn out to be exact solutions of the considered
equations that meet the imposed conditions.
References
[1] J. Brzdęk, El-s. El-hady and Z. Leśniak, On fixed points of a linear operator of poly-

nomial form of order 3, J. Fixed Point Theory Appl. 20 (2018), Article: 85, 10 pp.
[2] J. Brzdęk, El-s. El-hady and Z. Leśniak, On fixed-point theorem in classes of function

with values in a dq-metric space, J. Fixed Point Theory Appl. 20 (2018), Article: 143,
16 pp.

Renata Malejki On Ulam stability of a generalization of the Fréchet functional
equation on a restricted domain

In this paper we prove the Ulam type stability of a generalization of the Fréchet
functional equation on a restricted domain. In the proofs the main tool is a fixed
point theorem for some function spaces.
References
[1] J. Brzdęk, Z. Leśniak and R. Malejki, On the generalized Fréchet functional equation

with constant coefficients and its stability, Aequationes Math. 92 (2018), 355–373.
[2] R. Malejki, Stability of a generalization of the Fréchet functional equation, Ann. Univ.

Paedagog. Crac. Stud. Math. 14 (2015), 69–79.
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Janusz Matkowski Quasi-Cauchy difference means
Quasi-Cauchy difference means of:

(i) additive type, i.e. the functions of the form

Mf (x1, . . . , xk) = F−1(f(x1 + ...+ xk)− (f(x1) + · · ·+ f(xk))),

where F (x) = f(kx)− kf(x);

(ii) exponential type, i.e. the functions of the form

Ef (x1, . . . , xk) = F−1
(
f
( k∑
j=1

xj

)
−

k∏
j=1

f(xj)
)
,

where F (x) = f(kx)− [f(x)]k;

(iii) logarithmic type, i.e. the functions of the form

Lf (x1, . . . , xk) = F−1
(
f
( k∏
j=1

xj

)
−

k∑
j=1

f(xj)
)

where F (x) := f(xk)− kf(x);

(iv) of power type, i.e. the functions of the form

Pf (x1, . . . , xk) = F−1
(
f
( k∏
j=1

xj

)
−

k∏
j=1

f(xj)
)
,

where F (x) := f(xk)− [f(x)]k,

as well as the respective functions with difference replaced by division, will be
considered.

Janusz Morawiec Around a Kazimierz Nikodem result - part I
(joint work with Thomas Zürcher)

Let (X,A, µ) be a probability space and let S : X → X be a measurable
transformation. Motivated by the paper of K. Nikodem [1], we concentrate on
a functional equation generating measures that are absolutely continuous with
respect to µ and ε-invariant under S. As a consequence of the investigation, we
obtain a result on the existence and uniqueness of solutions ϕ ∈ L1([0, 1]) of the
functional equation

ϕ(x) =
N∑
n=1
|f ′n(x)|ϕ(fn(x)) + g(x),

where g ∈ L1([0, 1]) and f1, . . . , fN : [0, 1] → [0, 1] are functions satisfying some
extra conditions. The results we are going to present were recently published in
[2].
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References
[1] K. Nikodem, On ε-invariant measures and a functional equation, Czechoslovak Math.

J. 41(116) (4) (1991) 565–569.
[2] J. Morawiec and T. Zürcher, An application of functional equations for generating

ε-invariant measures, J. Math. Anal. Appl. 476 (2019), 759-772.

Jacek Mrowiec On strongly convex functions of higher order
Two given finite sequences (b1, . . . , bm) and (c1, . . . , cm), where m ∈ N, bk ∈

{0, 1}, ck > 0, k = 1, . . . ,m, describe a function F defined on a bounded interval
I in the following way:

bk = 1 means that F is strongly convex of order k with modulus ck on I,
bk = 0 means that F is strongly concave of order k with modulus ck on I,

k = 1, . . . ,m.
For any fixed pair of such sequences the question of existence of F arises. In

the talk the construction of the example of a function with the desired property
will be presented. The case of infinite sequences also will be considered.

Kazimierz Nikodem On strongly convex functions and related classes of func-
tions

Let D be a convex subset of a normed space and c > 0. A function f : D → R
is called strongly convex with modulus c if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖2

for all x, y ∈ D and t ∈ [0, 1]; f is called strongly midconvex with modulus c if

f
(x+ y

2

)
≤ f(x) + f(y)

2 − c

4‖x− y‖
2, x, y ∈ D.

Strongly convex functions are useful in optimization theory and mathematical
economics. Many properties and applications of them can be found in the litera-
ture. In my talk some results on strongly convex functions and related classes of
functions obtained by the author with co-authors in the last few years are pre-
sented. In particular, discrete and integral Jensen-type inequalities and a Hermite-
Hadamard-type inequality for strongly convex functions are obtained. Counter-
parts of the classical Bernstain-Doetsch and Sierpiński theorems for strongly mid-
convex functions are given. New characterizations of inner product spaces involving
strong convexity are obtained. A representation of strongly Wright-convex func-
tions and a characterization of functions generating strongly Schur-convex sums
are presented. Finally, some properties of strongly convex set-valued maps and
strongly convex stochastic processes are presented.

Diana Otrocol Functional equations and entropies
We consider entropies corresponding to some probability distributions and

establish functional/differential equations satisfied by them. Connections between
these entropies are studied. As applications we investigate shape properties of the
entropies and derive combinatorial identities.
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Lahbib Oubbi Hyers-Ulam stability and hyperstability of a general functional
equation in random normed spaces, a purely fixed point approach

IfX is a real or complex vector space, (Y, F, TM ) is a complete Random normed
space, and f : X → Y a mapping, then using a purely fixed point approach, we
prove the Ulam-Hyers stability and hyperstability of the general functional equa-
tion

m∑
i=1

Aif
( n∑
j=1

aijxj

)
+A = 0.

Here f is a mapping from X into a Random normed space (Y, F, TM ), m and n
are positive integers, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, Ai and aij are
scalars, and A is a vector from Y . Several known results can be derived.
References
[1] A. Bahyrycz and J. Olko, On stability of the general linear equation, Aequat. Math.

89 (2015), 1461–1474.
[2] A. Bahyrycz and J. Olko, Hyperstability of general linear functional equation, Aequat.

Math. 90 (2016), 527–540.
[3] J. Brzdęk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functionl

equations, Nonlinear Anal. 74 (2011), 6728–6732.
[4] Z. Dong, On Hyperstability of Generalised Linear Functional Equations in Several

Variables. Bull. Aust. Math. Soc. 92 (2015), 259–267.

Zsolt Páles Optimal error functions for approximately monotone and convex
functions

Let I be a nonempty open real interval and let `(I) ∈ ]0,∞] denote its length.
Given a nonnegative error function Φ: [0, `(I)[→ R+, a function f : I → R will be
called a Φ-monotone function if, for all x, y ∈ I with x ≤ y,

f(x) ≤ f(y) + Φ(y − x).

We say that a function f : I → R is Φ-convex if, for all x, y ∈ I and t ∈ [0, 1], it
satisfies the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + tΦ((1− t)|x− y|) + (1− t)Φ((t|x− y|).

In the talk, we discuss the following problem. If Φ: [0, `(I)[→ R+ is an error
function then determine the smallest error function Φ∗ : [0, `(I)[→ R+ such that
Φ-monotonicity and Φ-convexity imply Φ∗-monotonicity and Φ∗-convexity, respec-
tively.

Rajendra Pant Viscosity approximation methods for multi-valued nonexpansive
mappings

We present some viscosity approximation theorems for multi-valued general-
ized nonexpansive mappings with applications to variational inequality and split
common fixed point problems. Some numerical computations will be presented to
illustrate our results.
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Paweł Pasteczka Weakening of Hardy property for means
The aim of this talk is to find a broad family of means defined on a subinterval

of I ⊂ [0,+∞) such that

a1 + M (a1, a2) + M (a1, a2, a3) + · · · < +∞ for all a ∈ `1(I).

Equivalently, the averaging operator

(a1, a2, a3 , . . . ) 7→ (a1, M (a1, a2), M (a1, a2, a3), . . . )

is a selfmapping of `1(I). This property is closely related to so-called Hardy in-
equality for means (which additionally requires boundedness of this operator).

We prove that these two properties are equivalent in a broad family of Gini
means. Moreover, it is shown that this is not the case for quasi-arithmetic means.
However, weak-Hardy property is localizabile for this family.

Dorian Popa Ulam stability of an operatorial difference equation
Let T be a bounded linear operator acting on a Banach space X. We obtain

some results on Ulam stability for the linear difference equation xn+1 = Txn + an
associated to an iterative process for the linear equation x−Tx = y. As applications
we get some stability results for the case when X is a finite dimensional space and
for the case when T is Fredholm operator.
References
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Teresa Rajba On some inequalities for Bernstein operators and convex functions
For n ∈ N, the Bernstein basic polynomials are given as follows

bn,i(x) =
(
n

i

)
xi(1− x)n−i, i = 0, 1, . . . , n, x ∈ [0, 1],

the classical Bernstein operators Bn : C([0, 1])→ C([0, 1]), are defined by

(Bnf)(x) =
n∑
i=0

bn,i(x)f
(
i
n

)
, x ∈ [0, 1].
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The following inequality was conjectured as an open problem by I. Raşa in [3],

n∑
i,j=0

(bn,i(x)bn,j(x) + bn,i(y)bn,j(y)− 2bn,i(x)bn,j(y))f
( i+ j

2n

)
≥ 0 (1)

for each convex function f ∈ C([0, 1]) and for all x, y ∈ [0, 1]. The proof of inequal-
ity (1) was given in [2]. Raşa [4] remarked, that (1) is equivalent to

(B2nf)(x) + (B2nf)(y) ≥ 2
n∑
i=0

n∑
j=0

bn,i(x)bn,j(y) f
( i+ j

2n

)
. (2)

In [1] we give some generalizations of inequality (2).
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http://ictp.acad.ro/zileleacademice- clujene-2017/.

Ioan Raşa Functional equations and inequalities for the index of coincidence
Let (p0(x), p1(x), . . .) be a probability distribution depending on a real pa-

rameter x. The associated index of coincidence is S(x) :=
∑∞
k=0(pk(x))2. The

Rényi entropy and the Tsallis entropy are defined by R(x) := − logS(x) and
T (x) := 1− S(x). Starting with the binomial distribution, we establish functional
equations and inequalities and use them to investigate convexity properties of the
functions S(x), R(x) and T (x). Applications and new open problems are men-
tioned.
Reference
[1] I. Raşa, Convexity properties of some entropies (II), Preprint 2019.

Debmalya Sain Norm attainment set of a bounded linear operator between Ba-
nach spaces

It is a topic of current interest in the geometry of Banach spaces to study
the norm attainment set of a bounded linear operator between Banach spaces. In
this talk, I would like to explore the various facets of this problem, including the
case of bounded linear operators between Hilbert spaces and Banach spaces. We
would show that it is possible to completely characterize Euclidean spaces among
Minkowski spaces, in terms of the operator norm attainment set. We would further
explore the norm attainment set of a bounded linear operator between Banach
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spaces. Using the concept of Birkhoff-James orthogonality and semi-inner-products
in Banach spaces, we completely characterize the operator norm attainment set in
the setting of Banach spaces. If time permits, we would also like to briefly mention
the various areas of application of the norm attainment set of a bounded linear
operator, including the study of extreme contractions.
Reference

[1] D. Sain, On the norm attainment set of a bounded linear operator, J. Math. Anal.
Appl. 457 (2018), 67–76.

Ekaterina Shulman Polynomial-coefficient generalizations of the Levi-Civita and
Wilson functional equations

Theorem
If continuous functions f1, . . . , fM : R→ C satisfy the functional equation

M∑
i=0

fi(x+ biy)Pi(x, y) =
n∑
j=1

uj(x)vj(y), bi 6= bj for i 6= j (1)

with some polynomials Pi and some continuous functions uj , vj, then each fi is a
ratio of an exponential polynomial and a polynomial

fi(x) =
n∑
j=1

eλjxrj(x),

where rj are rational functions.

We discuss also some generalizations of equation (1).

Justyna Sikorska Various notions of orthogonality and the Cauchy functional
equation

On the example of the famous Cauchy functional equation we show how var-
ious notions of orthogonality appear in the theory of functional equations. We
give solutions of the Cauchy equation postulated for orthogonal vectors. Applica-
tions of this conditional equation both inside and outside mathematics constitutes
a significant part of the lecture. Furthermore, we plan to discuss various aspects
of stability problem. Last, but not least, some open problems concerning the topic
will be presented.

Slavko Simić Stolarsky means in many variables
There is a huge amount of papers investigating properties of the so-called

Stolarsky (or extended) two-parametric mean value, defined for positive values of
x, y;x 6= y, as

Er,s(x, y) :=
(
r(xs − ys)
s(xr − yr)

)1/(s−r)
, rs(r − s) 6= 0.
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Those means can be continuously extended on the domain {(r, s;x, y) : r, s ∈
R; x, y ∈ R+} by the following

Er,s(x, y) =



(
r(xs − ys)
s(xr − yr)

)1/(s−r)
, rs(r − s) 6= 0;

exp
(
− 1
s

+ xs log x− ys log y
xs − ys

)
, r = s 6= 0;(

xs − ys

s(log x− log y)

)1/s
, s 6= 0, r = 0;

√
xy, r = s = 0;

x, y = x > 0,

and in this form are introduced by Keneth Stolarsky in [1]. There are several
papers attempting to define an extension of the class E to n, n > 2 variables [1].

In this talk we shall expose two possible explicit formulae of Stolarsky means
in n variables which preserve its main properties and coincide for n = 2.

Definition 1
Let Xn = (x1, x2, ..., xn) ∈ Rn+. Then,

er,s(Xn) = er,s(x1, x2, ..., xn) :=
(
r2

s2
xns1 + xns2 + ...+ xnsn − n(x1x2...xn)s

xnr1 + xnr2 + ...+ xnrn − n(x1x2...xn)r

) 1
n(s−r)

for rs(s− r) 6= 0.

Definition 2
Let An = (a1, a2, ..., an), Xn = (x1, x2, ..., xn), Yn = (y1, y2, ..., yn);An, Xn, Yn ∈
Rn+. Then,

Enr,s(An;Xn, Yn) :=
(
r2

s2
a1(xs1 − ys1)2 + a2(xs2 − ys2)2 + · · ·+ an(xsn − ysn)2

a1(xr1 − yr1)2 + a2(xr2 − yr2)2 + · · ·+ an(xrn − yrn)2

) 1
2(s−r)

.

Both extensions are symmetric and monotone increasing in both parameters r and
s with er,s(x1, x2) = E1

r,s(a1;x1, x2) = Er,s(x1, x2).
References
[1] K.B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48(2) (1975),

pp. 87-92.
[2] J.K. Merikowski, Extending means of two variables to several variables, J. Ineq. Pure
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[3] S. Simić, On weighted Stolarsky means, Sarajevo J. Math. 7(19) (2011).
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Peter Stadler The short ruler on the general affine group
The restriction to the interval [0, 1] of a homomorphism h : (R,+)→ (G, ◦) on

a Lie group G is a geodesic. The problem is to construct long geodesics. We assume
that we have a short ruler, which allows constructing geodesics with length L > 0.
We can shorten a curve α on G using the short ruler (reduced transformation).

Fig. 1: The reduced transformation.

The reduced process (RtLα)t∈N is the iteration of this transformation. In normed
vector spaces, the reduced process converges to the straight line. On the general
affine group Aff(1,R) – which is a Lie group – the reduced process converges to
the geodesic linking the starting point of the curve α with its end point.
References
[1] G.D. Birkhoff, Dynamical Systems, American Mathematical Society Collo-

quium Publications IX. Amsterdam, American Mathematical Society, 1927. DOI:
10.1090/coll/009.

[2] J. Jost, Riemannian Geometry and Geometric Analysis, Universitext. Springer, 1995.
DOI: 10.1007/978-3-319-61860-9.
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ing the Translation Equation, In: European Conference on Iteration Theory (ECIT
87), pp. 240–252. World Scientific Publishing, 1989.

[4] P. Stadler, Curve Shortening by Short Rulers, Journal of Difference Equations and
Applications 22(1) (2015), 22–36. DOI:10.1080/10236198.2015.1073724.

Henrik Stetkær The Small Dimension Lemma revisited
Dilian Yang [Y] used the Small Dimension Lemma about irreducible, unitary

representations of a compact group to solve d’Alembert’s and Wilson’s functional
equations on such a group.

We present a purely algebraic generalization of the Small Dimension Lemma.
By help of it we find on any compact group G the solutions f, g ∈ C(G) of
generalizations of d’Alembert’s and Wilson’s functional equations of the form

f(xy) + µ(y)f(xy∗) = 2f(x)g(y), x, y ∈ G,

where µ ∈ C(G) is a given character of G, and x 7→ x∗ is a given, continuous
involution of G.
Reference
[Y] D. Yang, Functional equations and Fourier analysis. Canad. Math. Bull. 56 (2013),

218–224.
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Tomasz Stypuła Orthogonality preserving property on small sets
In this report we consider a problem when the orthogonality preserving prop-

erty of a linear mapping on a small set, implies its orthogonality preserving prop-
erty on the whole space. In order to construct such sets, we introduce a concept
of independent bases. We present examples and results in finite-dimensional real
inner product spaces.

Mariusz Sudzik Iterative functional equations and attractive fixed points
Let I be a nontrivial interval and f, g : I → I be given functions. We will

consider the functional equation

ϕ(x) =
ϕ
(
f(x)

)
+ ϕ

(
g(x)

)
2

under the assumption that f and g have a globally attractive fixed point. Equations
of higher order and their inhomogeneous versions will be analysed as well.

László Székelyhidi Functional equations on infinite joins
(joint work with Żywilla Fechner)

In this talk we present some results about basic function classes on infinite
hypergroup joins. These results may serve as a starting point to study convolution
type functional equations on infinite hypergroup joins using spectral synthesis.

Imke Toborg On the functional equation f(x)−1 = f−1(x) on groups
In [1] David J. Schmitz introduced the notion of an inverse ambiguous function.

A bijective function from a group into itself is inverse ambiguous if and only
if it is a solution of f(x)−1 = f−1(x). In this talk we give a precise description
when a finite group admits an inverse ambiguous function or an inverse ambiguous
automorphism.

References

[1] D.J. Schmitz, Inverse ambiguous functions on fields, Aequat. Math. 91 (2017), 373–
389.

[2] I. Toborg, Inverse ambiguas functions and automorphisms on finite groups, Ann.
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Anita Tomar Fixed point and applications of Hardy-Rogers type contraction
In physical world a fixed point signifies a condition wherever a stable state or

equilibrium is attained. Presence of fixed point plays a significant role in nonlinear
analysis as numerous real-world problems in applied science, economics, chem-
istry, physics, computer science and engineering can be reformulated as a problem
of finding fixed points of nonlinear maps. The aim of this talk is to discuss the
existence of fixed point of almost alpha-Hardy-Rogers-F−contraction in a par-
tial metric space. Finally, some interesting examples and the solution of differen-
tial equation arising in critically damped harmonic oscillator is also discussed to
demonstrate the usability of results.
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Andrzej Wiśnicki Around the nonlinear Ryll-Nardzewski theorem
In this talk, we show that if S is a distal semigroup of nonexpansive map-

pings acting on a weak∗ compact convex subset Q of a dual Banach space with
the Radon-Nikodým property, then there is a common fixed point of S in Q.
In particular, it gives a nonlinear counterpart of the Ryll-Nardzewski theorem.
As a consequence, we obtain a nonlinear extension of the Bader-Gelander-Monod
theorem concerning isometries in L-embedded Banach spaces.

References
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Alfred Witkowski Inequalities of Levin-Stečkin and Clausing
The Levin-Stečkin inequality comes from the Appendix to the Russian trans-

lation of “Inequalities” [3].

Theorem 1 (Levin-Stečkin’s inequality)
If a function p : [0, 1]→ R satisfies the conditions

– p is nondecreasing in [0, 1/2],

– p is symmetric, i.e. p(x) = p(1− x),

then for every convex function ϕ the following inequality holds∫ 1

0
p(x)ϕ(x)dx ≤

∫ 1

0
p(x)dx

∫ 1

0
ϕ(x)dx.

In 1980 Clausing [2] proved the following theorem.
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Theorem 2 (Clausing’s inequality)
Let p be a nonnegative functions on [0, 1] satisfying the following conditions:

– p is nondecreasing on [0, 1/2],
– p is symmetric.

Then for every concave, positive function ϕ the inequality∫ 1

0
p(x)ϕ(x)dx ≤

∫ 1

0
4 min{x, 1− x}p(x)dx

∫ 1

0
ϕ(x)dx

holds.

We provide new, elementary proofs of the above theorems.
References
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Paweł Wójcik Semi-smooth points in space K(H1, H2)
The investigations of the smooth points in the operator spaces K(H) were

started in [1]. The aim of this report is to discuss a characterization of semi-smooth
points in the compact operator space K(H1, H2), where H1, H2 are Hilbert spaces.
References
[1] J.R. Holub, On the Metric Geometry of Ideals of Operators on Hilbert Space, Math.

Ann. 201 (1973), 157–163.
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Sebastian Wójcik On convexity of the Swiss premium principle
The Swiss premium principle for a risk, represented by a nonnegative bounded

random variable X on a given probability space, is defined as a unique real number
Hu,c(X) satisfying equation

u((c− 1)Hu,c(X)) = E[u(cHu,c(X)−X)] (1)

where c ∈ [0, 1] and u : R → R is a strictly increasing continuous function with
u(0) = 0 (cf. [1]). In the particular cases c = 0 and c = 1 the Swiss premium
principle reduces to the mean-value principle and the zero utility principle, respec-
tively.

In the talk, applying some results in [2, 3, 4], we present a characterization of
convexity of the functional Hu,c defined implicitly by (1).



[186] Report of Meeting

References
[1] H. Bühlmann, B. Gagliardi, H. Gerber and E. Straub, Some inequalities for stop-loss

premiums, ASTIN Bulletin 9 (1977), 75–83.
[2] J. Chudziak, D. Głazowska, J. Jarczyk and W. Jarczyk, On weighted quasi-arithmetic

means which are convex, Math. Inequal. Appl., in press.
[3] Zs. Páles, General inequalities for quasideviation means, Aequationes Math. 36

(1988), 32–56.
[4] Zs. Páles and P. Pasteczka, On the best Hardy constant for quasi-arithmetic means

and homogeneous deviation means, Math. Inequal. Appl. 21 (2018), 585–599.

Amr Zakaria Equality problems related to Cauchy means
(joint work with Zsolt Páles)

In this talk we establish a new characterization of the equality of two-variable
Cauchy means (cf. [4]) to two-variable quasi-arithmetic means (cf. [1]) under nat-
ural, and therefore, the weakest possible regularity conditions. As an immediate
application, we shed new light on the equality problem of two-variable Cauchy
means which was solved by Losonczi [3, Theorem 5] under seven times differen-
tiablity assumptions. The approach is based on the results of the paper [2].
References
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Thomas Zürcher Around a Kazimierz Nikodem result - part II
(joint work with Janusz Morawiec)

This is joint work with Janusz Morawiec, and he delivered part I. In the first
part, equations of the form

ϕ(x) =
N∑
n=1
|f ′n(x)|ϕ(fn(x)) + g(x)

were considered. In this talk, we are changing the derivatives f ′n to some other
functions gn, looking for solutions ϕ ∈ L1([0, 1]) of

ϕ(x) =
N∑
n=1
|gn(x)|ϕ(fn(x)) + g(x).

This is not only a cosmetic change. We need new methods to tackle this kind of
equations.
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Marcin J. Zygmunt Additive functions on “ax+b” group
The aim of the talk is to solve Pexider’s equation f(xy) = g(x)h(y) for func-

tions f, g, h : G → G acting on a noncommutative group G. The equation will be
completely solved in the case of affine group “ax+b”.

2. Problems and Remarks

1. Remark
This remark is related to a joint work with Moshe Goldberg and the talk de-

livered during the 57th Symposium on Functional Equations in Jastarnia, Poland
(June 2-9, 2019), based on papers [1, 2].

For a (real or complex) vector space X we use the standard notions of a norm
and a seminorm (the latter need not be positive definite). Moreover, a non-zero
seminorm which is not a norm is called a proper seminorm.

We consider the continuity of seminorms with respect to norm-generated to-
pologies. It can be noticed that a seminorm can be either ubiquitously continuous
or ubiquitously discontinuous with respect to any norm-topology. As proved in [1],
for a finite-dimensional space X any seminorm S on X is continuous with respect
to the unique norm-topology on X (in other words S is continuous with respect to
any norm on X). For infinite-dimensional spaces it was proved in [2] that for any
non-zero seminorm S there exists a norm with respect to which S is everywhere
continuous and there exists a norm with respect to which S is everywhere discon-
tinuous.

Now, one could raise a question whether it can happen that for some norm N
on an infinite-dimensional space X all the seminorms defined on X are continuous
with respect to the topology generated byN . It turns out, however, that the answer
to the above question is negative. Each norm on an infinite-dimensional space
admits a proper seminorm which is discontinuous in the topology of the original
norm. Moreover, each norm on an infinite-dimensional space admits another norm,
discontinuous with respect to the original one.
References
[1] M. Goldberg, Continuity of seminorms on finite-dimensional vector spaces, Linear

Algebra Appl. 515 (2017), 175–179.
[2] J. Chmieliński and M. Goldberg, Continuity and discontinuity of seminorms on
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Jacek Chmieliński

2. Problem
Let I ⊂ R be an interval, n ∈ N, and M : In → In be a mean-type mapping,

i.e. min(x1, . . . , xn) ≤Mk(x1, . . . , xn) ≤ max(x1, . . . , xn) for all (x1, . . . , xn) ∈ In.
Moreover assume that each Mk is symetric. A mean K : In → I is called M-
invariant if K ◦M = K.
Conjecture
Let n ∈ N and M : In → In be a mean-type mapping such that

max M(v)−min M(v) < max v −min v
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for every nonconstant vector v ∈ In. Then there exists at most one continuous
M-invariant mean.

Recently it was proved that for n = 2 this statement is valid.
Paweł Pasteczka

3. Problem
Let Bn be the classical Bernstein operators defined by

Bnf(x) =
n∑
k=0

f
(k
n

)
bn,k(x), f ∈ C[0, 1], x ∈ [0, 1],

where bn,k(x) =
(
n
k

)
xk(1− x)n−k, k = 0, 1, . . . , n.

1. Let (ak)k=0,1,...,n be a convex sequence of nonnegative numbers, i.e. 2ak ≤
ak−1 + ak+1, k = 1, . . . , n− 1. Consider the piecewise linear function wn ∈ C[0, 1]
with wn

( 2k−1
2n
)

= 0, for k = 1, . . . , n, and wn
(
k
n

)
= ak for k = 0, 1, . . . , n.

Conjecture 1
B2nwn is a convex function.

2. Let r ∈ [0, 1) be given. Consider the function

Fn,r(x) :=
n∑
k=0

bn,k(x)bn,k(x− r), x ∈ [r, 1].

Conjecture 2
Fn,r is a log-convex function.

3. C.A. Micchelli suggested the following property

f ∈ C[0, 1] log-concave ⇒ Bnf log-concave, n ≥ 1.

A proof was given by T.N.T. Goodman in 1989. A stronger property is expressed
as follows

Conjecture 3
f ∈ C[0, 1] log-concave ⇒

∑
i+j=h

0≤i≤n−1
0≤j≤n

(
n− 1
i

)(
n

j

)(
(n− 1− i)f

( j
n

)
∆2

1
n
f
( i
n

)

−(n− j)∆1
1
n
f
( i
n

)
∆1

1
n
f
( j
n

))
≤ 0,

for all n ≥ 1, h ∈ {0, 1, . . . , 2n− 2}.

Ioan Raşa

4. Problem
Let G be a commutative topological group. Find the continuous linearly inde-

pendent solutions f, g : G→ C of the functional equation

f(x)[g(x+ y) + g(x− y)] = g(x)[f(x+ y) + f(x− y)].
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This functional equation is related to an equation of M. Pompeiu (see Sur une
équation fonctionelle, C. R. Acad. Sci. Paris 190, p. 1107, 1930.) The equation can
be solved on G = R if f, g are twice differentiable, by reducing it to a differential
equation. It is not known whether all solutions of this equation (under the given
conditions) are generalized exponential polynomials.

László Székelyhidi

5. Problem
Let G be a commutative topological group. The subspace V in the space C(G)

of all continuous complex valued functions is called bi-translation invariant if for
each f in V we have that the function x 7→ f(x + y) + f(x − y) is in V for each
y in V . Clearly, if V is translation invariant and linear, then it is bi-translation
invariant, but the converse is not necessarily true. The problem is to describe
bi-translation invariant linear spaces of functions which are closed with respect
to compact convergence and possibly have some additional properties, like finite
dimensionality, etc.

László Székelyhidi

6. Remark (to the Problem of Jose Maria Almira)
The following question was asked in [1]:
Assume that the restriction of a function f : R2 → R to any line ax+ by = 0 is

an exponential polynomial. Is it true that f is an exponential polynomial in two
variables?

Actually, J. M. Almira asked a slightly more general question but we presented
it in a simpler way (for n = 2 instead of an arbitrary n) during the 17th ICFEI.

It turned out that this problem, in much more general settings, was solved by
A. L. Ronkin. In particular, he proved the following result.

Corollary 1 ([2])
Let a function f of two real variables be an exponential polynomial when one of
the variables is fixed, and assume that f(x, x+ h) is an exponential polynomial of
x, for each h ∈M , where M is a set of cardinality continuum. Then f(x, y) is an
exponential polynomial in x, y.

The details can be found in [3].
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