

FOLIA 345

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XX (2021)

Anna Gąsior* and Andrzej Szczepański Examples of non connective C^* -algebras

Abstract. This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder's and Banach's fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

1. Introduction

For a Hilbert space \mathcal{H} , we denote by $L(\mathcal{H})$ the C^* -algebra of bounded and linear operators on \mathcal{H} . The ideal of compact operators is denoted by $\mathcal{K} \subset L(\mathcal{H})$. For the C^* -algebra A, the cone over A is defined as $CA = C_0[0,1) \otimes A$, the suspension of A as $SA = C_0(0,1) \otimes A$.

Definition 1

Let A be a C^* -algebra and $n \in \mathbb{N}, n \geq 1$. A is connective if there is a \star -monomorphism

$$\Phi \colon A \to \prod_n CL(\mathcal{H}) / \bigoplus_n CL(\mathcal{H}),$$

which is liftable to a completely positive and contractive map $\phi: A \to \prod_n CL(\mathcal{H})$.

For a discrete group G, we define I(G) to be the augmention ideal, i.e. the kernel of the trivial representation $C^*(G) \to \mathbb{C}$. Group G is called connective if I(G)

AMS (2010) Subject Classification: 46L05, 20H15, 46L80.

Keywords and phrases: connective C^* - algebras, crystallographic groups, combinatorial and generalized Hantzsche-Wendt groups.

^{*}The first author is supported by the Polish National Science Center grant $\rm DEC2017/01/X/ST1/00062.$

ISSN: 2081-545X, e-ISSN: 2300-133X.

is a connective C^* -algebra. From definition (see [4, p. 4921]) connectivity of G may be viewed as a stringent topological property that accounts simultaneously for the quasidiagonality of $C^*(G)$ and the verification of the Kadison-Kaplansky conjecture for certain classes of groups. Here we can referring to conjecture from 2014 [2, p. 166]: If G is a discrete, countable, torsion-free, amenable group, then the natural map

$$[[I(G), \mathcal{K}]] \to KK(I(G), \mathcal{K}) \cong K^0(I(G))$$

is an isomorphism of groups. Here $KK(I(G), \mathcal{K})$ is the Kasparov group and $[[I(G), \mathcal{K}]]$ is a group of the homotopy classes of asymptotic morphisms. In 2017 M. Dadarlat found an amenable and not connective group G_2 for which the above conjecture fails [6, Cor. 3.2].

Connective groups must be torsion-free, [3, Remark 2.8 and 4.4]. Here is a short list of such groups:

- 1. a countable torsion free nilpotent groups, [3, Th.4.3];
- 2. let $0 \to N \to G \to H \to 0$ be a central extension of discrete countable amenable groups where N is torsion-free. If H is connective then so does G; [3, Th. 4.1];
- 3. wreath product of connective groups is a connective group [5, Th.3.2];
- 4. a torsion-free crystallographic group is connective if and only if is locally indicable if and only if is diffuse (see below) and [6].

A discrete group G is called *locally indicable* if every finitely generated non-trivial subgroup L of G has an infinite abelianization. The group G is called *diffuse* if every non-empty finite subset A of G has an element $a \in A$ such that for any $g \in G$, either ga or $g^{-1}a$ is not in A, see [6] and [7]. More examples of nonabelian connective groups were exhibited in [4], [5] and [6].

Dadarlat's group G_2 is a 3-dimensional, torsion-free crystallographic group, where a crystallographic group Γ , of dimension n is a cocompact and discrete subgroup of the isometry group $E(n) = O(n) \ltimes \mathbb{R}^n$ of the Euclidean space \mathbb{R}^n . Group Γ is cocompact if and only if the orbit space $E(n)/\Gamma$ is compact.

From Bieberbach theorems (see [9, Chapter 1]) any crystallographic group Γ defines a short exact sequence

$$0 \to \mathbb{Z}^n \to \Gamma \to H \to 0$$
.

where a free abelian group \mathbb{Z}^n is a maximal abelian subgroup and H is a finite group. Group H is sometimes called a holonomy group of Γ . The above group G_2 is isomorphic to the subgroup E(3) and is generated by

$$G_2 \cong \operatorname{gen} \left\{ A = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \left(\frac{1}{2}, \frac{1}{2}, 0 \right) \right), B = \left(\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \left(0, \frac{1}{2}, \frac{1}{2} \right) \right) \right\}.$$

A torsion-free crystallographic group is called a Bieberbach group. The orbit space \mathbb{R}^n/Γ of a Bieberbach group is a *n*-dimensional closed flat Riemannian manifold M with holonomy group isomorphic to H.

A general characterization of connective Bieberbach groups is given in [6]. The following two theorems give us a landscape of them.

Theorem 1 ([6, Theorem 1.2])

Let Γ be a Bieberbach group. The following assertions are equivalent.

- 1. Γ is connective
- 2. Every nontrivial subgroup of Γ has a nontrivial center.
- 3. Γ is a poly- \mathbb{Z} group
- 4. $\widehat{G} \setminus \{\iota\}$ has no nonempty compact open subsets.

The unitary dual \widehat{G} of G consists of equivalence classes of irreducible unitary representations of G and ι denotes the trivial representation.

THEOREM 2 ([6, Theorem 1.1])

A Bieberbach group with a finite abelianization is not connective.

In our note we give an example of two infinite families of not connective groups. Both of them are generalization of the 3-dimensional Hantzsche-Wendt group G_2 .

2. Examples

Example 1 ([9, Definition 9.1])

Let $n \geq 3$. By generalized Hantzsche-Wendt (GHW for short) group we shall understand any torison-free crystallographic groups of rank n with a holonomy group $(\mathbb{Z}_2)^{n-1}$.

EXAMPLE 2 ([1, Definition], [10, Definition 1]) Let $n \ge 0$. A group

$$G_n = \{x_1, x_2, \dots, x_n : x_i^{-1} x_i^2 x_i x_i^2 \text{ for all } i \neq j\}$$

we shall call a combinatorial Hantzsche-Wendt group.

For the properties of GHW groups we refer to [9, Chapter 9]. We have $G_0 = 1$ and $G_1 \simeq \mathbb{Z}$. Combinatorial Hantzsche-Wendt groups are torsion-free, see [1, Theorem 3.3] and for $n \geq 2$ are nonunique product groups. A group G is called a unique product group if given two nonempty finite subset X, Y of G, there exists at least one element $g \in G$ which has a unique representation g = xy with $x \in X$ and $y \in Y$. We are ready to present our main result.

Proposition 1

Generalized Hantzsche-Wendt groups with trivial center and nonabelian, combinatorial Hantzsche-Wendt groups are not connective.

Proof. From [3, Remark 2.8 (i)] the connectivity property is inherited by subgroups. Let G be any group from family of GHW groups or family of combinatorial Hanzsche-Wendt groups. In both cases a group G_2 is a subgroup of G. In the

first case it follows from [9, Proposition 9.7]. In the second case it follows from definition, see [1, Prop. 3.4].

Note that in the case of GHW groups we can also use Theorem 2, since all these groups have a finite abelianizations.

Remark 1

From [10], for $n \geq 3$, G_n has a non-abelian free subgroup. Hence is not amenable.

Remark 2

The counterexample to the Kaplansky unit conjecture was given in 2021 by G. Gardam [8]. It was found in the group ring $\mathbb{F}_2[G_2]$. The Kaplansky unit conjecture states that every unit in K[G] is of the form kg for $k \in K \setminus \{0\}$ and $g \in G$.

Acknowledgement. We thank the referee for a number of suggestions that improved the exposition.

References

- Craig, Will, and Peter A. Linnell. "Unique product groups and congruence subgroups." J. Algebra Appl., online, DOI: 10.1142/S0219498822500256. Cited on 59 and 60.
- [2] Dadarlat, Marius. "Group quasi-representations and almost flat bundles." J. Non-commut. Geom. 8, no. 1 (2014): 163-178. Cited on 58.
- [3] Dadarlat, Marius, and Ulrich Pennig. "Deformations of nilpotent groups and homotopy symmetric C*-algebras." Math. Ann. 367, no. 1-2 (2017): 121-134. Cited on 58 and 59.
- [4] Dadarlat, Marius, and Ulrich Pennig. "Connective C^* -algebras." J. Funct. Anal. 272, no. 12 (2017): 4919-4943. Cited on 58.
- [5] Dadarlat, Marius, and Ulrich Pennig, and Andrew Schneider. "Deformations of wreath products." *Bull. Lond. Math. Soc.* 49, no. 1 (2017): 23-32. Cited on 58.
- [6] Dadarlat, Marius, and Ellen Weld. "Connective Bieberbach groups." *Internat. J. Math.* 31, no. 6 (2020): 2050047, 13 pp. Cited on 58 and 59.
- [7] Gąsior, Anna, and Rafał Lutowski, and Andrzej Szczepański. "A short note about diffuse Bieberbach groups." J. Algebra 494 (2018): 237-245. Cited on 58.
- [8] Gardam, Giles. "A countrexample to the unit conjecture for group rings." arXiv: 2102.11818v3. Cited on 60.
- [9] Szczepański, Andrzej. Geometry of crystallographic groups. Vol. 4 of Algebra and Discrete Mathematics. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2012. Cited on 58, 59 and 60.
- [10] Szczepański, Andrzej. "Properties of the combinatorial Hantzsche-Wendt groups." arXive:2103.12494. Cited on 59 and 60.

Anna Gąsior Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin Poland E-mail: anna.gasior@poczta.umcs.lublin.pl

Andrzej Szczepański Institute of Mathematics University of Gdańsk ul. Wita Stwosza 57 80-952 Gdańsk Poland E-mail: matas@univ.gda.pl

Received: March 17, 2021; final version: July 7, 2021; available online: July 20, 2021.