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Abstract. We introduce the definition of the three-element equivalential al-
gebra R with conjunction on the regular elements. We study the variety
generated by R and prove the Representation Theorem. Then, we construct
the finitely generated free algebras and compute the free spectra in this
variety.

1. Introduction

In this paper, we investigate the equivalential algebra with conjunction on the
regular elements, called R. It is a reduct of type (2, 2, 0) of the three-element
Heyting algebra in which are the distinguished constant 1, a binary operation
corresponding to the equivalential term ↔ and an additional binary operation,
which is conjunction on the regular elements.

It is known that if V is a Fregean variety then V is of type 2 or 3 [7, p. 606]
in the sense of Tame Congruence Theory of Hobby and McKenzie [4]. Every
equivalential algebra is solvable, so it is of type 2 [7, p. 606]. However, every
Heyting algebra is congruence distributive and it is of type 3. The purpose of the
paper was to investigate of the smallest fregean algebra of mixed type. An example
of such an algebra is R.

In this case, the second binary operation (besides ↔), is not conjunction on
all elements (in contrast to, for example, the Skolem algebra), but is conjunction
only on the regular elements. These elements play an important role in Heyting
algebras, where an element a is said to be regular if ¬¬a = a, because they are
essential in the study of the relationships between classical and intuitionistic logic.

AMS (2010) Subject Classification: 08B20, 03G25.
Keywords and phrases: Fregean varieties, equivalential algebras, free algebras, free spectra.
ISSN: 2081-545X, e-ISSN: 2300-133X.



[64] Sławomir Przybyło

The variety generated by R, denoted by V(R), is locally finite, so we can study
the free spectra. For this purpose, we introduce representation of finite algebras
in V(R).

The paper is organized as follows. In Section 2 we give the most important
definitions and theorems, which are used throughout the paper, related to the
notions of the Fregean variety and the equivalential algebra. Next, we introduce
the definition of the three-element equivalential algebra with conjunction on the
regular elements. In Section 3, we describe the frame for any algebra in V(R) and
we prove the representation theorem for finite algebras from V(R). Finally, we
construct the free algebra in V(R) with a finite number of generators and we find
the formula for the free spectrum in this variety.

2. Preliminaries

We start with the notion of a Fregean algebra.

Definition 1 ([7, p. 597])
An algebra A with a distinguished constant 1 is called Fregean if A is:

1. 1-regular, i.e. 1/α = 1/β implies α = β for all α, β ∈ Con A;
2. congruence orderable, i.e. ΘA(1, a) = ΘA(1, b) implies a = b for all a, b ∈ A.

A variety V is said to be Fregean if all its algebras are Fregean. Let A ∈
V. Congruence orderability allows to introduce a natural partial order on the
universe of A: a ≤ b⇔df ΘA(1, b) ⊆ ΘA(1, a).Moreover, the Fregean varieties are
congruence modular (see [3]). A natural example of a Fregean variety is a variety
of equivalential algebras.

Definition 2
An equivalential algebra is an algebra (A,↔, 1) of type (2, 0) that is a subreduct
of a Heyting algebra with the binary operation ↔ given by

x↔ y := (x→ y) ∧ (y → x).

In 1975 J. K. Kabziński and A. Wroński proved that the class E of all equiv-
alential algebras is equationally definable by identities, so it forms a variety, [8].
Similar to literature, we adopt the convention of associating to the left and ignoring
(or replacing with ·) the symbol of equivalence operation.

The class E is congruence permutable (it follows from [7, p. 598]). More-
over, equivalential algebras form a paradigm for congruence permutable Fregean
varieties, as the following theorem shows:

Theorem 3 ([7, Theorem 3.8])
Let V be a congruence permutable Fregean variety. Then there exists a binary term
↔ such that for every A ∈ V:

1. (A,↔, 1) is an equivalential algebra;
2. ↔ is a principal congruence term of A, i.e. (a, b) ∈ α iff (1, a ↔ b) ∈ α

for every α ∈ Con A.
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If V is a congruence permutable Fregean variety and A ∈ V, then we will
denote an equivalential reduct of A by Ae. In a Fregean variety the subdirectly
irreducible algebras can be characterized as those which have the largest non-unit
element, which will be denoted by ∗. If A is a subdirectly irreducible algebra with
the monolith µ then by [7, Lemma 2.1] we have that 1/µ = {1, ∗} and all other
µ-cosets are singletons.

2.1. Definition and basic properties

Definition 4
An equivalential algebra with conjunction on the regular elements is an algebra
R := ({0, ∗, 1},↔, r, 1) of type (2, 2, 0), where ({0, ∗, 1},↔, 1) is an equivalential
algebra and r is a binary commutative operation presented in the table below (on
the right):

↔ 1 ∗ 0
1 1 ∗ 0
∗ ∗ 1 0
0 0 0 1

r 1 ∗ 0
1 1 1 0
∗ 1 1 0
0 0 0 0

Then R = ({0, ∗, 1},↔, r, 1) is a reduct of the three-element Heyting algebra
with an order: 0 < ∗ < 1, in which x ↔ y = (x → y) ∧ (y → x) and r(x, y) =
[(x ↔ 0) ↔ 0] ∧ [(y ↔ 0) ↔ 0] (briefly: r(x, y) = x00 ∧ y00). Note that we can
write the operation r without ↔, because the following identity is true in Heyting
algebras: (x↔ 0)↔ 0 = (x→ 0)→ 0.

The variety generated by R will be denoted by V(R). It is easy to show that
R is a Fregean algebra.

Remark 5
R has two nontrivial subalgebras:
2 := ({∗, 1},↔, r, 1), where r ≡ 1;
2∧ := ({0, 1},↔, r, 1),where r(x, y) = x ∧ y.

Remark 6
Con R = {1R, µR,0R} is a three-element chain (under ⊆), so R is subdirectly
irreducible, where µR is the monolith of R. Furthermore, R/µR ∼= 2∧.

Proposition 7
The variety V(R) is a Fregean variety.

Proof. According to the above remark, if A is not trivial, then A ∈ H(R) iff
A ∼= 2∧ or A ∼= R. Thus A ∈ HS(R) iff A ∼= R or A ∼= 2 or A ∼= 2∧. Therefore all
algebras in HS(R) are congruence orderable. Furthermore, since all equivalential
algebras are congruence 1-regular and this property is preserved under expansions
of a language, so V(R) is 1-regular too. Consequently, we conclude from Theorem
2.10 [7, p. 603] that V(R) is a Fregean variety.
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Using Theorem 10.12 [2, p. 97] one can deduce the following result:

Proposition 8
There are only three (up to isomorphism) nontrivial subdirectly irreducible algebras
in V(R): R, 2 and 2∧.

3. Representation

Let A ∈ V(R). We say that µ ∈ Con A is completely meet-irreducible if µ 6= A2

and for any family {µi : i ∈ I} ⊆ Con A such that µ =
⋂
i∈I µi, we have µ = µi

for some i ∈ I. If µ is completely meet-irreducible, then there exists the unique
cover of µ in Con A, denoted by µ+, i.e. µ+ =

⋂
{γ ∈ Con A : µ < γ}. The set of

all completely meet-irreducible congruences will be denoted by Cm(A). Similarly,
we can define a completely join-irreducible congruence ν and in this situation ν
covers the unique element, denoted by ν−.

It is folklore that µ is completely meet-irreducible in Con A iff A/µ is sub-
directly irreducible. Thus, we conclude from Proposition 8 that µ ∈ Cm(A) iff
A/µ ∼= k for k ∈ {R,2,2∧}.

We use the following notation:

L̃ :={µ ∈ Cm(A) : A/µ ∼= 2∧},
L :={µ ∈ Cm(A) : A/µ ∼= R},
P :={µ ∈ Cm(A) : A/µ ∼= 2},
L :=L̃ ∪ L.

Definition 9
Let A ∈ V(R) and ϕ,ψ ∈ Cm(A). We introduce a binary relation ∼ on Cm(A)
as follows:

ϕ ∼ ψ def⇔ ϕ = ψ or ϕ,ψ ∈ P or (ϕ,ψ ∈ L and ϕ+ = ψ+).

It is easy to see that ∼ is the equivalence relation. Note that in the case of
algebras in V(R), the relation ∼ is the same as the relation defined in [5, p. 51],
which is related to the concept of projectivity.

If A ∈ V(R), µ ∈ Cm(A) and U ⊆ µ/∼, we will denote U := U ∪ {µ+} and
0U :=

⋂
U .

Definition 10
Let A ∈ V(R) and let ≤ be the order on Con A restricted to Cm(A), i.e.

ϕ ≤ ψ ⇔ ϕ ⊆ ψ.

The structure Cm(A) := (Cm(A),≤,∼) is called a frame of A.

Lemma 11
Let A ∈ V(R) and let µ ∈ Cm(A) be such that A/µ ∼= R. Then A/µ+ ∼= 2∧.
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Proof. Let f : A/µ → 2∧ be a function such that f(1/µ) = f(∗/µ) = 1 and
f(0/µ) = 0. Then f is a surjective homomorphism and ker f = µ+/µ. So
A/µ/µ+/µ

∼= 2∧. Therefore A/µ+ ∼= 2∧.

Corollary 12
Let A ∈ V(R) and ϕ,ψ ∈ Cm(A). Then ϕ ≤ ψ iff ϕ = ψ or (ϕ ∈ L, ψ ∈ L̃ and
ϕ+ = ψ).

Since the Fregean varieties are congruence modular, so we have the following
Lemma.

Lemma 13 ([5, p. 51, Lemma 22])
Let A ∈ V, where V is a Fregean variety. Then for all α, β ∈ Con A and µ ∈
Cm(A) with α ∧ β ≤ µ there are µ1, µ2 ∈ µ/∼ ∪ {1A} such that α ≤ µ1, β ≤ µ2
and µ1 ∧ µ2 ≤ µ.

Proposition 14
Let A ∈ V(R) be finite. If W ⊆ L and µ ∈ P , then

⋂
W � µ. Similarly, if W ⊆ P

and µ ∈ L, then
⋂
W � µ.

Proof. Suppose, contrary to our claim, that W = {ϕ1, . . . , ϕn} ⊆ L and ϕ1 ∧ · · · ∧
ϕn ≤ µ for some µ ∈ P. From Lemma 13 there exist µ1, µ2 ∈ µ/∼ ∪ {1A}, such
that ϕ1 ≤ µ1, ϕ2∧· · ·∧ϕn ≤ µ2 and µ1∧µ2 ≤ µ. By Corollary 12, each element of
µ/∼ is incomparable with ϕ1, so µ1 = 1A. Thus ϕ2 ∧ · · · ∧ϕn = ϕ1 ∧ · · · ∧ϕn ≤ µ.
Doing likewise, after (n − 1) steps, we get that ϕn ≤ µ, a contradiction. Similar
considerations apply to the second sentence.

The symmetric difference of X and Y will be denoted by X ÷ Y and the
complement of a set X will be denoted by X ′.

Let A ∈ V(R) and µ ∈ Cm(A). We introduce a binary operation • on a set
µ/∼ as follows

µ1 • µ2 := (µ1 ÷ µ2)′ ∩ µ+

for µ1, µ2 ∈ µ/∼. Note that µ1•µ2 = µ+ for µ1 = µ2 and recall that if µ1, µ2 ∈ µ/∼,
then µ+

1 = µ+
2 = µ+. Clearly, the operation • on the subsets µ+ forms a Boolean

group. We show that (µ/∼, •) is its subgroup.

Theorem 15
Let A ∈ V(R) and µ ∈ Cm(A). Then (µ/∼, •) forms a Boolean group.

Proof. Let µ1, µ2 ∈ µ/∼ and µ1 6= µ2. We first prove that µ1 • µ2 is a congruence
on A. From [6, Lemma 4.1] µ1, µ2 ∈ Cm(Ae). Thus, from the proof of Proposition
3 [10] we obtain µ1 • µ2 ∈ Con Ae. We show that relation µ1 • µ2 is compatible
with the operation r. Choose (a, b), (c, d) ∈ µ1 • µ2. We need to consider the
following three cases:

1) µ ∈ L. We want to show that (r(a, c), r(b, d)) ∈ µ1 • µ2. On the contrary,
suppose that (r(a, c), r(b, d)) /∈ µ1 • µ2. Thus, without loss of general-
ity, we can assume that (r(a, c), r(b, d)) ∈ µ1 \ µ2, so r(a, c) · r(b, d) ∈
1/µ1 and r(a, c) · r(b, d) /∈ 1/µ2. Since (a, b) ∈ µ1 ⊆ µ+

2 , (c, d) ∈ µ2 ⊆ µ+
2
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and in addition µ+
2 is a congruence, we have that (r(a, c), r(b, d)) ∈ µ+

2 and
consequently

r(a, c) · r(b, d) ∈ (1/µ+
2 ) \ (1/µ2) = {∗/µ2}.

Therefore r(a, c) · r(b, d)/µ2 = ∗/µ2, thus r(a, c)/µ2 · r(b, d)/µ2 = ∗/µ2. It
follows that r(a, c)/µ2 = 1/µ2 and r(b, d)/µ2 = ∗/µ2 (or vice versa). Thus
rA/µ2(b/µ2, d/µ2) = ∗/µ2, contrary to the definition of r. Hence µ1 • µ2 is
a congruence on A.

2) µ ∈ L̃. Then µ1 = µ2, so µ1 • µ2 = 1A and consequently (r(a, c), r(b, d)) ∈
µ1 • µ2.

3) µ ∈ P . Since r is constantly equal to 1 on A/µ1 and A/µ2, thus

r(a, c) · r(b, d) ∈ 1/µ1 and r(a, c) · r(b, d) ∈ 1/µ2.

Therefore r(a, c) · r(b, d) ∈ 1/µ1 ∧ µ2 and so (r(a, c), r(b, d)) ∈ µ1 ∧ µ2 ⊆
µ1 • µ2. Consequently, µ1 • µ2 is a congruence on A.

Our next claim is that µ1 • µ2 ∈ Cm(A). From Birkhoff’s theorem [9, p. 49]
there exists {ϕi}i∈I ⊆ Cm(A) such that µ1 •µ2 =

∧
i∈I ϕi. Since from [6, Lemma

4.1] Cm(A) ⊆ Cm(Ae) and µ1 • µ2 ∈ Cm(Ae), thus there exists i ∈ I such that
µ1 • µ2 = ϕi.

It remains to prove that µ1 • µ2 ∼ µ. Note that (µ1 • µ2)+ = µ+
1 = µ+. Let

us consider the cases:

1) µ ∈ L. From equality (µ1 • µ2)+ = µ+ we get immediately µ1 • µ2 ∼ µ.

2) µ ∈ P . Then µ1 • µ2 ∈ L̃ ∪ P . Suppose that µ1 • µ2 ∈ L̃. Thus µ1 ∧ µ2 ≤
µ1 • µ2 contrary to Proposition 14. Thus µ1 • µ2 ∈ P and so µ1 • µ2 ∼ µ.

A maximal proper subalgebra of the Boolean group is called a hyperplane. For
Z ⊆ Cm(A), we will write Z↑ := {ν ∈ Cm(A) : ν ≥ µ for some µ ∈ Z} and
analogously Z↓ = {ν ∈ Cm(A) : ν ≤ µ for some µ ∈ Z}.

Now, following Słomczyńska [10], we introduce the notion of the hereditary
set.

Definition 16
Let A ∈ V(R) and Z ⊆ Cm(A). We say that Z is hereditary if:

1. Z = Z↑;
2. (Z ∩ P , •) is a hyperplane in (P , •) or P ⊆ Z;
3. for all µ ∈ L, if µ+ ∈ Z, then µ/∼ ⊆ Z or (µ/∼ ∩ Z, •) is a hyperplane in

(µ/∼, •).

We denote the set of all hereditary subsets of Cm(A) by H(A). Let A ∈ V(R).
We say that a ∈ A \ {1} is irreducible if Θ(1, a) is completely join-irreducible in
Con A. We denote the set of all irreducible elements in A by I(A).
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Next, we define a map M in the following way:

M : A 3 a→M(a) := {µ ∈ Cm(A) : a ∈ 1/µ}

for all A ∈ V(R).

Lemma 17
Let A ∈ V(R) be finite. Let µ ∈ Cm(A), U = µ/∼ and let (H, •) be a hyperplane in
(U, •). Then there exists a ∈ I(A) such that (1, a) ∈ (µ+\0U ) and H = M(a) ∩ U .

Proof. We first prove that if ν, φ, ψ ∈ U are different in pairs and φ∧ ψ ≤ ν, then
ν ∈ {φ, ψ, φ • ψ}. Suppose the assertion is false. Thus there exists (1, a) ∈ φ \ ν,
(1, b) ∈ ψ \ ν and (1, c) ∈ (φ • ψ) \ ν. Let d := a · b · c. Then (1, d) ∈ ν+ and
d/ν = ∗/ν. Consequently, (1, d) /∈ ν.

On the other hand, φ ∧ ψ = φ ∧ (φ • ψ) = ψ ∧ (φ • ψ) ≤ ν. Thus (1, a) ∈
ψ′∧ (φ•ψ)′, (1, b) ∈ φ′∧ (φ•ψ)′, (1, c) ∈ φ′∧ψ′. Then d/φ = 1/φ and d/ψ = 1/ψ.
Therefore (1, d) ∈ φ ∧ ψ ≤ ν, a contradiction. Subsequently, if we use Lemma 13
and apply induction, we can show that if µ0, µ1, . . . , µn ∈ U and µ1∧· · ·∧µn ≤ µ0,
then there exist i1, . . . , ik ∈ {1, . . . , n} such that µi1 • · · · • µik = µ0.

Note that, if
∧
H = 0U , then for all ν ∈ U there would exist µ1, . . . , µk ∈ H

such that µ1 • · · · •µk = ν, contrary to the assumption that (H, •) is a subalgebra
of (U, •). Thus 0U  

∧
H.

Thus there exists a ∈ I(A) such that Θ(1, a) is completely join-irreducible,
Θ(1, a) ⊆

∧
H, but Θ(1, a) * 0U . Therefore (1, a) ∈

∧
H and (1, a) ∈ (µ+ \ 0U ).

Thus H ⊆ M(a) and there exists ν ∈ U such that ν /∈ M(a). Hence H ⊆
M(a) ∩ U  U and consequently from maximality ofH we get thatH = M(a) ∩ U .

Lemma 18
Let A ∈ V(R) be finite and a ∈ I(A). Then there exists a unique U = µ/∼ ∈
Cm(A)/∼ such that (1, a) ∈ µ+ and (M(a) ∩ U, •) is a hyperplane in (U, •).

Proof. Since a 6= 1, it follows thatM(a) 6= Cm(A), and so there exists γ ∈ Cm(A)
such that γ /∈ M(a). Then (γ/∼ ∩M(a), •) is a hyperplane in (γ/∼, •) because it
is a subgroup of (γ/∼, •) and, as is easy to check, (γ/∼ ∩M(a)) ∪ {ϕ} generates
γ/∼ for all ϕ /∈ γ/∼ ∩M(a).

To prove a uniqueness, suppose, contrary to our claim, that there exist U,W ∈
Cm(A)/∼, U 6= W , which meet the assumptions. Then there exist µ, ν ∈ Cm(A)
such that µ ∈ U \M(a) and ν ∈ W \M(a). Since a /∈ 1/µ and a ∈ 1/µ+ so
Θ(1, a) ∨ µ = µ+ and Θ(1, a) ∧ µ ≤ Θ−(1, a). Hence Θ(1, a) ∧ µ = Θ−(1, a), since
otherwise we would get a contradiction with modularity of Con A. By a similar
argument we get Θ(1, a) ∨ ν = ν+ and Θ(1, a) ∧ ν = Θ−(1, a). Consequently,
µ ∼ ν, contrary to U 6= W .

Also note that if A ∈ V(R), µ ∈ Cm(A) and (1, a) ∈ µ+ so (M(a) ∩ µ/∼, •)
is a hyperplane in (µ/∼, •) or µ/∼ ⊆ M(a). Therefore, the following conclusion
follows.

Corollary 19
Let A ∈ V(R) be finite and a ∈ A. Then M(a) is a hereditary set.
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The following theorem is the key to construct the finitely generated free alge-
bras.

Theorem 20
Let A ∈ V(R) and A be finite. Then the map M : A 3 a → M(a) := {µ ∈
Cm(A) : a ∈ 1/µ} establishes the isomorphism between A and (H(A),↔, r,1),
where

Z ↔ Y := ((Z ÷ Y )↓)′,
r(Z, Y ) := P ∪ (Z ∩ Y )↓,

1 := Cm(A)

for Z, Y ∈ H(A).

Proof. First observe that if a, b ∈ A and a 6= b, then from the congruence order-
ability M(a) 6= M(b). Thus M is injective.

Now we prove that M is surjective. Fix Z ∈ H(A). If Z = Cm(A) then
Z = M(1), so assume that Z 6= Cm(A). Let’s take all the equivalence classes
on L, whose intersection with Z is a hyperplane and choose from each of these
classes one element which does not belong to Z. More precisely, let γ0, . . . , γn ∈ L
will be such that for all i ∈ {0, . . . , n}, γ+

i ∈ Z, but γi /∈ Z and γ+
i 6= γ+

j

for i, j ∈ {0, . . . , n} such that i 6= j. Therefore, (Z ∩ γi/∼, •) is a hyperplane in
(γi/∼, •) for all i ∈ {0, . . . , n}. From Lemma 17, for all i ∈ {0, . . . , n} there exist
a0, . . . , an ∈ I(A) such that M(ai) ∩ γi/∼ = Z ∩ γi/∼. Moreover, from Lemma
18, we get that ψ ∈ M(ai) for all ψ ∈ Cm(A) \ (γi/∼). Thus Z ⊆ M(ai) and
consequently Z ⊆

⋂n
i=0 M(ai).

Now, let ϕ0, . . . , ϕk ∈ L̃\Z. Similarly to the above, for all i ∈ {0, . . . , k}, there
exist b0, . . . , bk ∈ I(A) such thatM(bi) ∩ ϕi/∼ = Z ∩ ϕi/∼, andM(bi) = Cm(A)\
({ϕi}↓). Thus, ϕi /∈ Z and consequently Z ⊆ M(bi). Moreover, depending on
whether P ⊆ Z or (P ∩ Z, •) is a hyperplane in (P , •), we can choose c ∈ I(A)∪{1}
such that M(c) ∩ P = Z ∩ P (if P ⊆ Z, we have: c = 1) and L ⊆ M(c), so
Z ⊆M(c).

It remains to prove that Z = M(s), where s := a0 ·. . .·an ·b0 ·. . .·bk ·c. From the
above considerations, it follows that if u,w ∈ K := {a0, . . . , an, b0, . . . , bk, c} \ {1}
then u � w (in the sense of [7, p. 613]) and K \ {1} is an antichain. Thus, using
5.15 [7] we obtain that

Θ(1, s) =
n∨
i=0

Θ(1, ai) ∨
k∨
i=0

Θ(1, bi) ∨Θ(1, c).

Hence
n⋂
i=0

M(ai) ∩
k⋂
i=0

M(bi) ∩M(c) = M(s).

This yields, Z ⊆ M(s). To see the converse inclusion, fix µ ∈ M(s). We need to
consider three cases:

1) µ ∈ P . Then µ ∈ P ∩M(c) = Z ∩ P , and so µ ∈ Z.
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2) µ ∈ L̃. Then µ ∈ L̃ ∩
⋂k
i=0 M(bi) = L̃ \ ({ϕ0}↓ ∪ · · · ∪ {ϕk}↓}) ⊆ Z. Thus

µ ∈ Z.

3) µ ∈ L. Then µ+ ∈ L̃ ∩M(s). From 2), we obtain µ+ ∈ Z. Thus µ/∼ ⊆ Z
or (µ/∼ ∩ Z, •) is a hyperplane in (µ/∼, •). If µ/∼ ⊆ Z, we immediately
get that µ ∈ Z. In the second case there exists i ∈ {0, . . . , n} such that
µ/∼ = γi/∼ andM(ai) ∩ γi/∼ = Z ∩ γi/∼. Since µ ∈M(ai), we have µ ∈ Z.

Finally, we conclude that Z = M(s), thus M is surjective and consequently
is bijective. Moreover, M preserve operations ↔ and r, as standard calculations
show. By definition M(1) = Cm(A). Consequently, M is an isomorphism.

4. Free spectra

Using Theorem 20 we can construct the n-generated free algebra, however, in
practice it is still very difficult. In the next sections we show a method of counting
the number of elements that belong to the free algebras in V(R). To make it
easier, in this part of the work we show that every A ∈ V(R) is a direct product
of two algebras.

4.1. An algebra from V(R) as a direct product of algebras

Theorem 21
Let A ∈ V(R) be finite. Then

A ∼= A/⋂L ×A/⋂P .

Proof. Since V(R) is a congruence permutable variety, we conclude from Theorem
7.5 [1, p. 92] that it is sufficient to show that

(i)
⋂
L ∧

⋂
P = 0A and (ii)

⋂
L ∨

⋂
P = 1A.

For (i) observe that since
⋂
L ∧

⋂
P =

⋂
{µ : µ ∈ L ∪ P} =

⋂
{µ : µ ∈ Cm(A)},

thus
⋂
L ∧

⋂
P = 0A.

To prove (ii) we have to show that (1, c) ∈
⋂
L ∨

⋂
P for all c ∈ I(A). Fix

c ∈ I(A) and suppose that (1, c) /∈
⋂
P . Then (M(c) ∩ P , •) is a hyperplane in

(P, •) and from uniqueness from Lemma 18 we get that L̃ ⊆ M(c). Therefore
L ⊆M(c) and consequently (1, c) ∈

⋂
L.

Note also that if A ∈ V(R) and A finite, then there exists a natural number
n such as A/⋂P

∼= 2n. Thus, the following corollary is true.

Corollary 22
Let A ∈ V(R) be finite. Then there exists n ∈ N such that

A ∼= A/⋂L × 2n.
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4.2. The construction of the frame

Let FR(n) be the free n-generated algebra in V(R) and letX = {x1, x2, . . . , xn}
be the n-element set of free generators of FR(n). Let fR(n) denote the number of
elements of FR(n).

Let us recall that in Cm(FR(n)) we have two sides: L = L̃ ∪ L and P , where
L̃ = {µ ∈ Cm(FR(n)) : FR(n)/µ ∼= 2∧}, L = {µ ∈ Cm(FR(n)) : FR(n)/µ ∼= R}
and P = {µ ∈ Cm(FR(n)) : FR(n)/µ ∼= 2}.

The construction of the Cm(FR(n)) proceeds as follows:
1. Each µ ∈ Cm(FR(n)) is labelled by the set indices {i : xi ∈ X ∩ (1/µ)} ⊆
{1, . . . , n}.

2. L̃ (the top layer on the left) has 2n−1 elements labelled by all proper subsets
of {1, . . . , n}, each element forms the one-element equivalence class.

3. P (the top layer on the right) has 2n − 1 elements labelled by all proper
subsets of {1, . . . , n}, but in this case all elements form only one equivalence
class.

4. If µ ∈ L̃ is labelled by S ( {1, . . . , n}, so below µ (i.e. in L – the lower layer
on the left) there are elements labelled by all proper subsets of S, which
form one equivalence class.

This construction is due to the fact that, since FR(n) is the free algebra, so
we can identify every element µ ∈ Cm(FR(n)) with some function f that is a dis-
tribution of free generators on k, where k ∈ {R,2,2∧}, such that f−1({∗}) 6= ∅.
Next, any such function f , can be uniquely extended to a surjective homomor-
phism f : Cm(FR(n)) → k. Therefore, ker f = 1/µ for some µ ∈ Cm(FR(n))
(compare to [10, p. 1347-1350]).

In the figures each dot denotes an element of the frame, while straight lines
represent a partial ordering directed upwards.

4.3. FR(2)

Fig. 1: Cm(FR(2)).

Observe that Cm(FR(2)) has 8 elements (Fig. 1): 5 on the left side (each in
a separate equivalence class) and 3 on the right side (all in one equivalence class,
marked with an ellipse). On the left side we have 18 hereditary sets (all upwards
closed sets) and on the right side we have 4 hereditary sets. Summarizing we have
18 · 4 hereditary sets and so fR(2) = 72.
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4.4. FR(3)

Fig. 2: Cm(FR(3)).

In this case Cm(FR(3)) has 26 elements (Fig. 2): 19 on the left side and 7 on
the right side. The equivalence classes with more than one element are marked
with an ellipse, while each of the other elements form the one-element equivalence
classes. On the left side we have 6750 hereditary sets, whereas on the right side
we have only 8 hereditary sets. Finally, fR(3) = 54000.

4.5. The formula for the free spectrum

Finally, we give the formula for the free spectrum in V(R). From Theorem 20
we have fR(n) = |H(FR(n))|. Theorem 21 implies

fR(n) = |H(FR(n)/⋂L × FR(n)/⋂P )|.

Then, using the fact that the following function g : H
(
FR(n)/⋂L×FR(n)/⋂P

)
→

H
(
FR(n)/⋂L

)
×H

(
FR(n)/⋂P

)
, given by g(Z) = (Z ∩ L,Z ∩ P ) is a bijection,

we get
fR(n) =

∣∣∣H(FR(n)/⋂L

)∣∣∣ · ∣∣∣H(FR(n)/⋂P

)∣∣∣.
Consequently,

fR(n) = |H(L)| · |H(P )|.

First, we count the number of elements that belong to H(P ). Recall that
all elements from P are in one equivalence class. Thus, a subset of H(P ) is a
hereditary set iff it is a hyperplane or a whole Boolean group. Since P has 2n − 1
hyperplanes, hence

|H(P )| = 2n.

Next, we count the number of elements that belong to H(L).

Theorem 23
Let L = {µ ∈ Cm(FR(n)) : FR(n)/µ ∼= 2∧ or FR(n)/µ ∼= R}. Then

|H(L)| =
n−1∏
r=0

(2r + 1)(
n
r).
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Proof. First, we note that if µ, ν ∈ L̃ and µ 6= ν then {µ}↓ ∩ {ν}↓ = ∅. Thus,
it is enough to count the hereditary sets in {µ}↓ for µ ∈ L̃, and then multi-
ply results obtained for these sets. Hence, we get |H(L)| =

∏
C∈C(n)(|T (C)| +

1), where C(n) = P ({x1, x2, · · · , xn}) \ {{x1, x2, · · · , xn}} and T (C) := {D :
D is a proper subset of C}. Similarly to H(P ) we get that |T (C)| = 2|C|. There-
fore |H(L)| =

∏
C∈C(n)(2|C| + 1).

Note that if |E| = |F | for E,F ∈ C(n), then |T (E)| = |T (F )|. Hence

|H(L)| =
n−1∏
r=0

(2r + 1)(
n
r).

Finally, we get the following corollary.

Corollary 24

fR(n) = 2n
n−1∏
r=0

(2r + 1)(
n
r).
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