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Abstract. In this article we define a metrizable space of multivalued maps.
We show that the metric defined in this space is closely related to the homo-
topy of multivalued maps. Moreover, we study properties of this space and
give a few practical applications of the new metric.

1. Introduction

The notion of strongly admissible multivalued maps was introduced by L. Gér-
niewicz (see [IL 2]). Some version of strongly admissible multivalued maps (mor-
phisms) is used to study its properties (see [3, 4 B]). It is worth mentioning that
W. Kryszewski (see [6],[7]) defined morphisms that play an important role in topol-
ogy. In the paper [§] we applied morphisms to the definition of the homotopy of
multivalued mappings. In this article we define morphisms that are applied to the
construction of the metric space of multivalued maps.

2. Preliminaries

Let H, be the Cech homology functor with compact carriers and coefficients in
the field of rational numbers Q from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H,(X) = {H,(X)} is a graded vector space, H,(X) being the

g-dimensional Cech homology group with compact carriers of X. For a continuous
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map f: X =Y, H.(f) is the induced linear map f. = {f;}4>0, where
fq: Hy(X) = Hy(Y).

Throughout this paper all topological spaces are assumed to be metrizable. We
say that a compact space X is of finite type if for almost all ¢ > 0, H,(X) are
trivial and for all ¢ > 0, dim Hy(X) < oo.

THEOREM 2.1 (see [T}, 2])

LetY be a compact space of finite type. Then there exists € > 0 such that for every
compact space X and for every two maps f,g: X =Y if dy (f(z),g9(x)) < € for
each x € X, then f. = g., where dy is a metric in Y.

THEOREM 2.2 (see [2])

Let X be a metrizable space and let U be an open subset of a normed space (E, ||-||).
In addition, leti: X — U be a compact map. Then for each sufficiently smalle > 0
there exists a finite polyhedron K. C U and a map i.: X — U such that

(i) ||z —ic(x)|| <€ forallz e X,
(i) i(X) C K,
(iii) the maps i,i.: X — U are homotopic.
A continuous map f: X — Y is called proper if for every compact set K C Y
the set f~1(K) is nonempty and compact. A proper map p: X — Y is called
Vietoris provided for every y € Y the set p~!(y) is acyclic (in the sense of the

Cech homology). The symbol D(X,Y") will denote the set of all diagrams of the
form

X2 7z 1y

)

where p: Z — X denotes a Vietoris map and ¢: Z — Y denotes a continuous
map. Each such diagram will be denoted by (p, ¢). We recall that the composition
of two Vietoris maps is a Vietoris map and if p: X — Y is a Vietoris map then
pi: Ho(X) — H.(Y) is an isomorphism (see [I]).

DEFINITION 2.3 (see [I, 2])
Let (p,q) € D(X,Y) and (r,s) € D(Y,T). The composition of the diagrams

X+"— 72 ——>Y+«+"— 2, —=57T
is called the diagram (u,v) € D(X,T),

)

X «— Z1 Ny Zo —— T,

where
Zl Aqr ZQ = {(21,2’2) S Z1 X ZQ : q(Zl) = 7’(22)},
u=po fi, v=so fo
Z1 (f—l Z1 Aqr Zo L) ZQ,
fi(z1,22) = z1 (Vietoris map), fa(z1,22) = 22 for each (21,22) € Z1 Dy Zs.
It shall be written
(u,v) = (r,8) o (P, q).

In all other sections it will be assumed that the space X is compact.
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3. Pseudometric in the space D(X,Y) and its properties

Let X,Y be metrizable spaces. By the symbol dx we will denote a metric in
the space X. Set

CT)=CT,Y)={f:T—Y: fisa continuous map},
where T is a compact space. In the space C(T) we have the following metric
deery(f, 9) = sup{dy (f(1),9(t)) : t €T}
For any proper map ¢g: S — T, we observe that
de(s)(f1 09, f209) = deery(f1, f2),

where f1, fo € C(T). Let (p1,41), (p2,q2) € D(X,Y), where

X2z 2oy x&82-27, 2V
Denote by 9 a set of all metrizable spaces and set
V(X,Y)={u: X =Y : uisa Vietoris map}.
Let p; € V(Z;,X), i = 1,2. We define a set
V(p1,p2, X) ={(a1,2) € V(A,Z1) x V(A, Z3) : A€ Mand p; oy =pyoas}.

ProrosiTIiON 3.1
For each p1 € V(Z1,X) and ps € V(Z3,X) the set V(p1,p2, X) is nonempty.

Proof. Let p1 € V(Z1,X), p2 € V(Za, X), A= Z1 Ay, p, Z> (sce Definition 2.3) and
let a; € V(A, Z;) for i = 1,2 be restrictions of projections. Thus, p; o a1 = p2 o s
and the proof is completed.

We define a function D: D(X,Y) x D(X,Y) — [0,00) by the formula

D((p1,q1), (P2, q2)) = inf{dca)y(q1 0 1, q2 0 2) = (1, 2) € V(p1,p2, X)}.
By Proposition [3.1] the above definition is correct.

PROPOSITION 3.2
D((Idx, f),(p,q)) = 0 if and only if fop = q.

Proof. Let D((Idx, f),(p,q)) = 0. Then for each n € N there exist Vietoris maps
an: Ap = X, a0 A,y — Z such that oy, = poa;, and dea,)(foan,goa,) < 1/n.
Thus, for each n,

de(zy(f op,q) = dega,)((fop) ooy, qo ) = deca,)(f © an,qoay) < 1/n,

so f op = q. Proof in the opposite direction is obvious.
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PROPOSITION 3.3
The function D is a pseudometric in D(X,Y).

Proof. Let (p1,q1) = (p2,42). Then it is obvious that D((p1,q1), (p2,q2)) = 0. Tt
is clear that D is symmetric. Let (p1,q1), (p2,q2), (p3,q3) € D(X,Y), where

X p1 Zl q1 Y. X b2 ZQ q2 Y, X p3 Z3 q3 Y.

)

‘We show that

D((p1,q1), (p3,43)) < D((p1,q1), (P2, 42)) + D((P2; G2), (P3,a3))-

Set D((p1,q1), (P2, g2)) = A1 and D((p2, q2), (P3,g3)) = A2. For each natural num-
ber n there exist Vietoris maps ay,: A, — Z1, Bn: An — Zo, Yn: Bn — Z5 and
On: Bn — Z3 such that p; o o, = p2 0 B, p2 © v = p3 0y, and

dea,)(q1 o an, g2 0 Br) < A1+ 1/n,

de(B,) (42 © Y, g3 0 0n) < Ao+ 1/n.

Fix n € N and put
Cﬂ = {(anabn) S An X Bn : Bn(an) = ’Yn(bn)}

We denote by m,: C,, = A,, and 7}, : C,, — B, restrictions of projections. Observe
that 7, and 7/, are Vietoris maps and 3, o m, =y, o m,. We have

(ploan)oﬂ'n:(p2oﬁn)o7rn:(pQO'yn)OW;L:(pSOén)Oﬂ-;L'

Let o/, = ay, o m, and B!, = 6, o ), then p; o !, = p3 o B/, and

de(e,y(quoay,qs0 ;)
= dC(Cn)(QI o (an °0mp),q30 (6, 0 777/1))
< dC(cﬂ)(m o (ap 0my),q2 0 (Bn 0 my)) + d(C(Cn)(QZ o (Brnomn),q30 (0n 0 W;L))
= de(c,)((q1 0 an) 0 T, (g2 0 Bn) 0 ) + de(e,) (g2 © ) 0 7y, (g3 0 0n) 0 717,
= dg(a,)(q1 © n, 2 0 Bn) 4+ de(B,) (92 © Yn, 43 © 0n)
<A1+ A +2/n.

Thus
D((plaQ1)7 (p37Q3)) S >\1 + AQ

and the proof is completed.

It follows from Proposition that D is a not metric in the space D(X,Y).
Let f,g: X — Y be continuous maps.

ProrosIiTION 3.4
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Proof. Let r,s: Z — X be Vietoris maps such that r = Idx or = Idx o s = s,
then
dezy(for,gos)=deiz)(for,gor)=dex)(f9)

Let A C X be a nonempty set and let
O,(A) ={x € X : there exists y € A such that dx(z,y) < r},
where 7 € R, r > 0. We denote by dy the Hausdorff metric, i.e.
du(A,B) =inf{r >0: AC O,(B) and B C O,(A)},
where A, B C X are nonempty and compact sets.

ProPOSITION 3.5
If (p1,q1), (p2,q2) € D(X,Y), then for each v € X

di(q1(pr ' (2), ¢2(p3 ' (2))) < D((p1, 1), (p2, 32))-

Proof. Let (p1,q1), (p2,q2) € D(X,Y), where

X P1 Zl q1 Y, X P2 ZQ q2 Y.
and let D((p1,q1), (p2.q2)) = A. For each n € N there exist Vietoris maps
an: An — 71, o2 Ay — Zo such that py o o, = p2 o, and dga,)(q1 0 @, q2 0
)< A+1/n. FixneN, z€ X and y; € q1(p; ' (x)). Then ¢1(21) = v and
p1(21) = 2. There exists a point a,, € A, such that a,(a,) = 21. Let o, (a,) = 22
and Yz = qa(22), then 25 € py*(2) and yz € ga(p; (). We have

dy (y1,92) = dy (q1(an(an)), ¢2(a, (an))) <A+ 1/n.

Thus, q1(p; (%)) C Oxt1/n(g2(p5 ' (2))). Similarly, we can show, that go(p; ' (z)) C

O,\+1/n(q1(pl_1(x))). Therefore, dH(ql(pl_l(:c)),qg(pgl(m))) < X and the proof is
completed.

Let £ > 0 and (p, q), (r,s) € D(X,Y), where

X+ z 21,y X+~ T,V

It is easy to see that
(D((p,q); (r,5)) <€) & ((poa=rod’) and deay(goa,s0a’) <e) (1)
for some Vietoris maps a: A — Z and o’: A — T. We will write
(p,q) ~up (r,5), (2)
if there exist Vietoris maps a: A — Z and o’: A — T such that
poa=rocd andgoa~sod,

where the symbol ~ denote a homotopy joining the maps go a and so a’.
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PROPOSITION 3.6

If (p,q) ~up (r,8) then g op;t = s.or; L.

Proof. Let (p,q) ~ugp (r,s). Then there exist Vietoris maps a: A — Z and
o': A — T such that poa=roa’ and goa ~ soa’. Thus, p. oa, =1, 0a/, and
Gx 0y = 5,00, 50 p, =1, 0 and ¢, = s, 0 B4, where 3, = o/, oa;'. We have

geop,t =sc0 (o )or t =s.0r
which completes the proof.

ProprosITION 3.7
Let Y € ANR and let (p,q) € D(X,Y). Then there exists € > 0 such that for
every (r,5) € D(X,Y) if D(p,), (r,$)) < ¢, then

(p,q) ~up (1,5).

Proof. There exists an open neighborhood U C F of Y and a retraction f: U — Y,
where E is a normed space. Let K = q(p~1(X)) C U. The set K is compact, so
there exists € > 0 such that O.(K) C U. Let (r,s) € D(X,Y). We assume that
D((p,q), (r,s)) < e. There exist Vietoris maps a: A — Z and o’: A — T such
that

poa=roa’ and deay(goa,sod) <e. (3)

We have the following diagram
X «2 -z 4.y ‘vt y
me Toz
 Fee=roal
oL
X +— 1725y 50U
We define a map H: A x [0,1] — U by the formula

H(a,t) = (1 —t)q(a(a)) + ts(c/(a)) for each (a,t) € A x [0,1].

The map H is well defined (see (3)). Indeed, let a € X and ¢ € [0,1]. From the
Arens-Eels theorem we have

lg(e(@))=((1 = t)g(e(a)) + ts(a’(a)))|
= (1 = t)g(a(a)) + tg(afa)) — (1 = t)g(a(a)) — ts(a/ (a))]
‘ /

) (
= tllg(a(a)) = s(a’(a))[| < llg(a(a)) — s(a’(a))]]
= dy(q(a(a)), s(a/(a))) < de(ay(goa,soa’) <e,
where || - || is a norm in E. The map f o H is a homotopy, joining the maps g o «

and so«'. Thus, (p,q) ~gp (r,s) and the proof is completed.
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REMARK 3.8
Let (p,q), (r,s) € D(X,S™). Observe that (see Proposition for € = 2 we have

(D((p,9); (r;8)) <) = ((p:q) ~uD (7,5))-

By S™ denote the sphere with the center of 0 and a radius 1 in the Euclidean
space R™t1,

EXAMPLE 3.9 (see [1])
Let r € [0,2) and Z, = {(z,y) € S? x S? : ||z — y|| < r}. Define Vietoris maps
PraDy s 4y 2 Zr — SP by
pr(z,y
P (z,y
ar(z,y

q, (x,

for each (z,y) € Z,. We observe that for any r € [0, 2),

)

)

) =
) =
)—y,
y) =

pr~g¢gr and p. ~q..
Let my,m: (Z,ANZ,)g,.p. — Zy be projection (see Definition , then
PrOTy ~ qr OT] = Py OT2 ~ (y O T2

and similarly
Py O ~ @, O =P, 0Ty ~ (. OTy.
Hence
(Ids2,Ids2) ~gp (pr o1, pr 0 71) ~up (Pr 0T, qr 0 T2)
and
(Idsz, f) ~up (prom1,p, om) ~up (Prom,q, ©m2),

where f: S? — S? is an antipodal map. From Proposition and the fact that
f« # Ids2, we get

(g 072) 0 (prom)i # (g 0 72)s 0 (pr o) (4)
On the other hand, for every r € [v/2,2) and for each € S? we obtain
(4 0 m2)(pr 0 1) (@) = (g7 0 m2)(pr 0 1)~ (ar)) = S (5)
We have the diagram
S? & (2 A2 g, T2 S?
Tldgﬁ Tldwmzr)qu
$? LT (Zr8Zr)g,p,
lld@ lldwwzaqrw

q, om2

S? (2,07 g, s S2



[84] Mirostaw Slosarski

‘We observe that
D((pr o1, ¢y 0 m2), (pr 01,4, 0m2)) < dC(ZTAZr)q,,.p,,,)(QT 0T, q, om2) = 2.

On the other hand, D((p, o w1, g, o m2), (pr © M1, q, ©m2)) > 2 (see , Remark

. Thus,
D((p o m1,qr 0 m2), (pr 0 W1, ¢ ©m2)) =2, (6)
but, for each = € S? (see (5)),
du((gr o o) ((pr 0o m1) ™ (@), (¢; 0 m2)((pr 0 m1) ™' (2))) = 0.

At the end of the section we will formulate and prove a few lemmas which will
be used in the following sections. Let (pn,qn), (p,q) € D(X,Y), where

X Pn Zn Adn }/’ X p VA q Y.

)

n=1,2,.... We will write ((pn,qn)) --* (p,q) if for each € > 0 there exists ng
such that for each n > ny,

D((pnv%z), (p, Q)) < €.

LEMMA 3.10
((Pnsan)) --+ (p,q) if and only if there exists a Vietoris map B: A — Z such that
for each € > 0 there exists ng € N such that for each n > ng there exists a Vietoris
map oy, : A — Z, for which

Pnoa, =pof and dC(A)(Qn oap,qoff) <e.

Proof. Fix k € N. From the assumption it results that for ¢ = 1/k there exists
ni € N such that for each n > ny, there exist Vietoris maps o, : Apr — Z, and
Bkt An,kx — Z such that

PnOQpgk =PO 6n,k and dC(An’k)(Qn O Qn,k,q© Bn,k) <e. (7)

Let

Av=J I 8ri»

zZEZ n=ny,

and let m, ;. Ay — A, for n > n; be restrictions of projections. Now set
o0
-1
A = U H’Yk; (Z)7
ze€Z k=1

where v = Bny bk © Tngk = Bnk © Tni for k> 1, n > ny. Let m: A — Ay for
k > 1 be restrictions of projections. We define a Vietoris map f: A — Z as

B="PBni10Tn 1071 = Bngk©Tngk © Tk = Bk © Tnk © Tk, kE>1, n>nyg.

To show fix e > 0 and k € N such that 1/k < e. Let ay, = iy © Ty i © 7y, for
n > ng. We have
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Pn OQp =Pn O0n |k OTnkOTg =PO Bn,k O Tnk OTk
=po 5nk7k O Tny,k Ok = PO ﬁnl,l O Tny,1 O
=pop
and
dea)y(gn © anyqo B) = degay(gn © Qg © Tk © T, q O By ,1 © Tpy 1 © 1)

= dg(a)(qn © Qpk © Tk © T, G O Bry k © Tny k © Tk)
= dc(a)(qn © Qnk © Tpk © Ty GO Bk © Ty g © Tk)
=dcea, +)(@n © n kG0 Buk)
<1l/k <e.

Proof in the opposite direction is obvious.

LEMMA 3.11
((Pnsqn)) --+ (p,q) if and only if there exist Vietoris maps : A — Z, ap: A —
Zn,n=12 ... such that

ppnoa,=pof and lim g,oa, =qgof. (8)
n—roo

Proof. From Lemma [3.10| we get a Vietoris map §: A — Z such that for each
e > 0 there exists ng € N such that for each n > ng there exist Vietoris maps
apn: A — Z, for which

pnoap=pof and dcay(qnoan,qof) <e

Let € = 1/k, k € N. There exist Vietoris maps o, x: A — Z,, such that
Prnoany=pof and dea)(gnoank,qoB) <1/k

for each n > ng. We can assume that 1 =nq; <ns < ... <ng < .... We define

ap,1 for ny <n < ng,

ap =
ap i for ng <n < ngyi,

k = 2,3,.... We observe that the sequence a,,: A — Z,, n = 1,2,... satisfies
condition . Proof in the opposite direction is obvious.

LEMMA 3.12
Let A, >0, n=1,2,.... For eachn € N,

D((Pn,qn), (p,q)) < An

if and only if there exist a space T, a Vietoris map u: T — Z and for each n, a
Vietoris map vy, : T — Z,, such that

Pnovn =pou and dery(qn o v, gou) < An.
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Proof. From the assumption there exist Vietoris maps r,: T, — Z and s,,: T, —
Zy, such that p, os, =por, and  de(r,)(qn 0 8n,qorn) <Ay, n=1,2,.... Let

r=U][]m'@c]][T
z€Z n=1 n=1

and let, for each n, m,: T — T, be a restriction of a projection map. Notice that,
for each n, m, is a Vietoris map and

TnOTpn =Tnp4+1 0 Tp41-

Setting u = ry o and v, = s, o ™, we have for each n,

pnovn:(pnosn)oﬂ-n:(porn)oﬂ-n:po(rloﬂ-l):pou
and
de(1)(Gn © Vn, g o u) = deery(gn © (8n 0 Tn),q o (11 0my))
= d(C(T)(qn o (Sn o 7rn)7q o (Tn o 7771))
(

= d(C(T) gn © sn) O Tp, (q o Tn) © 7Tn)
= dc(1,)(qn © 8n,q0Tn) < An.

Proof in the opposite direction is obvious.

4. D1ist-morphisms

Let (p1,q1), (p2,q2) € D(X,Y). We define a relation in D(X,Y) by the for-
mula:

(P1,q1) ~aist (P2,q2) < D((p1,q1); (P2, G2)) = 0. 9)
From Proposition [3:3] we obtain.

PROPOSITION 4.1
The relation (9)) is an equivalence relation in D(X,Y).

The set of all equivalence classes of the above relation will be denoted by

Mgist(X,Y) = D(X,Y) (10)

/Ndist °
The elements of the space My;s:(X,Y") will be called dist-morphisms.

DEFINITION 4.2

For any Qdist € Mdist (X, Y)7 the set @(x) = q(pil(x))a where Pdist = [(p7 Q)}dist is
called the image of the point x in the dist-morphism @g;s¢.

We observe that from Proposition [3.5]

((p,q) ~aist (r,8)) = (g(p~(x)) = s(r~*(z)) for each z € X).
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Thus, it follows that Definition [£.2]is correct. We will write
Q- X —pY

if it is a multivalued map determined by the dist-morphism @45t = [(, ¢)]dist,
where (p,q) € D(X,Y). We recall that a multivalued map ¢: X — Y is called
strongly admissible (see [I]) provided there exists a diagram (p,q) € D(X,Y") such
that ¢(p~1(x)) = () for each z € X. From Example [3.9| we get

EXAMPLE 4.3

Let ¢: S? — S? be a multivalued map given by the formula p(x) = S? for each
x € S2. Observe that ¢ is strongly admissible (see (5)). Let 1, p2: S? —p S? be
multivalued maps determined by

(P1)dist = [(Pr o1, Gr 0 T2)]aist and  (p2)dist = [(Pr © 71, Gy © T2)]dist

respectively, where r € [v/2,2). From @ it results that 1 # @9, but for each
x € S? we have ¢1(7) = pa(z) = p(z) = S? (see (7).

Proposition implies the following result.

PROPOSITION 4.4

LetY € ANR and (p,q),(r,s) € D(X,Y). If D((p,q), (r,s)) =0 then (p,q) ~up
(r,s).

DEFINITION 4.5

Let Y € ANR and ¢,v¢: X —p Y be maps determined by @gist = [(, q)]aist and
Yaist = [(1, 8)]aist respectively, where (p,q), (r,s) € D(X,Y). We will say that ¢
and v are homotopic (we will write ¢ ~p ¥) if (p,q) ~up (r,5).

We denote by Mp(X,Y) = Mg(X,Y) (see (10) a set of all multivalued
maps ¢: X —=p Y.

LEMMA 4.6
The relation ~pp (see (2)) is transitive in the set D(X,Y).

Proof. Let (p,q), (r,s), (u,v) € D(X,Y), where

X2 z 945y X+ T 3y X2t Py,

There exist Vietoris maps a: A — Z, 8: A—T,v: B— T, : B— P such that
poa=rof, goa~sofl and rToy=wuod, soy~voJ.
Let (see Definition [2.3)
A ™ AN, B "2 B,
where 74, 7p are restrictions of projections and

foma =7yomp.
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It is clear that oo w4 and § o mg are Vietoris maps. We have

po(aomy)=ro(foma)=ro(yonmg)=uo(domp)

and
go(aomy)~so(Boms)=so(yomp)~vo(domp).

This completes the proof.

ProProOSITION 4.7
IfY € ANR then the homotopy ~p is an equivalence relation in Mp(X,Y).

Proof. From Proposition [I.4] the relation ~p is reflexive. It is obvious that it is
symmetrical. We show that ~p is transitive. Let ¢, ¢, n € Mp(X,Y) be such that

e~p¢ and P ~p7.
From Definition there exist (p,q) € waist, (r,8) € Vaist, (1',8") € Yaist and
(u,v) € ngist such that
(p,q) ~up (r,s) and (r',s') ~up (u,v).
We must show that (p,q) ~gp (u,v). From Proposition [4.4] we obtain
(r,s) ~up (', 8").
From Lemma (p,q) ~up (u,v) and the proof is completed.

Let ¢: X —p Y be a map determined by @gist = [(p, ¢)]dist, ¥ € ANR. We
define

Pu=quop, . (11)
From Proposition and Proposition it results that definition is correct.

THEOREM 4.8
The space Mp(X,Y) is metrizable.

Proof. Let D: Mp(X,Y) x Mp(X,Y) — [0,00) be a map given by the formula

D(@v ¢) = D(@dist, wdist) = D((p, q)a (7‘, S)),

where ¢, 9 € Mp(X,Y) are determined by waist = [(p, @)]dist and Yaise = [(7, $)]dist,
respectively and let (p,q), (r,s) € D(X,Y). The map D is well defined. Indeed,
let (p1,q1) ~aist (p,q) and (71, $1) ~aist (1,5). We show that

D((pla ql)v (Tlv 81)) - D((pa Q), (T’, 8))

We have

D((p1:q1), (r1,51)) < D((p1, @) (p, @) + D((p. @), (r,8)) + D((r, 5), (r1,51))
= D((p, ), (r,s))

and similarly
D((p.q); (r,s)) < D((p1,q1), (r1,51))-

It is easy to show that D satisfies the metric conditions (see Proposition |3.3) and
the proof is completed.
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5. Properties of the space M(X,Y)
We denote by
Blp,r) ={¢ € Mp(X,Y) : D(p,¢) <r}
an open ball in Mp(X,Y) with the center of ¢ and a radius r > 0.

PRrOPOSITION 5.1
The set C(X,Y) is closed in Mp(X,Y).

Proof. We show that for each ¢ € (Mp(X,Y)\C(X,Y)) there exists r > 0 such
that
B(p,r)NC(X,Y) = 0.

Assume the contrary, that there exists ¢ € (Mp(X,Y)\C(X,Y)) such that for
each € > 0,
B(p,e) NC(X,Y) # 0.

There exists a point ¢ € X such that diam(p(zg)) =7 > 0. Let € = r/3. From
the assumption there exists f € C(X,Y) such that f € B(p,e). By Proposition
[3:5] we get that for each z € X,

du(p(x), f(2)) <e.

Thus, ¢(z9) C O<(f(x0)), but it is a contradiction and the proof is completed.

PROPOSITION 5.2
Let Y € ANR be a compact space. Then C(X,Y) C Mp(X,Y) is a boundary set.

Proof. Let f € C(X,Y). We show that for each € > 0,
B(f,e) N (Mp(X,Y)\C(X,Y)) # 0.
There exists a sequence (f,) C C(X,Y) such that

lim f,=f and f, # f for each n € N. (12)
n—oo

The space Y € ANR, so there exist an open neighborhood V' C @ of Y and a
retraction 7: V' — Y. Let ¢ = dist(Y,Q\ V). The map r is uniformly continuous,
so there exists 0 < § < € such that for each x,y € V we have

(do(x,y) < 0) = (dy (r(z),r(y)) <e). (13)

There exists ng such that for each n > no, de(x)(fn, f) < 0. Let g = fn,. We
define a map s: X x [0,1] — V by the formula

s(x,t) = (1 =t)f(z) + tg(x) for each (z,t) € X x [0,1].
Let h: X x [0,1] = Y be a map given by

h=ros.
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We have the following diagram

X 2 Xx[0,1] —25 v

Tldx TIdXX[D,l]

X 2 X x|0,1]

l]dx J/p

x JHdx X # Y,
where p: X x[0,1] — X is a projection. It is obvious that p is a Vietoris map. We
observe that d(C(Xx[O,l],V)(‘S? fop) <d. From we get de(x xo,1))(h, fop) <e.
Thus,

D(<IdX7 f)7 (p7 h)) <e.

Let ¢: X —p Y be a multivalued map determined by pgist = [(p, h)]aist- There
exists a point zo € X such that g(zg) # f(zo) (see (12))). It is obvious that f(zg) =

r(f(z0)) € h(p~'(z0)) and g(zo) = r(g(z0)) € h(p~'(z0)), so ¢ ¢ C(X,Y) and
¢ € B(f,e) and the proof is completed.

PROPOSITION 5.3
Let Y be a locally compact space. If Y is contractible then Mp(X,Y) is a con-
tractible space.

Proof. Let Y be a contractible space and let yg € Y. There exists a map h: Y X
[0,1] — Y such that

hy,0) =y and h(y,1)=1yo for each y € Y.

Let

X 2 7z .y

)

where p: Z — X is a Vietoris map and qo: Z — Y is a constant map, i.e. qo(z) =
yo for each z € Z. We observe that ¢o: X —p Y, determined by (po)dise =
[(p, q0)]dist, is constant, i.e. ¢o(xz) = yo for each & € X. Define a homotopy
H: Mp(X,Y) x [0,1] = Mp(X,Y) by the formula

H([(p: @)laise; 1) = [(p, h(q,1)]aise  for each [(p, q)]aist € Mp(X,Y)andt € [0,1],

where for every t € [0,1] and ¢: Z — Y the map h(q,t): Z — Y is given by
h(g,t)(z) = h(q(2),t) for each z € Z.

The map H is well defined. Indeed, let ¢ € [0,1] and let (r,s) ~4ist (p,q), where

X+ z 21,y X+~ T,V

From Lemma there exist Vietoris maps «,,: A — Z, f: A — T such that

poap=rofl and dgay(goan,sof3)<1/n, n=12,....
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Let K = s(B(A)). It is clear that K C Y is compact. The space Y is locally
compact, so there exists A > 0 such that O, (K) is compact. There exists ng € N
such that for each n > ng and for each a € A, q(an(a)) € Ox(K). The map
h(-,t): OA(K) — Y is uniformly continuous. Thus,

(’I“, h(37 t)) ~dist (p7 h’(Qa t))

Similarly, we show that H is continuous (see Lemma|3.11)). It is clear that for each
[(p7 q)]dist € MD(Xv Y)a

H([(p, @)]aist; 0) = [(p, @)]aist  and  H([(p, q)]aist, 1) = [(P, q0)]dist

and the proof is completed.

6. Applications of D-metric

Let ¢n, p: X —p Y be multivalued maps determined by (¢n,)dist = [(Pn, Gn)]dist
and @gist = [(p, q)]dist, respectively, where

X p VA q }/’ X Pn Zn dn Y

and n =1,2,.... Let ¢o: X —p X be a multivalued map determined by @45t =
[(p, q@)]aist- We recall that ¢ has a fixed point (we write Fiz(p) # 0) if there exists
xg € X such that zg € p(xg). We observe that xg is a fixed point of ¢ if and only
if there exists zg € Z such that p(zo) = q(z0) = zo.

PROPOSITION 6.1

Let X be a compact space and let p: X —p X be a multivalued map determined by
Cdist = [(D, Q))aist- If for each € > 0 there exists a multivalued map o.: X —p X
such that Fiz(p.) # 0 and D(p., @) < €, then Fix(p) # 0.

Proof. From the assumption, for each n there exists ,,: X —p X determined by
(pn)dist = [(Pn, @n)]dist such that Fiz(e,) # 0 and D(¢,, ¢) < 1/n. From Lemma

there exist a space T', a Vietoris map u: T — Z and for each n a Vietoris
map v, : T — Z, such that

Pnovp =pou and dery(gn © vn,qou) < 1/n.

It is clear that T is a compact space. Let (z,) C X be a sequence of fixed points
such that x,, € v, (x,) for each n. Thus, for each n there exists ¢,, € T such that

and
dx (p(u(tn)), q(u(tn))) = dx (gn(vn(tn)), q(u(tn))) < 1/n.

We can assume that ¢,, is convergent to to € T. Thus, p(u(to)) = q(u(to)) and ¢
has a fixed point, this ends the proof.
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From Proposition [3.7] (see Definition we get.

PROPOSITION 6.2
LetY € ANR and let ¢ € Mp(X,Y). Then there exists € > 0 such that for every

e Mp(X,Y) if D(p,9) < e, then ¢ ~p 1.

PROPOSITION 6.3

Let E be a normed space and let ¢: T —p U be a compact multivalued map
(o(T) C U is compact) determined by vaist = [(p, q)]dist, where U C E is an open
set. Then for each sufficiently small € > 0 there exist a finite polyhedron K. C U
and a multivalued map p.: T —p U such that the following conditions are satisfied

D(¢e, ) <, (14)
¢(T) C K-, (15)
Pe ~D P- (16)

Proof. Let K = p(T) = q(p~'(T)) C U and let i: K < U be an inclusion. We
have

T+~ 7z 213 K "1,
where ¢(z) = q(z) for each z € Z. It follows from Theorem [2.2] that for sufficiently
small € > 0 there exists a finite polyhedron K. C U and a continuous function
ic: K — U such that the conditions of Theorem [2.2] are satisfied. Let p.: T —p U
be a multivalued map determined by (©e)aist = [(, i ©q)]aist- Then the conditions
f are satisfied and the proof is completed.

PRrOPOSITION 6.4
LetY be a compact space of finite type. Then there exists € > 0 such that for every
compact space X and for every two maps @, € Mp(X,Y), if D(p,v) < €, then

O = Ps.

Proof. We take 1 > 0 from Theorem and fix arbitrary € < 1. Let ¢ and 9
be determined by @gist = [(p, ¢)]daist and Yaise = [(7, $)]aist, respectively, where

X+t z 2,y X+ 17 Y.

Assume that
D(p,¥) = D((p, q), (r,5)) <e.
There exist Vietoris maps (see (1)) a: A — Z, o/: A — T such that

poa=rod’ and deay(goa,sod) <e.
Hence and from Theorem
_ / d _ /
pxoa,=ry0a, and g.oaq,=s,0q..
Let uy =p,oa, =r,o0a’ and v, = g, 0o, = 5, 0 .. We have
* *

1

viourt = (goa)o (o) = (g oan)o(art oplt) = quop;
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and similarly

Thus,

veouyt = (s.0a)o (rooal)”

—1 —1
Pu =quOP, T =S 0T, =1y

and the proof is completed.

7.

Conclusion

Dist-morphisms have many interesting properties and applications. They con-
stitute a very good tool for studying the properties of multivalued maps. They
have been used for the construction of the metric space of multivalued maps (see
Theorem 4.8]). In section |b|a few properties of such a space were given. In section
[6] on the other hand, a few practical applications of D-metrics in topology were

given.
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