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Abstract. In this article we define a metrizable space of multivalued maps.
We show that the metric defined in this space is closely related to the homo-
topy of multivalued maps. Moreover, we study properties of this space and
give a few practical applications of the new metric.

1. Introduction

The notion of strongly admissible multivalued maps was introduced by L. Gór-
niewicz (see [1, 2]). Some version of strongly admissible multivalued maps (mor-
phisms) is used to study its properties (see [3, 4, 5]). It is worth mentioning that
W. Kryszewski (see [6, 7]) defined morphisms that play an important role in topol-
ogy. In the paper [8] we applied morphisms to the definition of the homotopy of
multivalued mappings. In this article we define morphisms that are applied to the
construction of the metric space of multivalued maps.

2. Preliminaries

Let H∗ be the C̆ech homology functor with compact carriers and coefficients in
the field of rational numbers Q from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X) being the
q-dimensional C̆ech homology group with compact carriers of X. For a continuous
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map f : X → Y , H∗(f) is the induced linear map f∗ = {fq}q≥0, where

fq : Hq(X)→ Hq(Y ).

Throughout this paper all topological spaces are assumed to be metrizable. We
say that a compact space X is of finite type if for almost all q ≥ 0, Hq(X) are
trivial and for all q ≥ 0, dimHq(X) <∞.
Theorem 2.1 (see [1, 2])
Let Y be a compact space of finite type. Then there exists ε > 0 such that for every
compact space X and for every two maps f, g : X → Y if dY (f(x), g(x)) < ε for
each x ∈ X, then f∗ = g∗, where dY is a metric in Y .
Theorem 2.2 (see [2])
Let X be a metrizable space and let U be an open subset of a normed space (E, ‖·‖).
In addition, let i : X → U be a compact map. Then for each sufficiently small ε > 0
there exists a finite polyhedron Kε ⊂ U and a map iε : X → U such that

(i) ‖x− iε(x)‖ < ε for all x ∈ X,
(ii) iε(X) ⊂ Kε,
(iii) the maps i, iε : X → U are homotopic.
A continuous map f : X → Y is called proper if for every compact set K ⊂ Y

the set f−1(K) is nonempty and compact. A proper map p : X → Y is called
Vietoris provided for every y ∈ Y the set p−1(y) is acyclic (in the sense of the
Čech homology). The symbol D(X,Y ) will denote the set of all diagrams of the
form

X
p←−−−− Z

q−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous
map. Each such diagram will be denoted by (p, q). We recall that the composition
of two Vietoris maps is a Vietoris map and if p : X → Y is a Vietoris map then
p∗ : H∗(X)→ H∗(Y ) is an isomorphism (see [1]).
Definition 2.3 (see [1, 2])
Let (p, q) ∈ D(X,Y ) and (r, s) ∈ D(Y, T ). The composition of the diagrams

X
p←−−−− Z1

q−−−−→ Y
r←−−−− Z2

s−−−−→ T,

is called the diagram (u, v) ∈ D(X,T ),

X
u←−−−− Z1 4qr Z2

v−−−−→ T,

where
Z1 4qr Z2 = {(z1, z2) ∈ Z1 × Z2 : q(z1) = r(z2)},

u = p ◦ f1, v = s ◦ f2,

Z1
f1←−−−− Z1 4qr Z2

f2−−−−→ Z2,

f1(z1, z2) = z1 (Vietoris map), f2(z1, z2) = z2 for each (z1, z2) ∈ Z1 4qr Z2.

It shall be written
(u, v) = (r, s) ◦ (p, q).

In all other sections it will be assumed that the space X is compact.
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3. Pseudometric in the space D(X, Y ) and its properties

Let X,Y be metrizable spaces. By the symbol dX we will denote a metric in
the space X. Set

C(T ) ≡ C(T, Y ) = {f : T → Y : f is a continuous map},

where T is a compact space. In the space C(T ) we have the following metric

dC(T )(f, g) = sup{dY (f(t), g(t)) : t ∈ T}.

For any proper map g : S → T , we observe that

dC(S)(f1 ◦ g, f2 ◦ g) = dC(T )(f1, f2),

where f1, f2 ∈ C(T ). Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

Denote by M a set of all metrizable spaces and set

V(X,Y ) = {u : X → Y : u is a Vietoris map}.

Let pi ∈ V(Zi, X), i = 1, 2. We define a set

V(p1, p2, X) = {(α1, α2) ∈ V(A,Z1)× V(A,Z2) : A ∈M and p1 ◦ α1 = p2 ◦ α2}.

Proposition 3.1
For each p1 ∈ V(Z1, X) and p2 ∈ V(Z2, X) the set V(p1, p2, X) is nonempty.

Proof. Let p1 ∈ V(Z1, X), p2 ∈ V(Z2, X), A = Z14p1p2Z2 (see Definition 2.3) and
let αi ∈ V(A,Zi) for i = 1, 2 be restrictions of projections. Thus, p1 ◦α1 = p2 ◦α2
and the proof is completed.

We define a function D : D(X,Y )×D(X,Y )→ [0,∞) by the formula

D((p1, q1), (p2, q2)) = inf{dC(A)(q1 ◦ α1, q2 ◦ α2) : (α1, α2) ∈ V(p1, p2, X)}.

By Proposition 3.1 the above definition is correct.

Proposition 3.2
D((IdX , f), (p, q)) = 0 if and only if f ◦ p = q.

Proof. Let D((IdX , f), (p, q)) = 0. Then for each n ∈ N there exist Vietoris maps
αn : An → X, α′n : An → Z such that αn = p◦α′n and dC(An)(f ◦αn, q◦α′n) ≤ 1/n.
Thus, for each n,

dC(Z)(f ◦ p, q) = dC(An)((f ◦ p) ◦ α′n, q ◦ α′n) = dC(An)(f ◦ αn, q ◦ α′n) ≤ 1/n,

so f ◦ p = q. Proof in the opposite direction is obvious.
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Proposition 3.3
The function D is a pseudometric in D(X,Y ).

Proof. Let (p1, q1) = (p2, q2). Then it is obvious that D((p1, q1), (p2, q2)) = 0. It
is clear that D is symmetric. Let (p1, q1), (p2, q2), (p3, q3) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y, X
p3←−−−− Z3

q3−−−−→ Y.

We show that

D((p1, q1), (p3, q3)) ≤ D((p1, q1), (p2, q2)) +D((p2, q2), (p3, q3)).

Set D((p1, q1), (p2, q2)) = λ1 and D((p2, q2), (p3, q3)) = λ2. For each natural num-
ber n there exist Vietoris maps αn : An → Z1, βn : An → Z2, γn : Bn → Z2 and
δn : Bn → Z3 such that p1 ◦ αn = p2 ◦ βn, p2 ◦ γn = p3 ◦ δn and

dC(An)(q1 ◦ αn, q2 ◦ βn) ≤ λ1 + 1/n,
dC(Bn)(q2 ◦ γn, q3 ◦ δn) ≤ λ2 + 1/n.

Fix n ∈ N and put

Cn = {(an, bn) ∈ An ×Bn : βn(an) = γn(bn)}.

We denote by πn : Cn → An and π′n : Cn → Bn restrictions of projections. Observe
that πn and π′n are Vietoris maps and βn ◦ πn = γn ◦ π′n. We have

(p1 ◦ αn) ◦ πn = (p2 ◦ βn) ◦ πn = (p2 ◦ γn) ◦ π′n = (p3 ◦ δn) ◦ π′n.

Let α′n = αn ◦ πn and β′n = δn ◦ π′n then p1 ◦ α′n = p3 ◦ β′n and

dC(Cn)(q1 ◦ α′n, q3 ◦ β′n)
= dC(Cn)(q1 ◦ (αn ◦ πn), q3 ◦ (δn ◦ π′n))
≤ dC(Cn)(q1 ◦ (αn ◦ πn), q2 ◦ (βn ◦ πn)) + dC(Cn)(q2 ◦ (βn ◦ πn), q3 ◦ (δn ◦ π′n))
= dC(Cn)((q1 ◦ αn) ◦ πn, (q2 ◦ βn) ◦ πn) + dC(Cn)((q2 ◦ γn) ◦ π′n, (q3 ◦ δn) ◦ π′n)
= dC(An)(q1 ◦ αn, q2 ◦ βn) + dC(Bn)(q2 ◦ γn, q3 ◦ δn)
≤ λ1 + λ2 + 2/n.

Thus
D((p1, q1), (p3, q3)) ≤ λ1 + λ2

and the proof is completed.

It follows from Proposition 3.2 that D is a not metric in the space D(X,Y ).
Let f, g : X → Y be continuous maps.

Proposition 3.4
D((IdX , f), (IdX , g)) = dC(X)(f, g).
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Proof. Let r, s : Z → X be Vietoris maps such that r = IdX ◦ r = IdX ◦ s = s,
then

dC(Z)(f ◦ r, g ◦ s) = dC(Z)(f ◦ r, g ◦ r) = dC(X)(f, g).

Let A ⊂ X be a nonempty set and let

Or(A) = {x ∈ X : there exists y ∈ A such that dX(x, y) < r},

where r ∈ R, r > 0. We denote by dH the Hausdorff metric, i.e.

dH(A,B) = inf{r ≥ 0 : A ⊂ Or(B) and B ⊂ Or(A)},

where A,B ⊂ X are nonempty and compact sets.

Proposition 3.5
If (p1, q1), (p2, q2) ∈ D(X,Y ), then for each x ∈ X

dH(q1(p−1
1 (x)), q2(p−1

2 (x))) ≤ D((p1, q1), (p2, q2)).

Proof. Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

and let D((p1, q1), (p2, q2)) = λ. For each n ∈ N there exist Vietoris maps
αn : An → Z1, α′n : An → Z2 such that p1 ◦ αn = p2 ◦ α′n and dC(An)(q1 ◦ αn, q2 ◦
α′n) ≤ λ + 1/n. Fix n ∈ N, x ∈ X and y1 ∈ q1(p−1

1 (x)). Then q1(z1) = y1 and
p1(z1) = x. There exists a point an ∈ An such that αn(an) = z1. Let α′n(an) = z2
and y2 = q2(z2), then z2 ∈ p−1

2 (x) and y2 ∈ q2(p−1
2 (x)). We have

dY (y1, y2) = dY (q1(αn(an)), q2(α′n(an))) ≤ λ+ 1/n.

Thus, q1(p−1
1 (x)) ⊂ Oλ+1/n(q2(p−1

2 (x))). Similarly, we can show, that q2(p−1
2 (x)) ⊂

Oλ+1/n(q1(p−1
1 (x))). Therefore, dH(q1(p−1

1 (x)), q2(p−1
2 (x))) ≤ λ and the proof is

completed.

Let ε > 0 and (p, q), (r, s) ∈ D(X,Y ), where

X
p←−−−− Z

q−−−−→ Y, X
r←−−−− T

s−−−−→ Y.

It is easy to see that

(D((p, q), (r, s)) < ε)⇔ ((p ◦ α = r ◦ α′) and dC(A)(q ◦ α, s ◦ α′) < ε) (1)

for some Vietoris maps α : A→ Z and α′ : A→ T . We will write

(p, q) ∼HD (r, s), (2)

if there exist Vietoris maps α : A→ Z and α′ : A→ T such that

p ◦ α = r ◦ α′ and q ◦ α ∼ s ◦ α′,

where the symbol ∼ denote a homotopy joining the maps q ◦ α and s ◦ α′.
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Proposition 3.6
If (p, q) ∼HD (r, s) then q∗ ◦ p−1

∗ = s∗ ◦ r−1
∗ .

Proof. Let (p, q) ∼HD (r, s). Then there exist Vietoris maps α : A → Z and
α′ : A→ T such that p ◦ α = r ◦ α′ and q ◦ α ∼ s ◦ α′. Thus, p∗ ◦ α∗ = r∗ ◦ α′∗ and
q∗ ◦ α∗ = s∗ ◦ α′∗, so p∗ = r∗ ◦ β∗ and q∗ = s∗ ◦ β∗, where β∗ = α′∗ ◦ α−1

∗ . We have

q∗ ◦ p−1
∗ = s∗ ◦ (β∗ ◦ β−1

∗ ) ◦ r−1
∗ = s∗ ◦ r−1

∗ ,

which completes the proof.

Proposition 3.7
Let Y ∈ ANR and let (p, q) ∈ D(X,Y ). Then there exists ε > 0 such that for
every (r, s) ∈ D(X,Y ) if D((p, q), (r, s)) < ε, then

(p, q) ∼HD (r, s).

Proof. There exists an open neighborhood U ⊂ E of Y and a retraction f : U → Y ,
where E is a normed space. Let K = q(p−1(X)) ⊂ U . The set K is compact, so
there exists ε > 0 such that Oε(K) ⊂ U . Let (r, s) ∈ D(X,Y ). We assume that
D((p, q), (r, s)) < ε. There exist Vietoris maps α : A → Z and α′ : A → T such
that

p ◦ α = r ◦ α′ and dC(A)(q ◦ α, s ◦ α′) < ε. (3)

We have the following diagram

X
p←−−−− Z

q−−−−→ Y
i−−−−→ U

f−−−−→ YxIdX

xα
X

p◦α=r◦α′←−−−−−− AyIdX

yα′
X

r←−−−− T
s−−−−→ Y

i−−−−→ U
f−−−−→ Y.

We define a map H : A× [0, 1]→ U by the formula

H(a, t) = (1− t)q(α(a)) + ts(α′(a)) for each (a, t) ∈ A× [0, 1].

The map H is well defined (see (3)). Indeed, let a ∈ X and t ∈ [0, 1]. From the
Arens-Eels theorem we have

‖q(α(a))−((1− t)q(α(a)) + ts(α′(a)))‖
= ‖(1− t)q(α(a)) + tq(α(a))− (1− t)q(α(a))− ts(α′(a))‖
= t‖q(α(a))− s(α′(a))‖ ≤ ‖q(α(a))− s(α′(a))‖
= dY (q(α(a)), s(α′(a))) ≤ dC(A)(q ◦ α, s ◦ α′) < ε,

where ‖ · ‖ is a norm in E. The map f ◦H is a homotopy, joining the maps q ◦ α
and s ◦ α′. Thus, (p, q) ∼HD (r, s) and the proof is completed.
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Remark 3.8
Let (p, q), (r, s) ∈ D(X,Sn). Observe that (see Proposition 3.7) for ε = 2 we have

(D((p, q), (r, s)) < ε)⇒ ((p, q) ∼HD (r, s)).

By Sn denote the sphere with the center of 0 and a radius 1 in the Euclidean
space Rn+1.

Example 3.9 (see [1])
Let r ∈ [0, 2) and Zr = {(x, y) ∈ S2 × S2 : ‖x − y‖ ≤ r}. Define Vietoris maps
pr, p

−
r , qr, q

−
r : Zr → S2 by

pr(x, y) = x,

p−r (x, y) = −x,
qr(x, y) = y,

q−r (x, y) = −y

for each (x, y) ∈ Zr. We observe that for any r ∈ [0, 2),

pr ∼ qr and p−r ∼ q−r .

Let π1, π2 : (Zr4Zr)qrpr
→ Zr be projection (see Definition 2.3), then

pr ◦ π1 ∼ qr ◦ π1 = pr ◦ π2 ∼ qr ◦ π2

and similarly
p−r ◦ π1 ∼ q−r ◦ π1 = p−r ◦ π2 ∼ q−r ◦ π2.

Hence
(IdS2 , IdS2) ∼HD (pr ◦ π1, pr ◦ π1) ∼HD (pr ◦ π1, qr ◦ π2)

and
(IdS2 , f) ∼HD (pr ◦ π1, p

−
r ◦ π1) ∼HD (pr ◦ π1, q

−
r ◦ π2),

where f : S2 → S2 is an antipodal map. From Proposition 3.6 and the fact that
f∗ 6= IdS2∗ we get

(qr ◦ π2)∗ ◦ (pr ◦ π1)−1
∗ 6= (q−r ◦ π2)∗ ◦ (pr ◦ π1)−1

∗ . (4)

On the other hand, for every r ∈ [
√

2, 2) and for each x ∈ S2 we obtain

(qr ◦ π2)((pr ◦ π1)−1(x)) = (q−r ◦ π2)((pr ◦ π1)−1(x)) = S2. (5)

We have the diagram

S2 pr◦π1←−−−− (Zr4Zr)qrpr

qr◦π2−−−−→ S2xIdS2

xId(Zr4Zr)qrpr

S2 pr◦π1←−−−− (Zr4Zr)qrpryIdS2

yId(Zr4Zr)qrpr

S2 pr◦π1←−−−− (Zr4Zr)qrpr

q−r ◦π2−−−−→ S2.
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We observe that

D((pr ◦ π1, qr ◦ π2), (pr ◦ π1, q
−
r ◦ π2)) ≤ dC(Zr4Zr)qrpr )(qr ◦ π2, q

−
r ◦ π2) = 2.

On the other hand, D((pr ◦ π1, qr ◦ π2), (pr ◦ π1, q
−
r ◦ π2)) ≥ 2 (see (4), Remark

3.8). Thus,
D((pr ◦ π1, qr ◦ π2), (pr ◦ π1, q

−
r ◦ π2)) = 2, (6)

but, for each x ∈ S2 (see (5)),

dH((qr ◦ π2)((pr ◦ π1)−1(x)), (q−r ◦ π2)((pr ◦ π1)−1(x))) = 0.

At the end of the section we will formulate and prove a few lemmas which will
be used in the following sections. Let (pn, qn), (p, q) ∈ D(X,Y ), where

X
pn←−−−− Zn

qn−−−−→ Y, X
p←−−−− Z

q−−−−→ Y,

n = 1, 2, . . .. We will write ((pn, qn)) 99K (p, q) if for each ε > 0 there exists n0
such that for each n ≥ n0,

D((pn, qn), (p, q)) < ε.

Lemma 3.10
((pn, qn)) 99K (p, q) if and only if there exists a Vietoris map β : A→ Z such that
for each ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exists a Vietoris
map αn : A→ Zn for which

pn ◦ αn = p ◦ β and dC(A)(qn ◦ αn, q ◦ β) < ε.

Proof. Fix k ∈ N. From the assumption it results that for ε = 1/k there exists
nk ∈ N such that for each n ≥ nk there exist Vietoris maps αn,k : An,k → Zn and
βn,k : An,k → Z such that

pn ◦ αn,k = p ◦ βn,k and dC(An,k)(qn ◦ αn,k, q ◦ βn,k) < ε. (7)

Let

Ak =
⋃
z∈Z

∞∏
n=nk

β−1
n,k(z)

and let πn,k : Ak → An,k for n ≥ nk be restrictions of projections. Now set

A =
⋃
z∈Z

∞∏
k=1

γ−1
k (z),

where γk = βnk,k ◦ πnk,k = βn,k ◦ πn,k for k ≥ 1, n ≥ nk. Let πk : A → Ak for
k ≥ 1 be restrictions of projections. We define a Vietoris map β : A→ Z as

β = βn1,1 ◦ πn1,1 ◦ π1 = βnk,k ◦ πnk,k ◦ πk = βn,k ◦ πn,k ◦ πk, k ≥ 1, n ≥ nk.

To show (7) fix ε > 0 and k ∈ N such that 1/k < ε. Let αn = αn,k ◦ πn,k ◦ πk for
n ≥ nk. We have
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pn ◦ αn = pn ◦ αn,k ◦ πn,k ◦ πk = p ◦ βn,k ◦ πn,k ◦ πk
= p ◦ βnk,k ◦ πnk,k ◦ πk = p ◦ βn1,1 ◦ πn1,1 ◦ π1

= p ◦ β

and

dC(A)(qn ◦ αn, q ◦ β) = dC(A)(qn ◦ αn,k ◦ πn,k ◦ πk, q ◦ βn1,1 ◦ πn1,1 ◦ π1)
= dC(A)(qn ◦ αn,k ◦ πn,k ◦ πk, q ◦ βnk,k ◦ πnk,k ◦ πk)
= dC(A)(qn ◦ αn,k ◦ πn,k ◦ πk, q ◦ βn,k ◦ πn,k ◦ πk)
= dC(An,k)(qn ◦ αn,k, q ◦ βn,k)
< 1/k < ε.

Proof in the opposite direction is obvious.

Lemma 3.11
((pn, qn)) 99K (p, q) if and only if there exist Vietoris maps β : A → Z, αn : A →
Zn, n = 1, 2, . . . such that

pn ◦ αn = p ◦ β and lim
n→∞

qn ◦ αn = q ◦ β. (8)

Proof. From Lemma 3.10 we get a Vietoris map β : A → Z such that for each
ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exist Vietoris maps
αn : A→ Zn for which

pn ◦ αn = p ◦ β and dC(A)(qn ◦ αn, q ◦ β) < ε.

Let ε = 1/k, k ∈ N. There exist Vietoris maps αn,k : A→ Zn such that

pn ◦ αn,k = p ◦ β and dC(A)(qn ◦ αn,k, q ◦ β) < 1/k

for each n ≥ nk. We can assume that 1 = n1 < n2 < . . . < nk < . . .. We define

αn =



αn,1 for n1 ≤ n < n2,
...
αn,k for nk ≤ n < nk+1,
...

k = 2, 3, . . .. We observe that the sequence αn : A → Zn, n = 1, 2, . . . satisfies
condition (8). Proof in the opposite direction is obvious.

Lemma 3.12
Let λn > 0, n = 1, 2, . . .. For each n ∈ N,

D((pn, qn), (p, q)) < λn

if and only if there exist a space T , a Vietoris map u : T → Z and for each n, a
Vietoris map vn : T → Zn such that

pn ◦ vn = p ◦ u and dC(T )(qn ◦ vn, q ◦ u) < λn.
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Proof. From the assumption there exist Vietoris maps rn : Tn → Z and sn : Tn →
Zn such that pn ◦ sn = p ◦ rn and dC(Tn)(qn ◦ sn, q ◦ rn) < λn, n = 1, 2, . . .. Let

T =
⋃
z∈Z

∞∏
n=1

r−1
n (z) ⊂

∞∏
n=1

Tn

and let, for each n, πn : T → Tn be a restriction of a projection map. Notice that,
for each n, πn is a Vietoris map and

rn ◦ πn = rn+1 ◦ πn+1.

Setting u = r1 ◦ π1 and vn = sn ◦ πn we have for each n,

pn ◦ vn = (pn ◦ sn) ◦ πn = (p ◦ rn) ◦ πn = p ◦ (r1 ◦ π1) = p ◦ u

and

dC(T )(qn ◦ vn, q ◦ u) = dC(T )(qn ◦ (sn ◦ πn), q ◦ (r1 ◦ π1))
= dC(T )(qn ◦ (sn ◦ πn), q ◦ (rn ◦ πn))
= dC(T )((qn ◦ sn) ◦ πn, (q ◦ rn) ◦ πn)
= dC(Tn)(qn ◦ sn, q ◦ rn) < λn.

Proof in the opposite direction is obvious.

4. Dist-morphisms

Let (p1, q1), (p2, q2) ∈ D(X,Y ). We define a relation in D(X,Y ) by the for-
mula:

(p1, q1) ∼dist (p2, q2)⇔ D((p1, q1), (p2, q2)) = 0. (9)

From Proposition 3.3 we obtain.

Proposition 4.1
The relation (9) is an equivalence relation in D(X,Y ).

The set of all equivalence classes of the above relation will be denoted by

Mdist(X,Y ) = D(X,Y )/∼dist
. (10)

The elements of the space Mdist(X,Y ) will be called dist-morphisms.

Definition 4.2
For any ϕdist ∈Mdist(X,Y ), the set ϕ(x) = q(p−1(x)), where ϕdist = [(p, q)]dist is
called the image of the point x in the dist-morphism ϕdist.

We observe that from Proposition 3.5

((p, q) ∼dist (r, s))⇒ (q(p−1(x)) = s(r−1(x)) for each x ∈ X).
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Thus, it follows that Definition 4.2 is correct. We will write

ϕ : X →D Y

if it is a multivalued map determined by the dist-morphism ϕdist = [(p, q)]dist,
where (p, q) ∈ D(X,Y ). We recall that a multivalued map ϕ : X ( Y is called
strongly admissible (see [1]) provided there exists a diagram (p, q) ∈ D(X,Y ) such
that q(p−1(x)) = ϕ(x) for each x ∈ X. From Example 3.9 we get

Example 4.3
Let ϕ : S2 ( S2 be a multivalued map given by the formula ϕ(x) = S2 for each
x ∈ S2. Observe that ϕ is strongly admissible (see (5)). Let ϕ1, ϕ2 : S2 →D S2 be
multivalued maps determined by

(ϕ1)dist = [(pr ◦ π1, qr ◦ π2)]dist and (ϕ2)dist = [(pr ◦ π1, q
−
r ◦ π2)]dist

respectively, where r ∈ [
√

2, 2). From (6) it results that ϕ1 6= ϕ2, but for each
x ∈ S2 we have ϕ1(x) = ϕ2(x) = ϕ(x) = S2 (see (5)).

Proposition 3.7 implies the following result.

Proposition 4.4
Let Y ∈ ANR and (p, q), (r, s) ∈ D(X,Y ). If D((p, q), (r, s)) = 0 then (p, q) ∼HD
(r, s).

Definition 4.5
Let Y ∈ ANR and ϕ,ψ : X →D Y be maps determined by ϕdist = [(p, q)]dist and
ψdist = [(r, s)]dist respectively, where (p, q), (r, s) ∈ D(X,Y ). We will say that ϕ
and ψ are homotopic (we will write ϕ ∼D ψ) if (p, q) ∼HD (r, s).

We denote by MD(X,Y ) ≈ Mdist(X,Y ) (see (10)) a set of all multivalued
maps ϕ : X →D Y .

Lemma 4.6
The relation ∼HD (see (2)) is transitive in the set D(X,Y ).

Proof. Let (p, q), (r, s), (u, v) ∈ D(X,Y ), where

X
p←−−−− Z

q−−−−→ Y, X
r←−−−− T

s−−−−→ Y, X
u←−−−− P

v−−−−→ Y.

There exist Vietoris maps α : A→ Z, β : A→ T , γ : B → T , δ : B → P such that

p ◦ α = r ◦ β, q ◦ α ∼ s ◦ β and r ◦ γ = u ◦ δ, s ◦ γ ∼ v ◦ δ.

Let (see Definition 2.3)

A
πA←−−−− A4βγ B

πB−−−−→ B,

where πA, πB are restrictions of projections and

β ◦ πA = γ ◦ πB .
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It is clear that α ◦ πA and δ ◦ πB are Vietoris maps. We have

p ◦ (α ◦ πA) = r ◦ (β ◦ πA) = r ◦ (γ ◦ πB) = u ◦ (δ ◦ πB)

and
q ◦ (α ◦ πA) ∼ s ◦ (β ◦ πA) = s ◦ (γ ◦ πB) ∼ v ◦ (δ ◦ πB).

This completes the proof.

Proposition 4.7
If Y ∈ ANR then the homotopy ∼D is an equivalence relation in MD(X,Y ).

Proof. From Proposition 4.4 the relation ∼D is reflexive. It is obvious that it is
symmetrical. We show that ∼D is transitive. Let ϕ,ψ, η ∈MD(X,Y ) be such that

ϕ ∼D ψ and ψ ∼D η.

From Definition 4.5 there exist (p, q) ∈ ϕdist, (r, s) ∈ ψdist, (r′, s′) ∈ ψdist and
(u, v) ∈ ηdist such that

(p, q) ∼HD (r, s) and (r′, s′) ∼HD (u, v).

We must show that (p, q) ∼HD (u, v). From Proposition 4.4 we obtain

(r, s) ∼HD (r′, s′).

From Lemma 4.6 (p, q) ∼HD (u, v) and the proof is completed.

Let ϕ : X →D Y be a map determined by ϕdist = [(p, q)]dist, Y ∈ ANR. We
define

ϕ∗ = q∗ ◦ p−1
∗ . (11)

From Proposition 4.4 and Proposition 3.6 it results that definition (11) is correct.

Theorem 4.8
The space MD(X,Y ) is metrizable.

Proof. Let D : MD(X,Y )×MD(X,Y )→ [0,∞) be a map given by the formula

D(ϕ,ψ) ≡ D(ϕdist, ψdist) = D((p, q), (r, s)),

where ϕ,ψ ∈MD(X,Y ) are determined by ϕdist = [(p, q)]dist and ψdist = [(r, s)]dist,
respectively and let (p, q), (r, s) ∈ D(X,Y ). The map D is well defined. Indeed,
let (p1, q1) ∼dist (p, q) and (r1, s1) ∼dist (r, s). We show that

D((p1, q1), (r1, s1)) = D((p, q), (r, s)).

We have

D((p1, q1), (r1, s1)) ≤ D((p1, q1), (p, q)) +D((p, q), (r, s)) +D((r, s), (r1, s1))
= D((p, q), (r, s))

and similarly
D((p, q), (r, s)) ≤ D((p1, q1), (r1, s1)).

It is easy to show that D satisfies the metric conditions (see Proposition 3.3) and
the proof is completed.
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5. Properties of the space MD(X, Y )

We denote by

B(ϕ, r) = {ψ ∈MD(X,Y ) : D(ϕ,ψ) < r}

an open ball in MD(X,Y ) with the center of ϕ and a radius r > 0.

Proposition 5.1
The set C(X,Y ) is closed in MD(X,Y ).

Proof. We show that for each ϕ ∈ (MD(X,Y )\C(X,Y )) there exists r > 0 such
that

B(ϕ, r) ∩ C(X,Y ) = ∅.

Assume the contrary, that there exists ϕ ∈ (MD(X,Y )\C(X,Y )) such that for
each ε > 0,

B(ϕ, ε) ∩ C(X,Y ) 6= ∅.

There exists a point x0 ∈ X such that diam(ϕ(x0)) = r > 0. Let ε = r/3. From
the assumption there exists f ∈ C(X,Y ) such that f ∈ B(ϕ, ε). By Proposition
3.5 we get that for each x ∈ X,

dH(ϕ(x), f(x)) < ε.

Thus, ϕ(x0) ⊂ Oε(f(x0)), but it is a contradiction and the proof is completed.

Proposition 5.2
Let Y ∈ ANR be a compact space. Then C(X,Y ) ⊂MD(X,Y ) is a boundary set.

Proof. Let f ∈ C(X,Y ). We show that for each ε > 0,

B(f, ε) ∩ (MD(X,Y ) \C(X,Y )) 6= ∅.

There exists a sequence (fn) ⊂ C(X,Y ) such that

lim
n→∞

fn = f and fn 6= f for each n ∈ N. (12)

The space Y ∈ ANR, so there exist an open neighborhood V ⊂ Q of Y and a
retraction r : V → Y . Let ε = dist(Y,Q \V ). The map r is uniformly continuous,
so there exists 0 < δ < ε such that for each x, y ∈ V we have

(dQ(x, y) < δ)⇒ (dY (r(x), r(y)) < ε). (13)

There exists n0 such that for each n ≥ n0, dC(X)(fn, f) < δ. Let g = fn0 . We
define a map s : X × [0, 1]→ V by the formula

s(x, t) = (1− t)f(x) + tg(x) for each (x, t) ∈ X × [0, 1].

Let h : X × [0, 1]→ Y be a map given by

h = r ◦ s.
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We have the following diagram

X
p←−−−− X × [0, 1] h−−−−→ YxIdX

xIdX×[0,1]

X
p←−−−− X × [0, 1]yIdX

yp
X

IdX←−−−− X
f−−−−→ Y,

where p : X× [0, 1]→ X is a projection. It is obvious that p is a Vietoris map. We
observe that dC(X×[0,1],V )(s, f ◦ p) < δ. From (13) we get dC(X×[0,1])(h, f ◦ p) < ε.
Thus,

D((IdX , f), (p, h)) < ε.

Let ϕ : X →D Y be a multivalued map determined by ϕdist = [(p, h)]dist. There
exists a point x0 ∈ X such that g(x0) 6= f(x0) (see (12)). It is obvious that f(x0) =
r(f(x0)) ∈ h(p−1(x0)) and g(x0) = r(g(x0)) ∈ h(p−1(x0)), so ϕ /∈ C(X,Y ) and
ϕ ∈ B(f, ε) and the proof is completed.

Proposition 5.3
Let Y be a locally compact space. If Y is contractible then MD(X,Y ) is a con-
tractible space.

Proof. Let Y be a contractible space and let y0 ∈ Y . There exists a map h : Y ×
[0, 1]→ Y such that

h(y, 0) = y and h(y, 1) = y0 for each y ∈ Y.

Let
X

p←−−−− Z
q0−−−−→ Y,

where p : Z → X is a Vietoris map and q0 : Z → Y is a constant map, i.e. q0(z) =
y0 for each z ∈ Z. We observe that ϕ0 : X →D Y , determined by (ϕ0)dist =
[(p, q0)]dist, is constant, i.e. ϕ0(x) = y0 for each x ∈ X. Define a homotopy
H : MD(X,Y )× [0, 1]→MD(X,Y ) by the formula

H([(p, q)]dist, t) = [(p, h(q, t))]dist for each [(p, q)]dist ∈MD(X,Y ) and t ∈ [0, 1],

where for every t ∈ [0, 1] and q : Z → Y the map h(q, t) : Z → Y is given by

h(q, t)(z) = h(q(z), t) for each z ∈ Z.

The map H is well defined. Indeed, let t ∈ [0, 1] and let (r, s) ∼dist (p, q), where

X
p←−−−− Z

q−−−−→ Y, X
r←−−−− T

s−−−−→ Y.

From Lemma 3.12 there exist Vietoris maps αn : A→ Z, β : A→ T such that

p ◦ αn = r ◦ β and dC(A)(q ◦ αn, s ◦ β) < 1/n, n = 1, 2, . . . .
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Let K = s(β(A)). It is clear that K ⊂ Y is compact. The space Y is locally
compact, so there exists λ > 0 such that Oλ(K) is compact. There exists n0 ∈ N
such that for each n ≥ n0 and for each a ∈ A, q(αn(a)) ∈ Oλ(K). The map
h(·, t) : Oλ(K)→ Y is uniformly continuous. Thus,

(r, h(s, t)) ∼dist (p, h(q, t)).

Similarly, we show that H is continuous (see Lemma 3.11). It is clear that for each
[(p, q)]dist ∈MD(X,Y ),

H([(p, q)]dist, 0) = [(p, q)]dist and H([(p, q)]dist, 1) = [(p, q0)]dist

and the proof is completed.

6. Applications of DDD-metric

Let ϕn, ϕ : X →D Y be multivalued maps determined by (ϕn)dist = [(pn, qn)]dist
and ϕdist = [(p, q)]dist, respectively, where

X
p←−−−− Z

q−−−−→ Y, X
pn←−−−− Zn

qn−−−−→ Y

and n = 1, 2, . . .. Let ϕ : X →D X be a multivalued map determined by ϕdist =
[(p, q)]dist. We recall that ϕ has a fixed point (we write Fix(ϕ) 6= ∅) if there exists
x0 ∈ X such that x0 ∈ ϕ(x0). We observe that x0 is a fixed point of ϕ if and only
if there exists z0 ∈ Z such that p(z0) = q(z0) = x0.

Proposition 6.1
Let X be a compact space and let ϕ : X →D X be a multivalued map determined by
ϕdist = [(p, q)]dist. If for each ε > 0 there exists a multivalued map ϕε : X →D X
such that Fix(ϕε) 6= ∅ and D(ϕε, ϕ) < ε, then Fix(ϕ) 6= ∅.

Proof. From the assumption, for each n there exists ϕn : X →D X determined by
(ϕn)dist = [(pn, qn)]dist such that Fix(ϕn) 6= ∅ and D(ϕn, ϕ) < 1/n. From Lemma
3.12 there exist a space T , a Vietoris map u : T → Z and for each n a Vietoris
map vn : T → Zn such that

pn ◦ vn = p ◦ u and dC(T )(qn ◦ vn, q ◦ u) < 1/n.

It is clear that T is a compact space. Let (xn) ⊂ X be a sequence of fixed points
such that xn ∈ ϕn(xn) for each n. Thus, for each n there exists tn ∈ T such that

p(u(tn)) = pn(vn(tn)) = qn(vn(tn)) = xn

and
dX(p(u(tn)), q(u(tn))) = dX(qn(vn(tn)), q(u(tn))) < 1/n.

We can assume that tn is convergent to t0 ∈ T . Thus, p(u(t0)) = q(u(t0)) and ϕ
has a fixed point, this ends the proof.
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From Proposition 3.7 (see Definition 4.5) we get.

Proposition 6.2
Let Y ∈ ANR and let ϕ ∈MD(X,Y ). Then there exists ε > 0 such that for every
ψ ∈MD(X,Y ) if D(ϕ,ψ) < ε, then ϕ ∼D ψ.

Proposition 6.3
Let E be a normed space and let ϕ : T →D U be a compact multivalued map
(ϕ(T ) ⊂ U is compact) determined by ϕdist = [(p, q)]dist, where U ⊂ E is an open
set. Then for each sufficiently small ε > 0 there exist a finite polyhedron Kε ⊂ U
and a multivalued map ϕε : T →D U such that the following conditions are satisfied

D(ϕε, ϕ) < ε, (14)
ϕε(T ) ⊂ Kε, (15)

ϕε ∼D ϕ. (16)

Proof. Let K = ϕ(T ) = q(p−1(T )) ⊂ U and let i : K ↪→ U be an inclusion. We
have

T
p←−−−− Z

q̃−−−−→ K
i−−−−→ U,

where q̃(z) = q(z) for each z ∈ Z. It follows from Theorem 2.2 that for sufficiently
small ε > 0 there exists a finite polyhedron Kε ⊂ U and a continuous function
iε : K → U such that the conditions of Theorem 2.2 are satisfied. Let ϕε : T →D U
be a multivalued map determined by (ϕε)dist = [(p, iε◦ q̃)]dist. Then the conditions
(14)–(16) are satisfied and the proof is completed.

Proposition 6.4
Let Y be a compact space of finite type. Then there exists ε > 0 such that for every
compact space X and for every two maps ϕ,ψ ∈ MD(X,Y ), if D(ϕ,ψ) < ε, then
ϕ∗ = ψ∗.

Proof. We take ε1 > 0 from Theorem 2.1 and fix arbitrary ε < ε1. Let ϕ and ψ
be determined by ϕdist = [(p, q)]dist and ψdist = [(r, s)]dist, respectively, where

X
p←−−−− Z

q−−−−→ Y, X
r←−−−− T

s−−−−→ Y.

Assume that
D(ϕ,ψ) = D((p, q), (r, s)) < ε.

There exist Vietoris maps (see (1)) α : A→ Z, α′ : A→ T such that

p ◦ α = r ◦ α′ and dC(A)(q ◦ α, s ◦ α′) < ε.

Hence and from Theorem 2.1,

p∗ ◦ α∗ = r∗ ◦ α′∗ and q∗ ◦ α∗ = s∗ ◦ α′∗.

Let u∗ = p∗ ◦ α∗ = r∗ ◦ α′∗ and v∗ = q∗ ◦ α∗ = s∗ ◦ α′∗. We have

v∗ ◦ u−1
∗ = (q∗ ◦ α∗) ◦ (p∗ ◦ α∗)−1 = (q∗ ◦ α∗) ◦ (α−1

∗ ◦ p−1
∗ ) = q∗ ◦ p−1

∗



Metrizable space of multivalued maps [93]

and similarly
v∗ ◦ u−1

∗ = (s∗ ◦ α′∗) ◦ (r∗ ◦ α′∗)−1 = (s∗ ◦ α′∗) ◦ (α′−1
∗ ◦ r−1

∗ ) = s∗ ◦ r−1
∗ .

Thus,
ϕ∗ = q∗ ◦ p−1

∗ = s∗ ◦ r−1
∗ = ψ∗

and the proof is completed.

7. Conclusion

Dist-morphisms have many interesting properties and applications. They con-
stitute a very good tool for studying the properties of multivalued maps. They
have been used for the construction of the metric space of multivalued maps (see
Theorem 4.8). In section 5 a few properties of such a space were given. In section
6 on the other hand, a few practical applications of D-metrics in topology were
given.
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