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Abstract. We study the property of continuous Castelnuovo-Mumford reg-
ularity, for semihomogeneous vector bundles over a given Abelian variety,
which was formulated in A. Küronya and Y. Mustopa [Adv. Geom. 20
(2020), no. 3, 401-412]. Our main result gives a novel description thereof.
It is expressed in terms of certain normalized polynomial functions that are
obtained via the Wedderburn decomposition of the Abelian variety’s endo-
morphism algebra. This result builds on earlier work of Mumford and Kempf
and applies the form of the Riemann-Roch Theorem that was established in
N. Grieve [New York J. Math. 23 (2017), 1087-1110]. In a complementary
direction, we explain how these topics pertain to the Index and Generic
Vanishing Theory conditions for simple semihomogeneous vector bundles.
In doing so, we refine results from M. Gulbrandsen [Matematiche (Catania)
63 (2008), no. 1, 123–137], N. Grieve [Internat. J. Math. 25 (2014), no. 4,
1450036, 31] and D. Mumford [Questions on Algebraic Varieties (C.I.M.E.,
III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29-100].

1. Introduction

Recall, that a coherent sheaf F on a projective variety X is m-regular with
respect to a globally generated ample line bundle OX(1), if

Hi(X,F(m− i)) = 0 for all i > 0.
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The concept of m-regularity was formulated by Mumford [16, Lecture 14]. It
remains a fundamental cohomological invariant. For example, if F is m-regular
and k > m, then H0(X,F(k)) is spanned by the image of the natural map

H0(X,F(k − 1))⊗H0(X,OX(1))→ H0(X,F(k)).

In particular, if F is m-regular and k > m, then

F(k) := F ⊗OX OX(k)

is a globally generated OX -module.
The Castelnuovo-Mumford regularity of F , with respect to OX(1), is defined

to be the smallest integer m for which F is m-regular. Effective criteria for m-
regularity is a foundational problem within algebraic geometry. A starting point
is the following theorem of Mumford [16, p. 101].

Theorem 1.1 ([16, p. 101])
For all nonnegative integers n, there exists a polynomial Fn(x0, . . . , xn) so that
for all coherent sheaves of ideals I on Pn, if a0, . . . , an ∈ Z are defined by the
condition that

χ(I(m)) =
n∑
i=0

(−1)hi(Pn, I(m)) =
n∑
i=0

ai

(
m

i

)
,

then I is Fn(a0, . . . , an)-regular with respect to the tautological line bundle OPn(1).

Computationally effective methods for calculation of the Castelnuovo-Mum-
ford regularity, regOPn (1)(F), for coherent sheaves F on projective n-space Pn,
follow from work of Bayer and Stillman [3, Theorem 1.10]. We refer to [19, Section
1.8] for more details about Castelnuovo-Mumford regularity.

Turning to the context of Abelian varieties, and more generally irregular vari-
eties, it was noted by Green and Lazarsfeld, in [5], building on work of Mumford,
[16, Lecture 14], Mukai, [14] and [15], among others, that measures of cohomolog-
ical positivity and criterion for global generation of coherent sheaves, with respect
to ample line bundles, is achieved via the Generic Vanishing Theory.

A systematic development of that viewpoint, from the perspective of the
Fourier-Mukai transform was initiated by Hacon [11]. It was developed further
in a series of articles by Pareschi and Popa (including [20], [21] and [22]). As one
example, the property of Mukai regularity, see Section 6, for sheaves on a given
Abelian variety, was introduced in [20]. A main result is theM -regularity criterion
[20, p. 285].

Theorem 1.2 ([20, p. 285])
Let F be a coherent sheaf and L a line bundle on an Abelian variety A. If F and
L are M -regular OA-modules, then F ⊗ L is globally generated.

More recently, motivated by work of Barja, Pardini and Stoppino, [2], Küronya
and Mustopa, in [13], formulated a concept of continuous Castelnuovo-Mumford
regularity, denoted by regcont(F ,OX(1)), for coherent sheaves F on a given polar-
ized irregular variety (X,OX(1)). Briefly, this is defined to be the smallest integer
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m for which the cohomological support loci Vi(X,F(m−i)) for all i > 0, are proper
Zariski closed subsets of Pic0(X), the identity component of the Picard group.

For the case of Abelian varieties, Küronya and Mustopa’s main result, [13,
Theorem A], implies that continuous Castelnuovo-Mumford regularity is a numer-
ical property for semihomogeneous vector bundles. It builds on [6].

Theorem 1.3 ([13, See Theorem A and Theorem B])
Let (A,O(1)) be a polarized Abelian variety. The following assertions hold true.

(i) Then there exists a piecewise constant function

ρO(1) : N1
R(A)→ Z (1)

which has the property that

regcont(E ,O(1)) = ρO(1)(det(E)/ rank(E))

for each semihomogeneous vector bundle E over A. (Here, we identify O(1)
and det(E) with their classes in N1

R(A) the real Néron-Severi space of A.)

(ii) If E is a semihomogeneous vector bundle on A with the property that the class
of det(E) is a rational multiple of the class of O(1), then regcont(E ,O(1)) is
equal to the smallest integer m for which E(m − g) is a generic vanishing
sheaf.

Our purpose here is to build on, and refine, these results from [13]. For in-
stance, note that our formulation of Theorem 1.3, does not require global gener-
ation on the polarizing line bundle. Nor does it ask that the algebraically closed
base field be of characteristic zero. Moreover, Theorem 1.6, below, makes explicit
the manner in which the function (1) depends on both the Wedderburn decom-
position and the isogney class of the given Abelian variety. A key point is [6,
Corollary 4.2], which builds upon the index theorem of Mumford [17, Chapter 16]
and [18, Appendix].

Indeed, in the present article, we apply the main result of [6] to show how
Albert’s Theorem and the Poincaré Reducibility Theorem, for a given Abelian
variety, are reflected in these cohomological properties for semihomogeneous vector
bundles. Our results here allow for an explicit determination of the property of
continuous Castelnuovo-Mumford regularity for semihomogeneous vector bundles.
It complements the numerical description from [13]. It is expressed in terms of
certain normalized polynomials that are determined by the reduced norms of the
Wedderburn components of the endomorphism algebra.

As some additional results, which are of an independent interest, we build on
the works [6], [7] and [8], for example, which have origins in Mumford’s index
theorem for line bundles on Abelian varieties [17, p. 156]. In this regard, our
main results are Theorem 6.2 and Corollary 1.5. Together, they improve upon [18,
Appendix Theorem 2] and the main results from [8]. Indeed, they establish more
general versions of those results which apply to simple semihomogeneous vector
bundles. They also refine [6, Proposition 2.1].
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Before stating our main results that are in the direction of continuous Castel-
nuovo-Mumford regularity, see Theorem 1.6 below, we formulate, in Theorem 1.4,
a form of the Riemann-Roch Theorem for line bundles on a given Abelian variety.
It collects results from [8] and encompasses the traditional Riemann-Roch and
Index Theorems for line bundles on Abelian varieties. It is proved by combining
[8, Theorems 4.1 and 4.4].

Recall, that the classical formulation of these results were given by Mumford
[17], with subsequent refinements by Kempf and Ramanujam [18]. We describe
precisely, in Section 4, the normalized polynomial (2) which arises in the statement
of Theorem 1.4. As indicated there, this normalized polynomial, (2), reflects the
structure of the Wedderburn decomposition of the Abelian variety.

In this article, if
D ∈ NSQ(A)

is a rational divisor class on a g-dimensional Abelian variety A, then we define its
index i(D) to be the number of positive roots, counted with multiplicities, of any,
and in fact all, of its Hilbert polynomials

χ(Nλ+D) := (Nλ+D)g

g! .

Here, λ is an ample divisor class on A and

g := dimA

is the dimension of A.
We refer to [17, p. 156] and [18, Appendix Theorem 2] for more details about

the fact that the index i(D), as defined here, is well-defined (i.e. independent of
the choice of polarization λ). In particular, to establish that the index of rational
divisor classes is well-defined, one first reduces to the case of integral divisor classes.

Note that our concept of index here, differs, in general, from that which is
defined in [6, Section 2.1]. Moreover, it should not be confused with the related
notion of what we call weak index and which we denote by j(D). This concept of
weak index is defined for integral divisor classes

D ∈ NS(A),

and is often times referred to as the index in the context of the Generic Vanishing
Theory. (See Section 6.)

For the case of nondegenerate line bundles, i.e. when

χ(D) 6= 0,

the concepts of index and weak index coincide. (Theorem 6.2 establishes a more
general instance of this fact.)
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Before stating our main results, especially Theorem 1.6, recall, that fixing a
polarization λ on A, if

rλ : End0(A)→ End0(A)
denotes the Rostai involution and

End0
λ(A) := {α ∈ End0(A) : rλ(α) = α},

then there is an induced isomorphism

NSQ(A) ' End0
λ(A).

We refer to Section 3 for further details.
Moreover, recall that the index, as defined here, arises in the Riemann-Roch

Theorem. This is the content of Theorem 1.4 which we deduce from [8].

Theorem 1.4
Suppose that

A = Ar1
1 × · · · ×A

rk
k

is an Abelian variety with Ai simple and pairwise nonisogenous Abelian varieties.
Fix an ample divisor class λ on A. Put

g := dimA.

Suppose that
f : B → A

is an isogeny from a given Abelian variety B. Let

D ∈ NSQ(B) := NS(B)⊗Z Q

be a rational divisor class on B. Then, within this context, there exists a normal-
ized polynomial function

pNrdλ(·) : End0
λ(A)→ Q (2)

so that the following two assertions hold true.

(i) If
α = Φf∗(λ)(D)

is the image of
[D] ∈ End0

f∗λ(B),

in End0
λ(A), under the homomorphism that is induced by f , then

χ(D) = (Dg)
g! =

√
deg φf∗λ pNrdλ(α).

(ii) The index i(D) of D is equal to the number of positive roots, counted with
multiplicity, of the polynomial

pD,f∗λ(N) := pNrdλ(N idA +α).
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(iii) In particular, if L is a line bundle on B with class

D ∈ NS(B),

then
Hj(B,L) = 0

for
0 6 j < the number of pD,f∗λ(N)’s positive roots

and
Hg−j(B,L) = 0

for
0 6 j < the number of pD,f∗λ(N)’s negative roots.

In this article, we define the index i(E), for a semihomogeneous vector bundle
E on A, to be the number of positive roots, counted with multiplicity, of any, and,
by Lemma 5.1, all of its Hilbert polynomials. Again, this concept of index differs,
in general, from the concept of index that is defined in [6, Section 2.1].

Theorem 1.4 has the following consequence for the index of simple semihomo-
geneous vector bundles.

Corollary 1.5
In the setting of Theorem 1.4, suppose that

α ∈ End0
λ(A)

is the image of
[det(E)] ∈ End0

f∗λ(B),

for E a simple semihomogeneous vector bundle on B. Then, i(E), the index of E,
is equal to the number of positive roots counted with multiplicity of the polynomial

pdet(E),f∗(λ)(N) := pNrdλ(N idA +α).

As an additional application of Theorem 1.4, here we use it to build on [13,
Theorem A]. In doing so, we establish the following result.

Theorem 1.6
Suppose that

A = Ar1
1 × · · · ×A

rk
k

is an Abelian variety with Ai simple and pairwise nonisogenous Abelian varieties.
Fix an ample divisor class λ on A. Let

f : B → A

be an isogeny and let
pNrdλ(·) : End0

λ(A)→ Q
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be the normalized polynomial function that is given by Theorem 1.4 (see (2)). Fix
a rational divisor class, in NSQ(B), corresponding to

γ ∈ End0
f∗λ(B),

under the identification
NSQ(B) ' End0

f∗λ(B).

Let α be its image in End0
λ(A) under the natural map

Φf∗(λ)(·) : End0
f∗λ(B)→ End0

λ(A).

Suppose that m ∈ Z is the smallest integer for which

pNrdλ((m− i) idA +α) = 0

or for which the polynomial

pNrdλ((N +m− i) idA +α)

fails to have i positive roots (counted with multiplicities) for all

i ∈ {1, . . . , g}.

Finally, let E be a semihomogeneous vector bundle on B and assume that the class

det(E)
rank(E) ∈ NSQ(B)

is identified with γ. Then regcont(E , f∗λ), the continuous Castelnuovo-Mumford
regularity of E with respect to the polarization f∗λ, is equal to m.

We prove Theorem 1.6 in Section 7. It is established by first reducing to the
case of simple semihomogeneous vector bundles. In Sections 5 and 6, we explain
how these matters relate to the Index and Generic Vanishing Theorems for simple
semihomogeneous vector bundles.

In doing so, we complement related results of Gulbrandsen, [10, Propositions
5.1 and 6.3], and Kempf, [18, Appendix]. In Section 2, we establish our notation
for Abelian varieties and, in Section 4, we fix our notation for endomorphism
algebras and the Riemann-Roch Theorem.

Our results here, together with those of our earlier work [8], indicate, in a
precise way the manner in which the Wedderburn decomposition of a given Abelian
variety is reflected in cohomological and global generation properties of (higher
rank) semihomogeneous vector bundles. This picture expands upon earlier work
of Mumford [17].

As one direction for future investigation, it remains an interesting problem to
have an explicit knowledge of the normalized polynomials pNrdλ(·), which arise in
the statement of Theorem 1.6, for a wide class of Abelian varieties. For that it is
necessary to have a detailed understanding of the endomorphism algebra together
with the Rosati involution.
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To help place matters into perspective, note that already it is an interesting
question to determine which integers can be realized as Picard numbers of Abelian
varieties. We refer to the article [12], as one more recent work in that direction.
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2. Notation for Abelian varieties

In what follows, we work over a fixed algebraically closed base field k. If A
is an Abelian variety, then Â denotes the dual Abelian variety and P denotes the
normalized Poincaré line bundle on A× Â. If

x ∈ A,

then
τx : A→ A

denotes translation by x in the group law. If

x̂ ∈ Â,

then Px̂ denotes the translation invariant line bundle on A that is determined by
x̂. Multiplication in the group law is denoted as

m : A×A→ A.

The projections of A×A onto the first and second factors, respectively, are denoted
by p1 and p2. On the other hand, the projections of A×Â onto the first and second
factors, respectively, are denoted by pA and pÂ.

The endomorphism algebra of A is denoted by End(A). We also put

End0(A) := End(A)⊗Z Q.

We let NS(A) denote the Néron-Severi group of A and put

NSQ(A) := NS(A)⊗Z Q.

When no confusion is likely, at times we use the same notation to denote the class,
in NS(A), of a divisor D on A. By a rational divisor class, we mean an element of
NSQ(A).
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Moreover, by the Euler characteristic of a rational divisor class
D ∈ NSQ(A),

is meant the quantity
χ(D) = (Dg)/g!.

Here, g is the dimension of A and (Dg) is D’s g-fold self-intersection number.
If

α ∈ End0(A),
then

α̂ ∈ End0(Â)
is its dual. If D is a divisor on A, then

φD : A→ Â

is the homomorphism that is defined by
x 7→ τ∗xOA(D)⊗OA(−D).

We refer to [17] for more details about Abelian varieties. Much of the most
basic theory is summarized in [8, Section 2].

3. Albert algebras

Recall, that an Albert algebra consists of a division algebra ∆, of finite dimen-
sion over Q, together with an involution

′ : ∆→ ∆,
which we denote as

α 7→ α′,
and which is positive in the sense that

Trd∆/Q(αα′) > 0
for all

0 6= α ∈ ∆.
Here,

Trd∆/Q(·) : ∆→ Q
denotes the reduced trace from ∆ to Q. Similarly,

Nrd∆/Q(·) : ∆→ Q

denotes the reduced norm in what follows.
If A is a simple Abelian variety, then each ample divisor class λ induces a

positive involution rλ on the division algebra End0(A). Especially, for each fixed
polarization, the pair (End0(A), rλ) is an Albert algebra. We recall the definition
of the involution rλ in Section 4.

We refer to [8, Theorem 5.1], and the references therein, for a statement and
more detailed discussion of Albert’s theorem. Several examples of Albert’s theo-
rem, as it pertains to endomorphism algebras and Rosati involutions for isotypic
Abelian varieties and products thereof, are given in [8, Sections 6 and 7].
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4. Notation for endomorphism algebras

For later use, we fix notation for endomorphism algebras of Abelian varieties.
We follow the conventions of [8] closely. First of all, consider the case of an Abelian
variety A of the form

A := Ar1
1 × · · · ×A

rk
k ,

where each of the Ai are simple and pairwise nonisogeneous Abelian varieties.
In terms of the endomorphism algebra

R := End0(A),

we may write
Ri := Mri(∆i).

Let Zi be the centre of ∆i and let

NrdRi/Q(·) : Ri → Q

be the reduced norm. Put

gi := dimAi, m2
i := dimZi ∆i and ti := [Zi : Q] for i = 1, . . . , k.

Fix an ample divisor λ on A. Recall, that the Rosati involution rλ : R→ R is
defined by the condition that

α 7→ φ−1
λ ◦ α̂ ◦ φλ.

Moreover, the map
D 7→ φ−1

λ ◦ φD
induces an isomorphism

Φλ : NSQ(A) ∼−→ End0
λ(A).

Here, φ−1
λ is the inverse of φλ and

End0
λ(A) := {α ∈ End0(A) : α = rλ(α)}.

Within the present context, as noted in [8, Corollary 3.7], the function

k∏
i=1

NrdRi/Q(·)2gi/(timi)|End0
λ

(A) : End0
λ(A)→ Q

is the square of a rational valued homogeneous polynomial function of degree g on
End0

λ(A). It is normalized so as to take value 1 on

idA = 1R

and is denoted by pNrdλ(·).
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In particular, if D is a divisor on A, then, as in [8, Theorem 4.1 (a)], the
Riemann-Roch Theorem may be expressed as

χ(D) = (Dg)
g! =

√
deg φλ pNrdλ(Φλ(D)).

More generally, let
f : B → A

be an isogeny and D a divisor on B. Let

α ∈ End0
λ(A)

correspond to D under the induced map

End0
f∗λ(B)→ End0

λ(A).

Then, as in [8, Theorem 4.1 (b)], the Riemann-Roch theorem for divisors D on B
can be expressed as

χ(D) = (Dg)
g! =

√
deg φβ∗λ pNrdλ(α).

5. Semihomogeneous vector bundles and the index theorem

The concept of semihomogeneous vector bundle over a given Abelian variety
A is due to Mukai [14], building on earlier work of Mumford [17] and Atiyah [1].
Specifically, a vector bundle E over A is called semihomogeneous if for all x ∈ A,

τ∗xE ' E ⊗ L

for some line bundle L over A.
A vector bundle E on A is called simple if

EndOA(E) ' k.

The simple semihomogeneous vector bundles over A were characterized by Mukai
[14, Theorem 5.8]. In particular, for a simple vector bundle E on A, the following
four conditions are equivalent

• dimk H1(A, EndOA(E)) = g;

• E is semihomogenous;

• EndOA(E) is a homogeneous vector bundle, i.e.

τ∗xEndOA(E) ' EndOA(E)

for all x ∈ A; and
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• there exists an isogeny
f : B → A

and a line bundle L on B so that

E ' f∗(L).

We refer to [7] for the theory of theta groups that are associated to simple
semihomogeneous vector bundles and to [9], building on work of Brion [4], for the
main results about homogeneous Severi-Brauer varieties.

For a simple vector bundle E over A, let K(E) be the maximal subscheme of A
over which m∗(E) and p∗A(E) are isomorphic [14, Definition 3.8]. Moreover, recall
that if E is a rank r semihomogeneous vector bundle over A, then

χ(E) = χ(det(E))
rg−1 ,

[14, Proposition 6.12].
Further, if E is a simple semihomogeneous vector bundle, then

• dim K(E) = dim K(det(E)); and

• if χ(E) 6= 0, then ord(K(E)) = χ(E)2;

see [14, Corollary 7.9].
In what follows, we say that a vector bundle E on A is nondegenerate if its

Euler characteristic

χ(E) :=
g∑
i=0

(−1)i dimk Hi(A, E)

is nonzero. If
χ(E) = 0,

then E is called degenerate.
Let E be a vector bundle on A. Fixing an ample line bundle O(1) on A,

consider the Hilbert polynomial

HilbPolyO(1)(E) := χ(E(N)). (3)

In Definition 5.2 below, we use Hilbert polynomials to define a concept of
index for simple semihomogeneous vector bundles. The following lemma implies
that this definition is indeed well-defined. We include a proof for completeness.

Lemma 5.1
Assume that E is a simple semihomogeneous vector bundle on A. Then, the roots
of the polynomial (3) are real, for all ample line bundles O(1) on A. Moreover,
the number of positive roots, counted with multiplicity, of those polynomials is
well-defined. In particular, it is independent of the choice of ample line bundle.
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Proof. By assumption, E is a simple semihomogeneous vector bundle. In particu-
lar, there exists an isogeny

f : B → A

together with a line bundle L on B, which has the property that

E ' f∗(L).

Fix an ample line bundle OA(1) on A and put

OB(1) := f∗OA(1).

Then, OB(1) is an ample line bundle on B. Moreover, ifN ∈ Z, then the projection
formula implies that

E(N) := E ⊗ OA(N) ' f∗(L ⊗OB(N)).

Further, since f is an isogeny

Ri f∗ (L ⊗OB(N)) = 0,

for i > 0. In particular, the Leray spectral sequence implies equality of Euler
characteristics

χ(A, f∗(L ⊗OB(N)) = χ(B,L ⊗OB(N)).

Hence
χ(A, E(N)) = χ(B,L ⊗OB(N)). (4)

Now, L is a line bundle on B and it is known, by [18, Appendix Theorem 2],
for example, that the roots of all of the Hilbert polynomials of L are real and that
the number of positive roots, counted with multiplicities of such polynomials is
independent of the choice of ample line bundle on B.

Finally, since each ample line bundle on A pulls back to an ample line bundle
on B, the conclusion of the lemma follows from the above relation (4).

Definition 5.2
If E is a simple semihomogeneous vector bundle on A, then let i(E) be the number
of positive (real) roots of any, and hence all, of the Hilbert polynomials (3). Define
i(E) to be the number of positive real roots counted with multiplicity. In what
follows, we say that i(E) is the index of E .

Remark 5.3
Note that the concept of index i(E), for a given semihomogeneous vector bundle
E , as we have defined here, differs, in general, from the concept of index that is
defined in [6, Section 2.1]. But, for the case of nondegenerate semisimple vector
bundles, for example, these concepts of index are equivalent.

In Proposition 5.4 below, we collect, from [18, Appendix] and [10, Proposition
5.1], a number of cohomological properties of line bundles. They are used in our
proof of Theorem 6.2. We illustrate the conclusion of Proposition 5.4, in Example
6.1.
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Proposition 5.4
Let L be a line bundle on a g-dimensional Abelian variety A. Let K0(L) be the
identity component, with the reduced subscheme structure, of the group scheme
K(L). Let

f : A→ A/K0(L)

be the canonical homomorphism. Then, the following assertions hold true.

(i) If L|K0(L) is nontrivial, then

H`(A,L) = 0

for all ` = 0, . . . , g. Further

R` pÂ∗ (p∗AL ⊗ P) = 0

for all ` = 0, . . . , g.

(ii) If L|K0(L) is trivial, then
H`(A,L) 6= 0

if and only if
` ∈ [i(L), i(L) + dim K(L)].

Moreover,
R` pÂ∗ (p∗AL ⊗ P) = 0

for
` 6= dim K(L) + i(L).

Proof. For (i), if L|K0(L) is nontrivial, then [18, Appendix Lemma 1] implies that
τ∗xL|K0(τ∗

xL) is nontrivial for all x ∈ A. Hence, by [18, Appendix Theorem 1 (i)],

H`(A, τ∗xL) = H`(A,L ⊗ Px̂) = 0

for all ` = 0, . . . , g and all x ∈ A. Thus

R` pÂ∗ (p∗AL ⊗ P) = 0,

for all ` = 0, . . . , g.
For (ii), if L|K0(L) is trivial, then, as noted in [18, Appendix Theorem 1 (ii)],

there exists a nondegenerate line bundleM on A/K0(L) and a point x̂ ∈ Â, which
has the two properties that

• L ' f∗(M)⊗ Px̂; and

• H`(A,L) ' Hi(M)(A/K0(L),M)⊗H`−i(M)(K0(L),OK0(L)).

Moreover, it is known, see [18, p. 100], that

i(L) = i(M).
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In particular, the above considerations imply that

H`(A,L) 6= 0

if and only if
` ∈ [i(L), i(L) + dim K(L)].

It remains to establish vanishing of the higher direct image sheaves

R` pÂ∗ (p∗AL ⊗ P)

for
` 6= i(L) + dim K(L).

To this end, we argue as in [10, Proof of Proposition 5.1].
To begin with, there is a natural isomorphism

RpÂ∗ (p∗A((−)⊗ Px̂)⊗ P) ' τ∗x̂RpÂ∗ (p∗A(−)⊗ P) ,

of functors from D(A) to D(Â). Here, D(A) and D(Â) are the respective bounded
derived categories of coherent sheaves on A and Â.

Let
d := dim K(L)

and put
B := A/K0(L).

Let Q be the normalized Poincaré line bundle on B × B̂. Then, since

f : A→ B

is flat and since the dual morphism

f̂ : B̂ → Â

is finite, it follows that for all integers `,

R` pÂ∗(p
∗
Af
∗(M⊗Px̂)⊗ P) ' τ∗x̂ (R` pÂ∗(p

∗
Af
∗(M)⊗ P))

' τ∗x̂ (f̂∗(R`−d pB̂∗(p
∗
BM⊗Q))).

SinceM is nondegenerate, it has a unique nonzero cohomology group Hi(M)(B,M).
The claim then follows.

Finally, we conclude this section by mentioning an observation from [13, Sec-
tion 4], which pertains to the nature of semihomogeneous vector bundles, and their
continuous Castelnouvo-Mumford regularity, on products of nonisogenous Abelian
varieties with Picard number one.
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Example 5.5
Consider the case that

A = A1 ×A2

is a product of nonisogenous Abelian varieties, each of which have Picard number
equal to one. Then, since A1 and A2 are not isogeneous and each have Picard
number one, it follows that A has Picard number two (see for instance [8, Propo-
sition 6.2]). Moreover, the Néron-Severi group NSQ(A) is generated by the classes
of p∗Aiλi for i = 1, 2, where λ1 and λ2 are ample line bundles on A1 and A2,
respectively.

Now, suppose that E is a rank r semihomogeneous vector bundle on A with
restrictions E1 and E2 to A1 × {0} and {0} × A2, respectively. Then since E
is a semihomogeneous vector bundle on A, it follows easily that E1 � E2 is a
semihomogeneous vector bundle on A.

Further, since

det(E1 � E2) = r · p∗A1
det(E1) + r · p∗A2

det(E2),

and
det(E) = p∗A1

det(E1) + p∗A2
det(E2),

as classes in NS(A), it follows that

det(E)
r

= det(E1 � E2)
r2 ,

as classes in NSQ(A). Finally, Theorem 1.3 (i) implies that if O(1) is an ample
line bundle on A, then

regcont(E ,O(1)) = regcont(E1 � E2,O(1)).

6. Generic vanishing theory

In this section, we recall the most basic concepts from the Generic Vanishing
Theory. We mostly follow [20, Section 2]. Let F be a coherent sheaf over a
g-dimensional Abelian variety A. Fix a nonnegative integer i > 0 and put

Vi(A,F) := {x̂ ∈ Â : Hi(A,F ⊗ Px̂) 6= 0}.

This is the ith cohomological support locus of F . If

codim(Vi(A,F)) > i

for all i > 0, then F is called Mukai-regular. If

codim(Vi(A,F)) > i

for all i > 0, then F is called a Generic Vanishing sheaf. For example, if F is
Mukai-regular, then it is a Generic Vanishing sheaf.
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Now, returning to more general considerations, suppose that for all nonempty
Zariski open subsets

U ⊆ Â,

the evaluation map ⊕
x̂∈U

H0(A,F ⊗ Px̂)⊗ P−1
x̂ → F

is surjective. Then, within this context, F is called continuously globally generated
[20, Definition 2.10] (compare also with [20, Proposition 2.13] and [13, Definition
1.3]).

On the other hand, if

Ri pÂ∗ (p∗AF ⊗ P) 6= 0

for at most one
i ∈ {0, . . . , g},

then F is called a Weak Index Theorem sheaf. If

Rj pÂ∗(p
∗
AF ⊗ P) = 0

for all but one j, then, here, the weak index of F is defined to be the unique integer

j(F) ∈ {0, . . . , g}

for which
Rj(F) pÂ∗(p

∗
AF ⊗ P) 6= 0.

If
Vj(A,F) 6= ∅

for at most one
j ∈ {0, . . . , g},

then F is called an Index Theorem sheaf.
Equivalently, F is called an Index Theorem sheaf if there exists

j ∈ {0, . . . , g}

so that
H`(A,F ⊗ Px̂) = 0,

for all ` 6= j and all x̂ ∈ Â.
Recall, that if an Index Theorem sheaf F is nonzero, then the cohomology and

flat base change theorem, [17, p. 51], implies that it is a Weak Index Theorem
sheaf.

The following example illustrates Proposition 5.4 and Theorem 6.2, in addition
to the concepts of Weak Index Theorem and Index Theorem sheaves. It also
provides an illustration of [18, Appendix Theorem 1 (i)].
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Example 6.1
Let E be an elliptic curve and consider its self-product

A = E × E.

Fix a point x ∈ A and put
L = OE �OE(x).

Then
H0(A,L) ' H0(E,OE)⊗H0(E,OE(x)),
H1(A,L) ' H1(E,OE)⊗H0(E,OE(x))

and
H2(A,L) = 0.

Thus
h0(A,L) 6= 0, h1(A,L) 6= 0 and h2(A,L) = 0.

Now observe that if
M := OE(x),

then
L = f∗M

for
f = p2

the projection of A onto its second factor. This is the canonical homomorphism

f : A→ A/K0(L).

Also
i(M) = 0.

Further
dim K(L) = 1

and
j(L) = dim K(L) + i(M) = 1.

Finally
i(L) = 0,

since the Hilbert polynomial

χ(M⊗N �M⊗N ⊗ L) = N(N + 1)

has roots N = 0 and N = −1.
This shows that, in general, the weak index j(L) need not equal the index i(L).

On the other hand, Proposition 5.4 shows that L is a Weak Index Theorem sheaf
with weak index j(L) = 1. But on the other hand, since

h0(A,L) 6= 0,

L is not an Index Theorem sheaf.
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The preceding discussion, as it applies, in particular, to simple semihomoge-
neous vector bundles is summarized in Theorem 6.2 below. Its statement includes
a key aspect to the proof of [13, Theorem A], for example, namely the fact that
the weak index of a simple semihomogeneous vector bundle is the same as that of
its determinant line bundle. Theorem 6.2 also allows Corollary 1.5 to be deduced
from Theorem 1.4. (See Section 7.)

Theorem 6.2
Let E be a simple semihomogeneous vector bundle on a g-dimensional Abelian
variety A. The following assertions hold true.

(i) If O(1) is an ample line bundle on A, then the roots of the Hilbert polynomial

HilbPolyO(1)(E) := χ(E(N))

are real. The number of negative roots, counted with multiplicity is

g − i(E)− dim K(E).

Further
H`(A, E) = 0,

for all
0 6 ` < i(E),

and
Hg−`(A, E) = 0,

for all
0 6 ` < g − i(E)− dim K(E).

(ii) Both E and det(E) are Weak Index Theorem sheaves and

j(E) = j(det(E)).

(iii) If E is nondegenerate, then E is an Index Theorem sheaf and

j(E) = i(E).

(iv) E is nondegenerate if and only if det(E) is nondegenerate. In this case

j(E) = i(E) = i(det(E)) = j(det(E)).

Proof. Assertion (i) is a more general form of [6, Proposition 2.1]. It is established
similarly, and follows as an application of the Leray spectral sequence and the
strong form of the Index Theorem, as established by Kempf and Ramanujam [18,
Appendix Theorem 2]. It is also helpful to recall that the index i(E) is independent
of the choice of polarization (Lemma 5.1).

Indeed, in light of Lemma 5.1, the proof of assertion (i) is complete upon
verification that dim K(E) is the multiplicity of 0 as a root of χ(E(N)).
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For that, let r be the rank of E . Then, observe, from [14, Corollary 7.9], that

dim K(E) = dim K(det(E)).

Then since
dim K(det(K(E)) = dim K(det(E)⊗r),

the conclusion is that

dim K(E) = dim K(det(E)⊗r).

Thus, the fact that dim K(E) is the multiplicity of 0, as a root of χ(E(N)),
follows from the relation that

χ(E(N)) = χ(det(E(N)))
rg−1 ,

see [14, Proposition 6.12], combined with the fact that dim K(det(E)⊗r) is the
multiplicity of 0, as a root of the polynomial

χ(det(E(N))) = χ(det(E)⊗r ⊗O(N)).

As explained in the discussion that proceeds [13, Proposition 1.17], assertions
(ii), (iii) and (iv) are established in [10, Propositions 6.2 and 6.3].

For completeness, let us indicate the key points used to establish the result
from [10, Proof of Proposition 6.3], namely that each simple semihomogeneous
vector bundle E over A is a Weak Index Theorem sheaf.

Fix an isogeny
f : B → A

which has the property that
f∗(L) ' E

for some line bundle L on B. Let

f̂ : Â→ B̂

denote the dual isogeny. Let Q denote the normalized Poincaré line bundle on
B× B̂. By Proposition 5.4, L is a Weak Index Theorem sheaf on B. On the other
hand, for each i,

Ri pÂ∗(p
∗
A(f∗L)⊗ P) ' f̂∗(Ri pB̂∗(p

∗
B(L)⊗Q)).

Thus
Ri pÂ∗(p

∗
A(E)⊗ P) ' f̂∗(Ri pB̂∗(p

∗
B(L)⊗Q))

and so E is a Weak Index Theorem sheaf and both E and L have the same weak
index.

Next, we establish the equality

j(E) = j(det(E)).
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Let
d := deg(f)

be the degree of f . Then f∗(det(E)) is algebraically equivalent to L⊗d and thus

j(f∗(det(E))) = j(L),

since
dim K(L⊗d) = dim K(L).

(Apply [10, Corollary 5.3] or Proposition 5.4.)
On the other hand,

Ri pB̂∗(p
∗
B(f∗(det(E)))⊗Q) ' f̂∗(Ri pÂ∗(p

∗
A(det(E)))⊗ P)

for all i. Thus
j(f∗(det(E))) = j(det(E)).

Finally, with respect to the dual isogeny, f̂ each ŷ ∈ B̂ is a pullback

ŷ = f∗(x̂)

for some x̂ ∈ Â. Thus, by the projection formula

Hi(B,L ⊗Qŷ) ' Hi(A, f∗(L ⊗Qŷ)) ' Hi(A, E ⊗ Px̂).

The above discussion implies that L is an Index Theorem sheaf if and only if E is
an Index Theorem sheaf. But, if E is nondegenerate, then so is det(E). Thus

dg · χ(L) = χ
(
L⊗d

)
= d · χ(det(E)) 6= 0.

Thus, L is nondegenerate too. Thus L is an Index Theorem sheaf. It follows that
E is an Index Theorem sheaf too.

7. Proof of Theorem 1.4, Corollary 1.5 and Theorem 1.6

In this section, we prove Theorem 1.4, Corollary 1.5 and Theorem 1.6.

Proof of Theorem 1.4. Assertion (i) follows from [8, Theorem 4.1] and assertion
(ii) follows from [8, Theorem 4.4]. For (iii), let D be the class of L in NS(B).
Then, by (ii), i(L) is the number of positive roots of the polynomial pD,f∗λ(n).
Moreover, this polynomial has a total of g− i(L)−dim K(L) negative roots. Thus,
assertion (iii) follows from [18, Appendix Theorem 2].

Proof of Corollary 1.5. By Theorem 6.2, the index of a simple semihomogeneous
vector bundle E is equal to the index of its determinant line bundle det(E). Thus,
Corollary 1.5 follows from Theorem 1.4.

Before establishing Theorem 1.6, let us recall the concept of continuous Castel-
nuovo-Mumford regularity for coherent sheaves F on an Abelian variety A. Indeed,
fixing an ample line bundle O(1) on A, the continuous Castelnuovo-Mumford reg-
ularity of F , with respect to O(1), is defined to be

regcont(F ,O(1)) := min{m ∈ Z : Vi(A,F(m− i)) 6= Â for all i > 0}.
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Proof of Theorem 1.6. First of all, recall that the polarization λ allows for the
identification

NSQ(B) := NS(B)⊗Z Q ' End0
f∗λ(B). (5)

Let η be the class of f∗λ in NSQ(B). Then, under the isomorphism (5), the class
η is identified with idB the identity morphism of B.

Now let E be a semihomogeneous vector bundle on B and assume that the
class

det(E)
rank(E) ∈ NSQ(B)

is identified with γ.
Then, since E is a semihomogeneous vector bundle on B, it can be written in

the form
E '

⊕
j

Ej ⊗ Uj ,

where each of the Ej are simple semihomogeneous vector bundles and where each
of the Uj are unipotent. (See [14, Proposition 6.18] or [13, Proposition 1.13].) In
particular, each of the unipotent bundles Uj admits a filtration of the form

0 = U0,rj ⊆ . . . ⊆ Uj,rj = Uj ,

where each of the successive quotients

Uk+1,j/Uk,j ,

for 0 6 k 6 rj − 1, are trivial. Moreover, inside of NSQ(B), the classes

det(E)
rank(E)

and
det(Ej ⊗ Uj)

rank(E)
are the same for all j. Thus, by Theorem 1.3 (i),

regcont(E ,O(1)) = regcont(Ej ,O(1)).

To finish the proof of Theorem 1.6, it thus suffices to treat the case that E is a
simple semihomogeneous vector bundle.

To that end, let E be a simple semihomogeneous vector bundle on B with the
property that the class

det(E)
rank(E) ∈ NSQ(B)

is identified with γ.
By Theorem 1.3 (i),

regcont(E , f∗λ) = ρη (γ) ,
where ρη(γ) is the minimum integer m ∈ Z for which either the class

γ + (m− i)η (6)
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is degenerate or fails to have index i, for all

i ∈ {1, . . . , g}.

Let
α ∈ End0

λ(A)

be the image of
γ ∈ End0

f∗λ(B)

under the natural homomorphism that is induced by f .
Then, by Theorem 1.4, these above conditions on the class (6) translate into

the assertion that either

pNrdλ((m− i) idA +α) = 0 (7)

or the polynomial
pNrdλ((N +m− i) idA +α) (8)

fails to have i positive roots (counted with multiplicities) for all

i ∈ {1, . . . , g}.

Indeed, that the class (6) is degenerate means that it has zero Euler characteristic

χ(γ + (m− i)η) = 0.

By Theorem 1.4, this is equivalent to vanishing of the polynomial (7).
Similarly, the condition that the class (6) fails to have index i for all

i ∈ {1, . . . , g},

means that the polynomial (8) fails to have i positive roots (counted with multi-
plicities) for all

i ∈ {1, . . . , g}.
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