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Abstract. Let L be a not necessarily saturated lattice in Z™ with a defining
matrix B. We explicitly compute the set of circuits of L in terms of max-
imal minors of B. This has a variety of applications from toric to tropical
geometry, from Grobner to Graver bases, and from linear to binomial ideals.

1. Introduction

The notion of circuit originates from matroid theory (see [4]) and it appears
in diverse areas of mathematics including linear spaces, linear ideals [9, p. 3],
toric ideals ([9, p. 33], and [3]), toric varieties [g], tropical geometry [2], convex
analysis [0], integer lattices, lattice ideals [6], Graver bases and Grobner bases [6],9].
The definition often varies partially from each context to the other. A general form
of a circuit is when it lives in a general integer lattice as in [6, Definition 2.2]. In
this paper we want to compute such circuits explicitly.

Let L be a lattice in Z™ of dimension m, and let B be a defining matrix of L.
By definition, B is an integer n x m matrix of rank m whose columns generate L as
a lattice. The defining matrix B is not unique, but it is unique up to action of the
group of unimodular matrices, GL,,(Z), consisting of all m X m integer matrices
whose determinants are £=1. This uniqueness means that if B’ is another defining
matrix of L, then there exists a matrix U € GL,,(Z) such that B’ = BU [,
Corollary 4.3a].

According to [0, Definition 2.2], a non-zero element u := (u1,...,u,) € L is
said to be a circuit if the support of u, i.e. supp(u) := {i : u; # 0}, is minimal
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with respect to inclusion and éu ¢ L for any positive integer d # 1. By [6]
Remark 2.5, and Proposition 2.6], the set of circuits of L is finite and is a special
generating set of L. We present an explicit formula for a circuit of L in terms of
maximal minors of the matrix B.

We recall some useful definitions and notation. For arbitrary integer sequences

1 <idy,...,is <nand 1 < jy,...,5: < m, we denote by Bli,...,is|j1,.-., 7,
the matrix obtained from B by choosing those rows and columns of B which
correspond to i1, ...,%s and ji,...,J, respectively. We define

DB[il, . ,’Lm] = detB[il,. . .,im|1, . ,m].

For the integers k; with 1 < k; < --- < ky,—1 < n, we consider the vector
Cloon = Dlkr, ko1, 1]er + -+ Dplky, . k1, ey,

where e; are standard vectors of Z™. The vector CkB1 ok is the main ingredient

m—1
of the formula. We denote by 5 k., the greatest common divisor of the values

Dplk1, ... km—1,1] fori =1,...,n, and we assume it to be positive. In the special
case, when m = 1, as the multi-index is empty, we set
CkBl,--<7kmf1 = DB[I]el —+ -4 DB[n]en.

For the lattice L, the lattice L consisting of all u € Z" for which ru € L for
some positive integer r is called the saturation of L. Clearly, we have L O L,
and if the equality occurs, we say that L is saturated. Since L is saturated, and
dim(L) = dim(L) = m, there exists an integer (n —m) x n-matrix A such that
L= Kerz(A) (see [6, Proposition 2.1]). Moreover, by the elementary divisor

theorem [I, Theorem 2.4.13], there exist positive integers di,...,d,, called the
elementary divisors of L in L such that d;y1 divides d; for i =1,...,m — 1, and
L)L~ D", Z/d;Z. Hence L/L is a finite group of order d; - - - d,,. Furthermore,
there exists a basis bq,...,b,, for L asa lattice, such that dibq,...,d,b,, is a
basis of L.

We can now formulate the main result of the paper.

2. The main result

We use the same definitions and notation as in Section [l

THEOREM 2.1 _
Let L be a lattice in Z™ of dimension m, L be its saturation, and let B be a defining
matriz of L. With the notation as above, the following conditions hold true.

(1) If B’ is another defining matriz of L, then

B _ B’ B _ pB’
Ckhm km—1 — :I:Cklanwkmfl and Bkly--wk'mfl - ﬂklauwkmfl'

(ii) The circuits of L are precisely of the form iél?l7~--,km—l7 where

—~B o B B
Ckl,--<7km71 T Ck17---;k7n—1/ﬁkh-“:kmfl'
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(#i1) The circuits of L are precisely of the form

:|:|CkBla<~-7k7n71| CkBl;

7km,71 ’

where |CkBl,...,km_1| denotes the order, as a group element, of the image of

CE ., in L/L under the natural surjection L — L/L.

m—

A version of Theorem for the circuits of linear spaces is given (without
any proof) in [9, p. 3]. It is also restated in |2 Lemma 4.1.4], and is proved using
properties of Grobner bases. Here, we prove Theorem by the properties of
integer lattices.

Proof of Theorem . Since B’ = BU for a unimodular matrix U, then for
any sequence 1 < iy,...,%,;, < n, we have

B'li1, ... im|1,...,m] = Bli1, ... im|1,...,m]U.

Therefore, depending on the value of det U which is +1 or —1 because U is unimod-
ular, we have Dp/[i1, ..., im] = £Dg[i1,...,ip]. This implies that Cf , =
+ Cthm’kmil, and hence 511631,...,1@,%1 = 6,’31 X

k., Note that the greatest common
divisor is assumed to be positive.

Let B be a defining matrix of L. In view of Theorem (i), and the el-
ementary divisor theorem [I, Theorem 2.4.13], we may assume that by,..., b,
are the columns of E, and there exist positive integers di,...,d,, such that
dib1,...,d,,b,, are the columns of B. It is clear that

Dglit,. . im] = dy -+ dpDxlit, .., im].

To prove Theorem we need some elementary lemmas concerning the
lattice L. We assume that aj,...,a, are the columns of A, where A is an integer
(n — m) x n-matrix with the property that L = Keryz(A4). We also define that
codim(L) := d := n — m, and hence rank(A) = d.

LEMMA 2.2
Let u € L be a circuit with supp(u) = {i1,...,4;} and let A’ be the submatriz of

A whose columns are a;,,...,a;,. Thenrank(A') =t — 1.

Proof. By [0l Proposition 2.4], L has a circuit U with the same support, that
is, u = a - u for some a € Z. Let s be the number of independent columns of
the matrix A’. Then clearly s < t. Without loss of generality, we may assume
that ay,,...,a;, are independent columns of A’. If s = ¢, then the columns of
A’ are independent, and hence supp(u) = () which is impossible. If s < ¢ — 2,
then the columns a;,,...,a;,,a; , are linearly dependent, and hence there exist
relatively prime integers Aq,..., As4+1 which are not simultaneously zero and they
satisfy Aia;, + -+ 4+ Asa;, + Asp1a;,, = 0. Then for the vector v = Aje;, +
<o+ A€y, + Asq1ei,, in which e ,...,e;,,e; , are standard vectors of Z", we
have supp(v) C {i1,...,is41}. Since s +1 <t — 1, we have supp(v) & supp(u)

contradicting 1 is a circuit of L. Hence the only possible case is s = ¢ — 1.
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COROLLARY 2.3 (cf. [9, Lemma 4.8])
Ifu € L is a circuit, then supp(u) has at most codim(L) + 1 elements. In other
words, |supp(u)| < d+ 1.

Proof. Follows directly from Lemma [2:2]

LEMMA 2.4 (cf. [9, Lemma 4.9] and [10, Proposition 1.9.9])
The circuits of L are precisely all vectors of the form

1 d+1
u=t—— Z(il)z det(aju s 7§j\i’ s aajd+1)eji
Qg efaya i—1
where {j1,...,jar1} € {1,...,n}, and oj,...;,,, is the greatest common divisor of
det(aj,,...,a;,,...,a;,,,) fori=1,...,d+1, and it is assumed to be positive.

Proof. We prove the result in two steps. _
1sT STEP. Let n =d+ 1. Then j; =i fori=1,...,d+ 1, and dim(L) = 1.

Since rank(A) = d, there is some i for which the columns ay, ..., a;,...,a441 of the
matrix A are linearly independent. For a nonzero element u = (u1,...,u441) € L,
we have

way + -+ U131 + U141 0+ Ud41dd+1 = —UA;.

Clearly, u; # 0, and using Cramer’s rule of elementary linear algebra, we have

W — det(al,...,;fi,...7—uiai,...,ad+1)
J det(ag,...,a;,...,a441)
. det(ay,...,a;,...,a
:(_1)Z7Jui ( 1, 7/\]7 3 d+1)
det(ay,...,a;,...,a441)
for j = 1,...,d + 1. Substituting the above values of u; in the expression u =
E?Z} uje;, we see that u = gz;lii(—l)j det(ay,...,a;,...,aq4+1)e,, where o, 8

are integers and are assumed to be relatively prime. If, in addition, we assume
that u is a circuit of L, then it is easy to show that § = +1, and « is the desired
greatest common divisor. _

2ND STEP. First we assume that u € L is a circuit with supp(u) = {i1,..., 4}
Then t < d+1, by Corollary The submatrix A’ whose columns are a;, , ..., a;,
has rank ¢ — 1, by Lemma ince rank(A) = d, we can add d —t+ 1 columns of
A to the matrix A’ such that the resulting d x (d + 1)-matrix A” has rank d. Let
a;,...,a;,, bethe columns of A”. Note that {i1,...,it} C {j1,...,Ja+1}. The
restriction u of u to {ji,...,jq+1} lives in Kerz(A”), and hence it has the desired
form, by the first step. This shows that u is also of desired form.

Conversely, assume that u has the form given by the lemma. We want to show
that u is a circuit of L. Since u is nonzero, at least one of the determinants is
nonzero. This implies that the matrix with the columns a;,,...,a;,, , has rank d.

Henceu € L = Kerz(A), by the first step. Since the coordinates of u are relatively
prime, we only have to show that the support of u is minimal.



A determinantal formula for circuits of integer lattices [125]

Let v € L, and supp(v) C supp(u). For an element j; € supp(u), we have
det(aj,,...,a;,,...,a;,,,) # 0, by definition of u. This shows that

{ajl,...,é;,...,ajdﬂ}

is linearly independent, and hence j; € supp(v). Therefore supp(v) = supp(u), as
required.

Proof of Theorem . Let u be a circuit in L. Let moreover

o:={L...,n}\{j1,.- -, jar1} and o;:=0cU{j}.

Note that each subset of {1,...,n} is ordered by the ordering induced from 1 <
2 < -+ < n. Using Lemma and [6, Theorem 2.8], we can write

1 d+1
u= if Z(—l)z(—l)
J1"Jd+1 i=1

Lbedt) 0 iC(A)Dg[Ui]ejr

Here C(A) stands for the greatest common divisor of all maximal minors of the
matrix A. We may assume that

Qjyovjusn = C(A),

J1Jd+1
for some positive integer O‘}1-~~jd+1' If we move the row of §[01-|1, ...,m] corre-
sponding to the index j; to the bottom of the matrix, then it is easy to see that

Dglos] = (=) Do (0, i),

where (o, j;) is the ordered set obtained from o by adding j; to it as the last
element. Therefore

d+1
1 i, I s P m— :
=t > (~1)20) () Dieot(—1) 'Dx[(0,ji)le;,
Qjy o dasr =1
1 d+1
=+—F— ZDg[(UJi)}ejr

Qjyoja i=1
Let o := {k1,...,km—1}, then

1 d+1
u= :tli ZDg[kﬁl, e 7km—1?.ji]eji
QG =1
1 d+1
:idl...d o > Dplki,. . ko1, jilej,.

Mg Jd+1 j=1

If i = kg for some £ € {1,...,m — 1}, then D[k, ..., kp—1,4] = 0. Thus
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| d+1
u==+ DBk‘l,... m—1,10 }e-
s 2Dl
d+1
= ZDB k1, ko1, ile; = +CF .,

ﬁkl 11111 km 1 ¢=1
as desired.

Proof of Theorem . By [6 Proposition 2.4], there is a one to one corre-
spondence between the circuits of L and those of L. In fact, u € L is a circuit of
L if and only if mu is a circuit of L, where m is the smallest positive integer with
the property that mu € L. But such an integer m is clearly the order of u+ L as
a group element of L/L. Therefore, the result follows from of Theorem

EXAMPLE 2.5

Let L be a lattice in Z® whose basis is {(6,—2,4),(2,2,0)}. Using Theorem
we compute the circuits of L. It is appropriate to use a computer algebra system
for computations, but in this example all computations can be easily checked by
hand. Clearly {(8,0,4),(2,2,0)} is another basis of L. It follows from the shape
of this basis that {(2,0,1),(1,1,0)} is a basis of L, and dy = 4,dy = 2 are the
elementary divisors of L in L. The matrix

82
B=102
40

is a deﬁning matrix of L. We have n = 3,m = 2, and hence 6 circuits by Theo-
rem [2.1| which are iC ' for k1 = 1,2,3. More precisely, we have

Cp = Dglki,1]e; + Dplki, 2]es + Dplk1, 3les
Therefore,
1) CP = DgJ1,2]es + Dgll,3]es = 16e; — 8es, B = 8, and CP = 2e; — e3.
2) CF¥ = Dp[2,1]e;1+D3g[2,3]es = —16e; —8es, f¥ =8, and CF = —2e; —e.
3) C§ = Dp[3,1]e; + Dp[3,2]es = 8e; + 8ey, ¥ =8, and CF =e; + es.
It is easy to see that |CP| = |CF| =4, and |CZ| = 2. Thus the circuits of L are
1) +|CP|CP = +4(2e5 — e3) = (0,8, —4).
2) +£|CP|CE = +4(—2e; — e3) = +(—8,0, —4).
3) £|CFICE = £2(e1 + e2) = £(2,2,0).
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