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Abstract. Let L be a not necessarily saturated lattice in Zn with a defining
matrix B. We explicitly compute the set of circuits of L in terms of max-
imal minors of B. This has a variety of applications from toric to tropical
geometry, from Gröbner to Graver bases, and from linear to binomial ideals.

1. Introduction

The notion of circuit originates from matroid theory (see [4]) and it appears
in diverse areas of mathematics including linear spaces, linear ideals [9, p. 3],
toric ideals ([9, p. 33], and [3]), toric varieties [8], tropical geometry [2], convex
analysis [5], integer lattices, lattice ideals [6], Graver bases and Gröbner bases [6, 9].
The definition often varies partially from each context to the other. A general form
of a circuit is when it lives in a general integer lattice as in [6, Definition 2.2]. In
this paper we want to compute such circuits explicitly.

Let L be a lattice in Zn of dimension m, and let B be a defining matrix of L.
By definition, B is an integer n×m matrix of rank m whose columns generate L as
a lattice. The defining matrix B is not unique, but it is unique up to action of the
group of unimodular matrices, GLm(Z), consisting of all m ×m integer matrices
whose determinants are ±1. This uniqueness means that if B′ is another defining
matrix of L, then there exists a matrix U ∈ GLm(Z) such that B′ = BU [7,
Corollary 4.3a].

According to [6, Definition 2.2], a non-zero element u := (u1, . . . , un) ∈ L is
said to be a circuit if the support of u, i.e. supp(u) := {i : ui 6= 0}, is minimal
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with respect to inclusion and 1
du 6∈ L for any positive integer d 6= 1. By [6,

Remark 2.5, and Proposition 2.6], the set of circuits of L is finite and is a special
generating set of L. We present an explicit formula for a circuit of L in terms of
maximal minors of the matrix B.

We recall some useful definitions and notation. For arbitrary integer sequences
1 ≤ i1, . . . , is ≤ n and 1 ≤ j1, . . . , jt ≤ m, we denote by B[i1, . . . , is|j1, . . . , jt],
the matrix obtained from B by choosing those rows and columns of B which
correspond to i1, . . . , is and j1, . . . , jt, respectively. We define

DB [i1, . . . , im] := detB[i1, . . . , im|1, . . . ,m].

For the integers ki with 1 ≤ k1 < · · · < km−1 ≤ n, we consider the vector

CB
k1,...,km−1

:= DB [k1, . . . , km−1, 1]e1 + · · ·+DB [k1, . . . , km−1, n]en,

where ei are standard vectors of Zn. The vector CB
k1,...,km−1

is the main ingredient
of the formula. We denote by βBk1,...,km−1

the greatest common divisor of the values
DB [k1, . . . , km−1, i] for i = 1, . . . , n, and we assume it to be positive. In the special
case, when m = 1, as the multi-index is empty, we set

CB
k1,...,km−1

:= DB [1]e1 + · · ·+DB [n]en.

For the lattice L, the lattice L̃ consisting of all u ∈ Zn for which ru ∈ L for
some positive integer r is called the saturation of L. Clearly, we have L̃ ⊇ L,
and if the equality occurs, we say that L is saturated. Since L̃ is saturated, and
dim(L) = dim(L̃) = m, there exists an integer (n −m) × n-matrix A such that
L̃ = KerZ(A) (see [6, Proposition 2.1]). Moreover, by the elementary divisor
theorem [1, Theorem 2.4.13], there exist positive integers d1, . . . , dm called the
elementary divisors of L in L̃ such that di+1 divides di for i = 1, . . . ,m − 1, and
L̃/L '

⊕m
i=1 Z/diZ. Hence L̃/L is a finite group of order d1 · · · dm. Furthermore,

there exists a basis b1, . . . ,bm for L̃ as a lattice, such that d1b1, . . . , dmbm is a
basis of L.

We can now formulate the main result of the paper.

2. The main result

We use the same definitions and notation as in Section 1.

Theorem 2.1
Let L be a lattice in Zn of dimension m, L̃ be its saturation, and let B be a defining
matrix of L. With the notation as above, the following conditions hold true.

(i) If B′ is another defining matrix of L, then

CB
k1,...,km−1

= ±CB′

k1,...,km−1
and βBk1,...,km−1

= βB
′

k1,...,km−1
.

(ii) The circuits of L̃ are precisely of the form ±C̄B
k1,...,km−1

, where

C̄B
k1,...,km−1

:= CB
k1,...,km−1

/βBk1,...,km−1
.
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(iii) The circuits of L are precisely of the form

±|C̄B
k1,...,km−1

| C̄B
k1,...,km−1

,

where |C̄B
k1,...,km−1

| denotes the order, as a group element, of the image of
C̄B
k1,...,km−1

in L̃/L under the natural surjection L̃→ L̃/L.

A version of Theorem 2.1 for the circuits of linear spaces is given (without
any proof) in [9, p. 3]. It is also restated in [2, Lemma 4.1.4], and is proved using
properties of Gröbner bases. Here, we prove Theorem 2.1 by the properties of
integer lattices.

Proof of Theorem 2.1 (i). Since B′ = BU for a unimodular matrix U , then for
any sequence 1 ≤ i1, . . . , im ≤ n, we have

B′[i1, . . . , im|1, . . . ,m] = B[i1, . . . , im|1, . . . ,m]U.

Therefore, depending on the value of detU which is +1 or −1 because U is unimod-
ular, we have DB′ [i1, . . . , im] = ±DB [i1, . . . , im]. This implies that CB

k1,...,km−1
=

± CB′

k1,...,km−1
, and hence βBk1,...,km−1

= βB
′

k1,...,km−1
. Note that the greatest common

divisor is assumed to be positive.

Let B̃ be a defining matrix of L̃. In view of Theorem 2.1 (i), and the el-
ementary divisor theorem [1, Theorem 2.4.13], we may assume that b1, . . . ,bm
are the columns of B̃, and there exist positive integers d1, . . . , dm such that
d1b1, . . . , dmbm are the columns of B. It is clear that

DB [i1, . . . , im] = d1 · · · dmDB̃
[i1, . . . , im].

To prove Theorem 2.1 (ii), we need some elementary lemmas concerning the
lattice L̃. We assume that a1, . . . ,an are the columns of A, where A is an integer
(n − m) × n-matrix with the property that L̃ = KerZ(A). We also define that
codim(L) := d := n−m, and hence rank(A) = d.

Lemma 2.2
Let u ∈ L be a circuit with supp(u) = {i1, . . . , it} and let A′ be the submatrix of
A whose columns are ai1 , . . . ,ait . Then rank(A′) = t− 1.

Proof. By [6, Proposition 2.4], L̃ has a circuit ũ with the same support, that
is, u = α · ũ for some α ∈ Z. Let s be the number of independent columns of
the matrix A′. Then clearly s ≤ t. Without loss of generality, we may assume
that ai1 , . . . ,ais are independent columns of A′. If s = t, then the columns of
A′ are independent, and hence supp(ũ) = ∅ which is impossible. If s ≤ t − 2,
then the columns ai1 , . . . ,ais ,ais+1 are linearly dependent, and hence there exist
relatively prime integers λ1, . . . , λs+1 which are not simultaneously zero and they
satisfy λ1ai1 + · · · + λsais + λs+1ais+1 = 0. Then for the vector v = λ1ei1 +
· · · + λseis + λs+1eis+1 in which ei1 , . . . , eis , eis+1 are standard vectors of Zn, we
have supp(v) ⊆ {i1, . . . , is+1}. Since s + 1 ≤ t − 1, we have supp(v) $ supp(ũ)
contradicting ũ is a circuit of L̃. Hence the only possible case is s = t− 1.
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Corollary 2.3 (cf. [9, Lemma 4.8])
If u ∈ L is a circuit, then supp(u) has at most codim(L) + 1 elements. In other
words, | supp(u)| ≤ d+ 1.

Proof. Follows directly from Lemma 2.2.

Lemma 2.4 (cf. [9, Lemma 4.9] and [10, Proposition 1.9.9])
The circuits of L̃ are precisely all vectors of the form

u = ± 1
αj1···jd+1

d+1∑
i=1

(−1)i det(aj1 , . . . , âji , . . . ,ajd+1)eji

where {j1, . . . , jd+1} ⊆ {1, . . . , n}, and αj1···jd+1 is the greatest common divisor of
det(aj1 , . . . , âji , . . . ,ajd+1) for i = 1, . . . , d+ 1, and it is assumed to be positive.

Proof. We prove the result in two steps.
1st Step. Let n = d + 1. Then ji = i for i = 1, . . . , d + 1, and dim(L̃) = 1.

Since rank(A) = d, there is some i for which the columns a1, . . . , âi, . . . ,ad+1 of the
matrix A are linearly independent. For a nonzero element u = (u1, . . . , ud+1) ∈ L̃,
we have

u1a1 + · · ·+ ui−1ai−1 + ui+1ai+1 · · ·+ ud+1ad+1 = −uiai.

Clearly, ui 6= 0, and using Cramer’s rule of elementary linear algebra, we have

uj = det(a1, . . . , âi, . . . ,−uiai, . . . ,ad+1)
det(a1, . . . , âi, . . . ,ad+1)

= (−1)i−jui
det(a1, . . . , âj , . . . ,ad+1)
det(a1, . . . , âi, . . . ,ad+1)

for j = 1, . . . , d + 1. Substituting the above values of uj in the expression u =∑d+1
j=1 ujej , we see that u = β

α

∑d+1
j=1(−1)j det(a1, . . . , âj , . . . ,ad+1)ej , where α, β

are integers and are assumed to be relatively prime. If, in addition, we assume
that u is a circuit of L̃, then it is easy to show that β = ±1, and α is the desired
greatest common divisor.

2nd Step. First we assume that u ∈ L̃ is a circuit with supp(u) = {i1, . . . , it}.
Then t ≤ d+1, by Corollary 2.3. The submatrix A′ whose columns are ai1 , . . . ,ait
has rank t−1, by Lemma 2.2. Since rank(A) = d, we can add d− t+ 1 columns of
A to the matrix A′ such that the resulting d× (d+ 1)-matrix A′′ has rank d. Let
aj1 , . . . ,ajd+1 be the columns of A′′. Note that {i1, . . . , it} ⊆ {j1, . . . , jd+1}. The
restriction ū of u to {j1, . . . , jd+1} lives in KerZ(A′′), and hence it has the desired
form, by the first step. This shows that u is also of desired form.

Conversely, assume that u has the form given by the lemma. We want to show
that u is a circuit of L̃. Since u is nonzero, at least one of the determinants is
nonzero. This implies that the matrix with the columns aj1 , . . . ,ajd+1 has rank d.
Hence u ∈ L̃ = KerZ(A), by the first step. Since the coordinates of u are relatively
prime, we only have to show that the support of u is minimal.
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Let v ∈ L̃, and supp(v) ⊆ supp(u). For an element ji ∈ supp(u), we have
det(aj1 , . . . , âji , . . . ,ajd+1) 6= 0, by definition of u. This shows that

{aj1 , . . . , âji , . . . ,ajd+1}

is linearly independent, and hence ji ∈ supp(v). Therefore supp(v) = supp(u), as
required.

Proof of Theorem 2.1 (ii). Let u be a circuit in L̃. Let moreover

σ := {1, . . . , n} \ {j1, . . . , jd+1} and σi := σ ∪ {ji}.

Note that each subset of {1, . . . , n} is ordered by the ordering induced from 1 <
2 < · · · < n. Using Lemma 2.4, and [6, Theorem 2.8], we can write

u = ± 1
αj1···jd+1

d+1∑
i=1

(−1)i(−1)1+···+d+
∑

i∈σi
i
C(A)D

B̃
[σi]eji .

Here C(A) stands for the greatest common divisor of all maximal minors of the
matrix A. We may assume that

αj1···jd+1 = C(A)α′j1···jd+1

for some positive integer α′j1···jd+1
. If we move the row of B̃[σi|1, . . . ,m] corre-

sponding to the index ji to the bottom of the matrix, then it is easy to see that

D
B̃

[σi] = (−1)n−ji−(d+1−i)D
B̃

[(σ, ji)],

where (σ, ji) is the ordered set obtained from σ by adding ji to it as the last
element. Therefore

u = ± 1
α′j1···jd+1

d+1∑
i=1

(−1)2(i−ji)(−1)1+···+d+
∑

i∈σ
i(−1)m−1D

B̃
[(σ, ji)]eji

= ± 1
α′j1···jd+1

d+1∑
i=1

D
B̃

[(σ, ji)]eji .

Let σ := {k1, . . . , km−1}, then

u = ± 1
α′j1···jd+1

d+1∑
i=1

D
B̃

[k1, . . . , km−1, ji]eji

= ± 1
d1 · · · dmα′j1···jd+1

d+1∑
i=1

DB [k1, . . . , km−1, ji]eji .

If i = k` for some ` ∈ {1, . . . ,m− 1}, then D
B̃

[k1, . . . , km−1, i] = 0. Thus
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u = ± 1
d1 · · · dmα′j1···jd+1

d+1∑
i=1

DB [k1, . . . , km−1, i]ei

= ± 1
βBk1,...,km−1

d+1∑
i=1

DB [k1, . . . , km−1, i]ei = ±C̄B
k1,...,km−1

,

as desired.

Proof of Theorem 2.1 (iii). By [6, Proposition 2.4], there is a one to one corre-
spondence between the circuits of L and those of L̃. In fact, u ∈ L̃ is a circuit of
L̃ if and only if mu is a circuit of L, where m is the smallest positive integer with
the property that mu ∈ L. But such an integer m is clearly the order of u + L as
a group element of L̃/L. Therefore, the result follows from (ii) of Theorem 2.1.

Example 2.5
Let L be a lattice in Z3 whose basis is {(6,−2, 4), (2, 2, 0)}. Using Theorem 2.1,
we compute the circuits of L. It is appropriate to use a computer algebra system
for computations, but in this example all computations can be easily checked by
hand. Clearly {(8, 0, 4), (2, 2, 0)} is another basis of L. It follows from the shape
of this basis that {(2, 0, 1), (1, 1, 0)} is a basis of L̃, and d1 = 4, d2 = 2 are the
elementary divisors of L in L̃. The matrix

B =

8 2
0 2
4 0


is a defining matrix of L. We have n = 3,m = 2, and hence 6 circuits by Theo-
rem 2.1 which are ±C̄B

k1
for k1 = 1, 2, 3. More precisely, we have

CB
k1

= DB [k1, 1]e1 +DB [k1, 2]e2 +DB [k1, 3]e3.

Therefore,

1) CB
1 = DB [1, 2]e2 +DB [1, 3]e3 = 16e2 − 8e3, βB1 = 8, and C̄B

1 = 2e2 − e3.
2) CB

2 = DB [2, 1]e1+DB [2, 3]e3 = −16e1−8e3, βB2 = 8, and C̄B
2 = −2e1−e3.

3) CB
3 = DB [3, 1]e1 +DB [3, 2]e2 = 8e1 + 8e2, βB3 = 8, and C̄B

3 = e1 + e2.

It is easy to see that |C̄B
1 | = |C̄B

2 | = 4, and |C̄B
3 | = 2. Thus the circuits of L are

1) ±|C̄B
1 |C̄B

1 = ±4(2e2 − e3) = ±(0, 8,−4).
2) ±|C̄B

2 |C̄B
2 = ±4(−2e1 − e3) = ±(−8, 0,−4).

3) ±|C̄B
3 |C̄B

3 = ±2(e1 + e2) = ±(2, 2, 0).
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