

FOLIA 355

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica 21 (2022)

Takashi Noiri and Bishwambhar Roy¹ $\gamma_{\mu}\mathcal{H}$ -compactness in GTS

Abstract. Using the notion of operations on a generalized topological space (X, μ) and a hereditary class we have introduced the notion of γ_{μ} -compactness modulo a hereditary class \mathcal{H} termed as $\gamma_{\mu}\mathcal{H}$ -compactness. We have studied $\gamma_{\mu}\mathcal{H}$ -compact spaces and $\gamma_{\mu}\mathcal{H}$ -compact sets relative to μ .

1. Introduction

In 1979, Kasahara [7] introduced the notion of an operation on a topological space and introduced the concept of α -closed graph of a function. After then Janković [6] defined the concept of α -closed sets and investigated some properties of functions with α -closed graphs. In 1991, Ogata [10] introduced the notion of γ -open sets to investigate some new separation axioms of a topological space. Recently, Krishnan et al. [8] and Van An et al. [18] investigated the notion of operations on the family of all semi-open sets and pre-open sets. The notion of compactness is one of the most important area of research in mathematics.

The concept of \mathcal{I} -compactness was introduced in [9], while the notion of γ compact spaces was studied in [2]. Recently, Carpintero et al. [1] introduced the
concept of μ -compactness with respect to a hereditary class \mathcal{H} . The notion of
weakly $\mu \mathcal{H}$ -compact spaces was studied in [11, 12].

In this paper, by using hereditary classes [19, 5], a generalized topology [3] and an operation [15], we define the notion of γ_{μ} -compactness modulo a hereditary class called $\gamma_{\mu}\mathcal{H}$ -compactness. We have studied several properties of $\gamma_{\mu}\mathcal{H}$ -compact

AMS (2020) Subject Classification: 54C10, 54C08, 54D10.

Keywords and phrases: μ -open set, operation, Hereditary class, $\gamma_{\mu}\mathcal{H}$ -compact.

 $^{^{-1}}$ The author acknowledges the financial support from Department of Higher education,

Science and technology and Biotechnology, Government of West Bengal, INDIA

ISSN: 2081-545X, e-ISSN: 2300-133X.

spaces and $\gamma_{\mu}\mathcal{H}$ -compact sets. Finally, we have given some preservation theorems of $\gamma_{\mu}\mathcal{H}$ -compact sets.

We recall some notions defined in [3]. Let X be a non-empty set and exp X be the power set of X. We call a class $\mu \subseteq exp X$ a generalized topology [3], (briefly, GT) if $\emptyset \in \mu$ and the union of any elements of μ belongs to μ . A set X with a GT μ on it is called a *generalized topological space* (briefly, GTS) and is denoted by (X, μ) .

For a GTS (X, μ) , the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e. the smallest μ -closed set containing A; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e. the largest μ -open set contained in A (see [3, 4]). It is easy to observe that i_{μ} and c_{μ} are idempotent and monotonic, where $\gamma : exp X \to exp X$ is said to be idempotent iff for each $A \subseteq X$, $\gamma(\gamma(A)) = \gamma(A)$, and monotonic iff $\gamma(A) \subseteq \gamma(B)$, whenever $A \subseteq B \subseteq X$. It is also well known from [4] that let μ be a GT on $X, A \subseteq X$ and $x \in X$, then $x \in c_{\mu}(A)$ if and only if $x \in M \in \mu$ implies $M \cap A \neq \emptyset$ and that $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$.

We recall that a collection \mathcal{H} of subsets of X is a hereditary class (see [5]) if it is closed under subsets, i.e. if $A \in \mathcal{H}$ and $B \subseteq A$ then $B \in \mathcal{H}$.

2. $\gamma_{\mu}\mathcal{H}$ -compact subsets

Definition 2.1 ([15])

Let (X, μ) be a GTS. An operation γ_{μ} on a generalized topology μ is a mapping from μ to $\mathcal{P}(X)$ (where $\mathcal{P}(X)$ is the power set of X) with $G \subseteq G^{\gamma_{\mu}}$ for each $G \in \mu$. This operation is denoted by $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$. Note that $\gamma_{\mu}(A)$ and $A^{\gamma_{\mu}}$ are two different notations for the same set.

Definition 2.2 ([15])

Let (X, μ) be a GTS and γ_{μ} an operation on μ . A subset G of a GTS (X, μ) is said to be γ_{μ} -open if for each point x of G, there exists a μ -open set U containing x such that $U^{\gamma_{\mu}} \subseteq G$.

A subset of a GTS (X, μ) is said to be γ_{μ} -closed if its complement is γ_{μ} -open in (X, μ) . We shall use the symbol $\gamma_{\mu}O(X)$ to mean the collection of all γ_{μ} -open sets of the GTS (X, μ) .

Remark 2.1 ([15])

Let (X, μ) be a GTS and $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ . We note that $\gamma_{\mu}O(X)$ is a GT on X. We also observe that every γ_{μ} -open set is a μ -open set, i.e. $\gamma_{\mu}O(X) \subseteq \mu$.

Definition 2.3 ([1])

Let (X, μ) be a GTS and \mathcal{H} be a hereditary class on X. A subset $A \subseteq X$ is called $\mu\mathcal{H}$ -compact if for every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of A by μ -open sets of X, there exists a finite subcollection $\{U_{\alpha} : \alpha \in \Lambda_0\}$ such that $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\} \in \mathcal{H}$. X is called a $\mu\mathcal{H}$ -compact space if X is \mathcal{H} -compact as a subset.

[34]

Definition 2.4 ([16])

Let (X, μ) be a GTS and $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation on μ . A subset A of (X, μ) is said be γ_{μ} -compact relative to μ if for every cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of A by μ -open subsets of X, there exists a finite subset Λ_0 of Λ such that $A \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}$. If A = X, then X is called a γ_{μ} -compact space.

Definition 2.5

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ an operation on μ and \mathcal{H} a hereditary class on X. A subset A of X is said to be $\gamma_{\mu}\mathcal{H}$ -compact relative to μ if for every cover $\{U_{\alpha} \colon \alpha \in \Lambda\}$ of A by μ -open sets of X, there exists a finite subset Λ_0 of Λ such that $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} \colon \alpha \in \Lambda_0\} \in \mathcal{H}$. X is said to be $\gamma_{\mu}\mathcal{H}$ -compact if X is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Remark 2.2

(1) Let A be $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

- (i) If $\mathcal{H} = \{\emptyset\}$, then A is γ_{μ} -compact (see [16]).
- (ii) If $\mathcal{H} = \{\emptyset\}$ and γ_{μ} is identity, then A is μ -compact (see [14]).
- (iii) If $\mathcal{H} = \{\emptyset\}$ and γ_{μ} is c_{μ} , then A is weakly μ -compact (see [17]).

(2) Let (X, μ) be $\gamma_{\mu}\mathcal{H}$ -compact.

- (i) If γ_{μ} is identity, then X is $\mu \mathcal{H}$ -compact (see [1]).
- (ii) If γ_{μ} is c_{μ} , then X is weakly $\mu \mathcal{H}$ -compact (see [11]).

In fact, we can recover almost all the well known classical concepts of compactness by replacing the generalized topologies, operations and the hereditary classes.

Observation 2.3

Since $U \subseteq U^{\gamma_{\mu}}$ for every μ -open set $U \in \mu$, it follows that every $\mu \mathcal{H}$ -compact space is $\gamma_{\mu} \mathcal{H}$ -compact. But the converse is not true as shown by the next example. We also note that every γ_{μ} -compact subset is $\gamma_{\mu} \mathcal{H}$ -compact but the converse is not true.

Remark 2.4

- (a) Let \mathbb{R} be the set of real numbers. Let $\mu = \{A \subseteq \mathbb{R} : A \text{ is infinite}\}$. Then (\mathbb{R}, μ) is a GTS. If we take $\mathcal{H} = \{A \subseteq \mathbb{R} : A \text{ is finite}\}$, then \mathcal{H} is a hereditary class on \mathbb{R} . It is easy to check that (\mathbb{R}, μ) is not $\mu\mathcal{H}$ -compact. In fact, $\{(-n, n) : n \in \mathbb{N}\}$ is a cover of \mathbb{R} by μ -open sets of \mathbb{R} , but there do not exist any $r \in \mathbb{N}$ such that $\mathbb{R} \setminus \bigcup \{(-n, n) : n = 1, 2, \dots, r\} \in \mathcal{H}$. Let $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be an operation defined by $A^{\gamma_{\mu}} = A$, if $1 \notin A$ and $A^{\gamma_{\mu}} = \mathbb{R}$, if $1 \in A$. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of \mathbb{R} by μ -open sets of \mathbb{R} . Then there exists U_{α_0} such that $1 \in U_{\alpha_0}$. Hence $\mathbb{R} \setminus U_{\alpha_0}^{\gamma_{\mu}} = \emptyset \in \mathcal{H}$. This shows that \mathbb{R} is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .
- (b) Let \mathbb{R} be the set of real numbers and $\mu = \tau_{co}$ (countable topology on \mathbb{R}). Let $\mathcal{H} = \{A \subseteq \mathbb{R} : m(A) = 0\}$ (m(A) = the measure of A). Consider $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ as the identity operation on μ . It is easy to check that \mathbb{R} is not γ_{μ} -compact relative to μ but $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Theorem 2.5

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ an operation on μ and \mathcal{H} an ideal on X. Then the union of two $\gamma_{\mu}\mathcal{H}$ -compact subsets relative to μ is also a $\gamma_{\mu}\mathcal{H}$ -compact set relative to μ .

Proof. Let A and B be $\gamma_{\mu}\mathcal{H}$ -compact relative to μ . Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be any cover of $A \cup B$ by μ -open subsets of X. Then there exist finite subsets Λ_1 and Λ_2 of Λ such that $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_1\} \in \mathcal{H}$ and $B \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_2\} \in \mathcal{H}$. Since $\Lambda_1 \cup \Lambda_2$ is a finite subset of Λ and \mathcal{H} is an ideal, $A \cup B \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_1 \cup \Lambda_2\} \subseteq A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_1\} \cup B \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_2\} \in \mathcal{H}$. Thus $A \cup B$ is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

The following example shows that if the class \mathcal{H} is not an ideal, then the union of two $\gamma_{\mu}\mathcal{H}$ -compact subsets relative to μ is not necessarily $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Example 2.6

Let X = (0, 1) and μ be the restriction of the usual topology on X and $\mathcal{H} = \{A : A \subseteq (0, \frac{1}{2}) \text{ or } A \subseteq (\frac{1}{2}, 1)\}$. Let $\gamma_{\mu} : \mu \to \mathcal{P}(X)$ be the identity function. Then $A = (0, \frac{1}{2})$ and $B = (\frac{1}{2}, 1)$ are $\gamma_{\mu}\mathcal{H}$ -compact relative to μ . But their union $A \cup B$ is not so. In fact, $\{(\frac{1}{n}, 1 - \frac{1}{n}) : n \in \mathbb{N}\}$ is a cover of $A \cup B$ by μ -open sets. But there exist no n_1, n_2, \ldots, n_k such that $A \cup B \setminus \bigcup \{(\frac{1}{n_i}, 1 - \frac{1}{n_i}) : i = 1, 2, \ldots, k\} \notin \mathcal{H}$.

Definition 2.6 ([16])

A GTS (X, μ) is called a γ_{μ} -regular space if for each point x of X and each μ -open set V containing x, there exists a μ -open set U containing x such that $\gamma_{\mu}(U) \subseteq V$.

Theorem 2.7 ([16])

For a strong GTS (X, μ) , the following properties are equivalent:

- (i) $\mu = \gamma_{\mu} O(X)$.
- (ii) (X, μ) is γ_{μ} -regular.
- (iii) For each $x \in X$ and each $U \in \mu$ containing x, there exists $W \in \gamma_{\mu}$ -O(X) such that $x \in W \subseteq W^{\gamma_{\mu}} \subseteq U$.

Theorem 2.8

Let (X, μ) be a GTS, where $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ . The implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) hold. However, if (X, μ) is γ_{μ} -regular, then for any subset $A \subseteq X$ the following are equivalent:

- (i) A is $\mu \mathcal{H}$ -compact relative to μ .
- (ii) A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .
- (iii) A is $\mu \mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$.
- (iv) A is $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$.

Proof. (i) \Rightarrow (ii): It follows from the fact that for every μ -open set, $U \subseteq U^{\gamma_{\mu}}$.

(ii) \Rightarrow (iii): Let A be $\gamma_{\mu}\mathcal{H}$ -compact relative to μ and $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by γ_{μ} -open sets in X. Then for each $x \in A$, there exists $\alpha(x) \in \Lambda$ such that

[36]

 $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ is γ_{μ} -open, there exists $V_{\alpha(x)} \in \mu$ such that $x \in V_{\alpha(x)} \subseteq V_{\alpha(x)}^{\gamma_{\mu}} \subseteq U_{\alpha(x)}$. Now $\{V_{\alpha(x)} : x \in A\}$ is a cover of A by μ -open sets of X. Then by (ii), there exists a finite subset A_0 of A such that $A \setminus \bigcup \{V_{\alpha(x)}^{\gamma_{\mu}} : x \in A_0\} \in \mathcal{H}$. Thus, $A \setminus \bigcup \{U_{\alpha(x)} : x \in A_0\} \in \mathcal{H}$. This shows that A is $\mu\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$.

(iii) \Rightarrow (iv): The proof follows from the similar argument as in (i) \Rightarrow (ii).

(iv) \Rightarrow (i): Let $A \subseteq X$ be $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$. We shall show that A is $\mu\mathcal{H}$ -compact relative to μ . Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by μ -open sets of X. Then for each $x \in A$, there exists $\alpha(x) \in \Lambda$ such that $x \in U_{\alpha(x)}$. Since (X,μ) is γ_{μ} -regular, there exists $V_{\alpha(x)} \in \mu$ such that $x \in V_{\alpha(x)} \subseteq V_{\alpha(x)}^{\gamma_{\mu}} \subseteq U_{\alpha(x)}$. Since $\{V_{\alpha(x)} : x \in A\}$ is a cover of A by μ -open sets of X and A is $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$, there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of A such that $A \setminus \bigcup \{V_{\alpha(x_i)}^{\gamma_{\mu}} : i = 1, 2, \ldots, n\} \in \mathcal{H}$. Thus $A \setminus \bigcup \{U_{\alpha(x_i)} : i = 1, 2, \ldots, n\} \in \mathcal{H}$. Hence A is $\mu\mathcal{H}$ -compact relative to μ .

COROLLARY 2.9

Let (X, μ) be a GTS, where $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ . The implications $(i) \Rightarrow (ii) \Rightarrow (iv)$ hold. However, if (X, μ) is γ_{μ} -regular, then the following are equivalent:

- (i) X is $\mu \mathcal{H}$ -compact relative to μ .
- (ii) X is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .
- (iii) X is $\mu \mathcal{H}$ -compact relative to $\gamma_{\mu} O(X)$.
- (iv) X is $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$.

Example 2.10

Let \mathbb{R} be the set of real numbers and $\mu = \{A \subseteq \mathbb{R} : A \text{ is infinite}\} \cup \{\emptyset\}$. Then (\mathbb{R}, μ) is a GTS. Let $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be defined by $A^{\gamma_{\mu}} = \emptyset$ if $A = \{\emptyset\}$ and \mathbb{R} , otherwise. If we take $\mathcal{H} = \{A : A \text{ is finite}\}$, then \mathcal{H} is a hereditary class on \mathbb{R} . It is easy to check that $\gamma_{\mu}O(\mathbb{R}) = \{\emptyset, \mathbb{R}\}$. Hence, \mathbb{R} is $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(\mathbb{R})$, but not $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Theorem 2.11

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ an operation on μ and \mathcal{H}_f be the hereditary class of finite subsets on X. Then $A \subseteq X$ is γ_{μ} -compact relative to μ if and only if A is $\gamma_{\mu}\mathcal{H}_f$ -compact relative to μ .

Proof. If A is γ_{μ} -compact relative to μ , then it is clearly $\gamma_{\mu}H_f$ -compact relative to μ . Next, let A be $\gamma_{\mu}H_f$ -compact relative to μ . Let $\{U_{\alpha}: \alpha \in \Lambda\}$ be a μ -open cover of A. Then there exists a finite subset Λ_0 of Λ such that $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}}: \alpha \in \Lambda_0\} \in \mathcal{H}_f$. Let $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}}: \alpha \in \Lambda_0\} = \{x_1, x_2, \ldots, x_n\}$. For each $1 \leq j \leq n$, choose U_{α_j} such that $x_j \in U_{\alpha_j} \subseteq U_{\alpha_j}^{\gamma_{\mu}}$. Thus $A \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}}: \alpha \in \Lambda_0\} \cup \{U_{\alpha_j}^{\gamma_{\mu}}: j = 1, 2, \ldots, n\}$. Hence A is γ_{μ} -compact relative to μ .

Theorem 2.12

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ and \mathcal{H} be a hereditary class on X. If A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ and B is γ_{μ} -closed, then $A \cap B$ is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of $A \cap B$ by μ -open subsets of X. Then $X \setminus B$ is γ_{μ} -open and $A \setminus B \subseteq X \setminus B$. Then for each $x \in A \setminus B$, there exists a μ -open set U_x containing x such that $x \in U_x \subseteq U_x^{\gamma_{\mu}} \subseteq X \setminus B$. Then $\{U_{\alpha} : \alpha \in \Lambda\} \cup \{U_x : x \in A \setminus B\}$ is a cover of A by μ -open sets in X. So there exist finite subsets Λ_0 of Λ and A_0 of A such that $A \subseteq [\bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}] \cup [\bigcup \{U_x^{\gamma_{\mu}} : x \in A_0\}] \cup H$ for some $H \in \mathcal{H}$. Then $A \cap B \subseteq [\bigcup \{U_{\alpha}^{\gamma_{\mu}} \cap B : \alpha \in \Lambda_0\}] \cup [\bigcup \{U_x^{\gamma_{\mu}} \cap B : x \in A_0\}] \cup (H \cap B) \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \cup H$. Thus $A \cap B \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \subseteq H \in \mathcal{H}$. Hence $A \cap B$ is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Corollary 2.13

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ and \mathcal{H} be a hereditary class on X. If X is $\gamma_{\mu}\mathcal{H}$ -compact and B is γ_{μ} -closed, then B is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Definition 2.7

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ and \mathcal{H} be a hereditary class on X. A subset A of X is said to be

- (i) $\mu \mathcal{H}g$ -closed if $c_{\mu}(A) \subseteq U$ whenever $A \setminus U^{\gamma_{\mu}} \in \mathcal{H}$ and $U \in \mu$.
- (ii) μg -closed (see [13]) if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \mu$.

Remark 2.14

If A is $\mu \mathcal{H}g$ -closed, then it is μg -closed. Also if $\mathcal{H} = \{\emptyset\}$, then a $\mu\{\emptyset\}g$ -closed set is simply a μg -closed set.

EXAMPLE 2.15

Let $X = \{a, b, c\} \ \mu = \{\emptyset, X, \{a\}\}, \ \gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation defined by $A^{\gamma_{\mu}} = c_{\mu}(A)$ for $A \subseteq X$. Let $\mathcal{H} = \{\emptyset, \{b\}\}$. It can be checked that $\{a, b\}$ is a μg -closed set but not a $\mu \mathcal{H}g$ -closed set.

Theorem 2.16

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ and \mathcal{H} be a hereditary class on X. If (X, μ) is $\gamma_{\mu}\mathcal{H}$ -compact and A is a μ -closed set such that $(X \setminus A)^{\gamma_{\mu}} = X \setminus A$, then A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Proof. Let A be a μ -closed set and $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by μ -open sets of X. Then $(X \setminus A) \cup [\bigcup \{U_{\alpha} : \alpha \in \Lambda\}]$ is a μ -open cover of X. Thus there exists a finite subset Λ_0 of Λ such that $X \setminus [(X \setminus A)^{\gamma_{\mu}} \cup [\bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}]] \in \mathcal{H}$. But

$$X \setminus \left[(X \setminus A)^{\gamma_{\mu}} \cup \left[\bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0 \} \right] \right]$$

= $[X \setminus (X \setminus A)^{\gamma_{\mu}}] \cap \left[X \setminus \bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0 \} \right]$
= $A \cap \left[X \setminus \bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0 \} \right]$
= $A \setminus \bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0 \}.$

Therefore, $A \setminus \bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0 \} \in \mathcal{H}$. Thus A is $\gamma_{\mu} \mathcal{H}$ -compact relative to μ .

We call an operation $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ additive (see [16]) if for any $A, B \in \mu$, $(A \cup B)^{\gamma_{\mu}} = A^{\gamma_{\mu}} \cup B^{\gamma_{\mu}}$.

[38]

Theorem 2.17

Let (X, μ) be a GTS, $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be an operation on μ and \mathcal{H} be a hereditary class on X. Let A be a $\mu\mathcal{H}g$ -closed subset of X with $A \subseteq B \subseteq c_{\mu}(A)$. If B is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ , then A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ . If in addition, γ_{μ} is additive, then converse part is also true.

Proof. Suppose that B is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ and $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of A by μ -open sets of X. Since A is a $\mu\mathcal{H}g$ -closed subset of X, A is μg -closed and $B \subseteq c_{\mu}(A) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda\}$. Since B is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ , there exists a finite subset Λ_0 of Λ such that $B \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \in \mathcal{H}$. Since $A \subseteq B$, $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \in \mathcal{H}$. Thus A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

Conversely, suppose that A is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ and $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of B by μ -open sets of X. Then $\{U_{\alpha} : \alpha \in \Lambda\}$ is a cover of A by μ -open sets of X. So there exists a finite subset Λ_0 of Λ such that $A \setminus \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\} \in \mathcal{H}$. Since A is $\mu\mathcal{H}g$ -closed, $c_{\mu}(A) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\}$. Since $B \subseteq c_{\mu}(A)$, $B \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\} \subseteq \bigcup \{U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0\}$ and B is γ_{μ} -compact relative to μ . Hence, B is $\gamma_{\mu}\mathcal{H}$ -compact relative to μ .

3. $\gamma_{\mu}\mathcal{H}$ -compact subsets and related continuity

Throughout the rest of the paper (X, μ) and (Y, λ) will denote GTS's and $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ and $\beta_{\lambda} \colon \lambda \to \mathcal{P}(Y)$ will denote two operations on μ and λ , respectively.

Definition 3.1

A function $f: (X, \mu) \to (Y, \lambda)$ is said to be

- (i) (γ, β) -continuous if for each $x \in X$ and each λ -open set V with $f(x) \in V$, there exists a μ -open set U containing x such that $f(U^{\gamma_{\mu}}) \subseteq V^{\beta_{\lambda}}$.
- (ii) weakly (γ, β) -continuous if $f^{-1}(V)$ is γ_{μ} -open for each β_{λ} -open set V of Y.

Theorem 3.1

Every (γ, β) -continuous function $f: (X, \mu) \to (Y, \lambda)$ is weakly (γ, β) -continuous.

Proof. Let V be any β_{λ} -open subset of Y. For each $x \in f^{-1}(V)$, $f(x) \in V$ and so there exists a λ -open set W containing f(x) such that $f(x) \in W \subseteq W^{\beta_{\lambda}} \subseteq V$. Since f is (γ, β) -continuous, there exists $U \in \mu$ containing x such that $f(U^{\gamma_{\mu}}) \subseteq W^{\beta_{\lambda}}$. Therefore, $x \in U \subseteq U^{\gamma_{\mu}} \subseteq f^{-1}(f(U^{\gamma_{\mu}})) \subseteq f^{-1}(W^{\beta_{\lambda}}) \subseteq f^{-1}(V)$. Thus f is weakly (γ, β) -continuous.

Example 3.2

Let $X = Y = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\lambda = \{\emptyset, Y, \{b\}, \{c\}, \{b, c\}\}$. Then (X, μ) and (Y, λ) are two GTS's. Let $\gamma_{\mu} \colon \mu \to \mathcal{P}(X)$ be defined by $A^{\gamma_{\mu}} = i_{\mu}(c_{\mu}(A))$ for all $A \subseteq X$. Let $\beta_{\lambda} \colon \beta \to \mathcal{P}(X)$ be defined by $A^{\beta_{\lambda}} = c_{\lambda}(A)$ for any $A \subseteq X$. Consider the identity function $f \colon (X, \mu) \to (Y, \lambda)$. Then f is a weakly (γ, β) -continuous function but not a (γ, β) -continuous function.

Theorem 3.3

If (Y, λ) is β_{λ} -regular, then every weakly (γ, β) -continuous function $f: (X, \mu) \to (Y, \lambda)$ is (γ, β) -continuous.

Proof. Let $x \in X$ and V be a λ -open subset of Y containing f(x). Then there exists a β_{λ} -open set W in Y such that $f(x) \in W \subseteq W^{\beta_{\lambda}} \subseteq V$. Since f is weakly (γ, β) continuous, $f^{-1}(W)$ is a γ_{μ} -open set containing x and hence a μ -open set in Xsuch that $x \in U \subseteq U^{\gamma_{\mu}} \subseteq f^{-1}(W)$. Therefore, $f(U^{\gamma_{\mu}}) \subseteq W \subseteq W^{\beta_{\lambda}} \subseteq V \subseteq V^{\beta_{\lambda}}$. Thus f is a (γ, β) -continuous function.

We recall [1] that if \mathcal{H} is a hereditary class on a set X and $f: (X, \mu) \to (Y, \lambda)$ is a function, then $f(\mathcal{H}) = \{f(H): H \in \mathcal{H}\}$ is also a hereditary class on Y.

Theorem 3.4

Let \mathcal{H} be a hereditary class on (X, μ) , $f: (X, \mu) \to (Y, \lambda)$ be a (γ, β) -continuous function and A be $\gamma_{\mu}\mathcal{H}$ -compact relative to μ . Then f(A) is $\beta_{\lambda}f(\mathcal{H})$ -compact relative to λ .

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be any cover of f(A) by λ -open sets of Y. Then for each $x \in A$, there exists $\alpha(x)$ such that $f(x) \in V_{\alpha(x)}$. Thus there exists a μ -open set $U_{\alpha(x)}$ containing x such that $f(U_{\alpha(x)}^{\gamma_{\mu}}) \subseteq V^{\beta_{\lambda}}$. Now, $\{U_{\alpha(x)} : x \in A\}$ is a cover of A by μ -open sets of X. Thus there exists a finite subset A_0 of A such that $A \setminus \bigcup \{U_{\alpha(x)}^{\gamma_{\mu}} : x \in A_0\} \subseteq H$ for some $H \in \mathcal{H}$. Therefore,

$$f(A) \subseteq \bigcup \{ f(U_{\alpha(x)}^{\gamma_{\mu}}) : x \in A_0 \} \cup f(H) \subseteq \bigcup \{ V_{\alpha(x)}^{\beta_{\lambda}} : x \in A_0 \} \cup f(H)$$

Hence,

$$f(A) \setminus \bigcup \{ V_{\alpha(x)}^{\beta_{\lambda}} : x \in A_0 \} \in f(\mathcal{H}).$$

Thus f(A) is $\beta_{\lambda} f(\mathcal{H})$ -compact relative to λ .

Theorem 3.5

Let \mathcal{H} be a hereditary class on (X,μ) , $f: (X,\mu) \to (Y,\lambda)$ be a weakly (γ,β) continuous function and A be $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$. Then f(A) is $\beta_{\lambda}f(\mathcal{H})$ -compact relative to $\beta_{\lambda}O(Y)$.

Proof. Let $\{V_{\alpha} : \alpha \in \Lambda\}$ be any cover of f(A) by β_{λ} -open sets of Y. For each $x \in A$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is weakly (γ, β) continuous, $x \in f^{-1}(V_{\alpha(x)}) \in \gamma_{\mu}O(X)$ and $\{f^{-1}(V_{\alpha(x)}) : x \in A\}$ is a cover of Aby γ_{μ} -open sets of X. Since A is $\gamma_{\mu}\mathcal{H}$ -compact relative to $\gamma_{\mu}O(X)$, there exists
a finite subset A_0 of A and $H \in \mathcal{H}$ such that $A \subseteq \bigcup \{f^{-1}(V_{\alpha(x)}) : x \in A_0\} \cup H$.
Hence $f(A) \subseteq \bigcup \{V_{\alpha(x)} : x \in A_0\} \cup f(H)$. Therefore, f(A) is $\beta_{\lambda}f(\mathcal{H})$ -compact
relative to $\beta_{\lambda}O(Y)$.

Definition 3.2

A function $f: (X, \mu) \to (Y, \lambda)$ is said to be (α, β) -closed if for each $y \in Y$ and $U \in \mu$ containing $f^{-1}(y)$, there exists $V \in \lambda$ containing y such that $f^{-1}(V^{\beta_{\lambda}}) \subseteq U^{\gamma_{\mu}}$.

Theorem 3.6

Let \mathcal{H} be a hereditary class on (X, μ) and γ_{μ} be additive. Let $f: (X, \mu) \to (Y, \lambda)$ be a (γ, β) -closed surjection. If $f^{-1}(y)$ is μ -compact relative to μ for each $y \in Y$ and B is $\beta_{\lambda}\mathcal{H}$ -compact relative to λ , then $f^{-1}(B)$ is $\gamma_{\mu}f^{-1}(\mathcal{H})$ -compact relative to μ . Proof. Let $\{U_{\alpha} : \alpha \in \Lambda\}$ be a cover of $f^{-1}(B)$ by μ -open sets of X. For each $y \in B$, $f^{-1}(y)$ is μ -compact relative to μ , so there exists a finite subset Λ_0 of Λ such that $f^{-1}(y) \subseteq \bigcup \{U_{\alpha} : \alpha \in \Lambda_0\} = U_y$ (say). Since U_y is a μ -open set of X containing $f^{-1}(y)$ and f is (γ, β) -closed, there exists a λ -open set V_y containing y such that $f^{-1}(V_y^{\beta_\lambda}) \subseteq U_y^{\gamma_{\mu}}$. So $\{V_y : y \in B\}$ is a cover of B by λ -open sets of Y. Since B is $\beta_{\lambda}\mathcal{H}$ -compact relative to λ , there exists a finite subset B_0 of B such that $B \setminus \bigcup \{V_y^{\beta_\lambda} : y \in B_0\} \in \mathcal{H}$. Therefore

$$B \subseteq \bigcup \{ V_y^{\beta_\lambda} : y \in B_0 \} \cup H$$

for some $H \in \mathcal{H}$ and hence

$$f^{-1}(B) \subseteq \bigcup \{ f^{-1}(V_y^{\beta_\lambda}) : y \in B_0 \} \cup f^{-1}(H)$$
$$\subseteq \bigcup \{ U_y^{\gamma_\mu} : y \in B_0 \} \cup f^{-1}(H)$$
$$\subseteq \bigcup \{ U_\alpha^{\gamma_\mu} : \alpha \in \Lambda_0, y \in B_0 \} \cup f^{-1}(H).$$

Thus $f^{-1}(B) \setminus \bigcup \{ U_{\alpha}^{\gamma_{\mu}} : \alpha \in \Lambda_0, y \in B_0 \} \in f^{-1}(\mathcal{H})$. Thus $f^{-1}(B)$ is $\gamma_{\mu} f^{-1}(\mathcal{H})$ compact relative to μ .

References

- Carpintero, Carlos, et al. "μ-compactness with respect to a hereditary class." Bol. Soc. Parana. Mat. (3) 34, no. 2 (2016): 231-236. Cited on 33, 34, 35 and 40.
- [2] Császár, Ákos. "γ-compact spaces." Acta Math. Hungar. 87, no. 1-2 (2000): 99-107. Cited on 33.
- [3] Császár, Ákos. "Generalized topology, generalized continuity." Acta Math. Hungar. 96, no. 4 (2002): 351-357. Cited on 33 and 34.
- [4] Császár, Ákos. "Generalized open sets in generalized topologies." Acta Math. Hungar. 106, no. 1-2 (2005): 53-66. Cited on 34.
- [5] Császár, Ákos. "Modification of generalized topologies via hereditary classes." Acta Math. Hungar. 115, no. 1-2 (2007): 29-36. Cited on 33 and 34.
- [6] Janković, Dragan S. "On functions with α -closed graphs." *Glasnik Mat.* 18(38) (1983): 141-148. Cited on 33.
- [7] Kasahara, Shouro. "Operation-compact spaces." Math. Japon. 24, no. 1 (1979/80): 97-105. Cited on 33.
- [8] Krishnan, Sai Sundara G., and Maximilian Ganster, and Krishnan Balachandran.
 "Operation approaches on semi-open sets and applications." *Kochi J. Math.* 2 (2007): 21-33. Cited on 33.
- [9] Newcomb, Robert Lewis, Jr Topologies which are compact modulo an ideal. Ph.D. Thesis. Santa Barbara: University of California, 1968. Cited on 33.
- [10] Ogata, Hayao. "Operations on topological spaces and associated topology." Math. Japon. 36, no. 1 (1991): 175-184. Cited on 33.
- [11] Qahis, Abdo, and Takashi Noiri. "Functions and weakly μH-compact spaces (invited paper)." Eur. J. Pure Appl. Math. 10, no. 3 (2017): 410-418. Cited on 33 and 35.

- [12] Qahis, Abdo, and Heyam Hussain AlJarrah, and Takashi Noiri. "Weakly μ -compact via a hereditary class." *Bol. Soc. Parana. Mat. (3)* 39, no. 3 (2021): 123-135. Cited on 33.
- [13] Roy, Bishwambhar. "On a type of generalized open sets." Appl. Gen. Top. 12, no. 2 (2011): 163-173. Cited on 38.
- [14] Roy, Bishwambhar, and Saeid Jafari. "On covering properties via generalized open sets." Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 55 (2012): 57-65. Cited on 35.
- [15] Roy, Bishwambhar. "Applications of operations on minimal generalized open sets." *Afr. Mat.* 29, no. 7-8 (2018): 1097-1104. Cited on 33 and 34.
- [16] Roy, Bishwambhar, and Takashi Noiri. "Applications on operations on weakly compact generalized topological spaces." *Carpathian Math. Publ.* 12, no. 2 (2020): 461-467. Cited on 35, 36 and 38.
- [17] Sarsak, Mohammad S. "Weakly µ-compact spaces." Demonstratio Math. 45, no. 4 (2012): 929-938. Cited on 35.
- [18] An, Tran Van, and Dang Xuan Cuong, and Haruo Maki. "On operation-preopen sets in topological spaces." Sci. Math. Jpn. e-2008, 241-260. Cited on 33.
- [19] Zahran, Ahmed M., and Kamal El-Saady, and A. Ghareeb. "Modification of weak structures via hereditary classes." *Appl. Math. Lett.* 25, no. 5 (2012): 869-872. Cited on 33.

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken Japan E-mail: t.noiri@nifty.com

Bishwambhar Roy Department of Mathematics Women's Christian College 6,Greek Church Row Kolkata-700 026 India E-mail: bishwambhar_roy@yahoo.co.in

Received: June 28, 2021; final version: June 28, 2021; available online: September 5, 2022.