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Abstract. In this paper we continue our investigation concerning the concept
of a liken. This notion has been defined as a sequence of non-negative real
numbers, tending to infinity and closed with respect to addition in R. The
most important examples of likens are clearly the set of natural numbers N
with addition and the set of positive natural numbers N∗ with multiplica-
tion, represented by the sequence (ln(n + 1))∞n=0. The set of all likens can
be parameterized by the points of some infinite dimensional, complete met-
ric space. In this space of likens we consider elements up to isomorphism
and define properties of likens as such that are isomorphism invariant. The
main result of this paper is a theorem characterizing the liken N∗ of natural
numbers with multiplication in the space of all likens.

1. Introduction

We begin by recalling the content of the paper [4], which is necessary to formu-
late and prove the main result of this paper, i.e. Theorem 25. As it was mentioned
in [4], the notion of a liken may be considered as some way of talking about the so
called Beurling numbers [1]. The family H of all likens (we say also the space of
likens) described in [4], constitutes a kind of a natural environment where "live" the
two fundamental mathematical structures: (N,+), the natural numbers with addi-
tion, and (N∗, ·), the natural numbers with multiplication, which as mathematical
structures are ordered semigroups (monoids). Let us note here, that according to
the definition, by a liken we mean a sub-semigroup of the additive semigroup R+.
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For this reason we replace N∗ by the sequence (ln(n+ 1))∞n=0, however without
changing the notation, and we call elements of this last sequence also the natural
numbers. Although the set of likens is rather big, being infinite dimensional com-
plete metric space, the most of likens seem to be of little interest and if they were
brought to life in [4], it was only to look at the liken N∗ from a slightly different
point of view.

One may ask at this point whether it is worth building such a sophisticated
structure as the space of likens mentioned above, if only two elements of this space
are worth attention. It seems so, because these two noteworthy elements, i.e. the
likens N and N∗ may be considered as two pillars on which all mathematics is
based and hence there is never too much knowledge about them. The value of
the approach presented here is clearly limited by the fact that we assume the set
of real numbers as known, but nevertheless it seems that the characterizations of
the likens N and N∗ presented in this paper which will be formulated and proved
below, are not entirely trivial.

The exact definition of a liken (in different versions) will be recalled in the
next section, but at the beginning it is enough to know, that a liken L is a strictly
increasing sequence L = (xn)∞n=0 of real numbers, which is a sub-semigroup of
the semigroup R+. Hence in each liken L we have two types of mathematical
structures inherited from R+, i.e. the algebraic structure of the sub-semigroup
with addition and the structure of the ordered space with respect to the natural
order in R. This make it possible to define the isomorphism of likens as a bijection
which preserves both, algebraic and ordinal structures.

Different details concerning the relation of the isomorphism of likens will be
discussed in the next section. It turns out, and this is in a sense a typical sit-
uation, that all interesting likens (infinitely generated and with uniqueness) are
algebraically isomorphic to each other, and at the same time, they are always iso-
morphic to each other as ordered spaces. On the other hand, as it was proved in
[4], they are isomorphic as likens if and only if their sets of generators are homo-
thetic. As it was mentioned above, this situation is typical. To better understand
what we mean by the term "typical", let us consider the example of the family of
all infinite dimensional, separable Banach spaces. Each two such spaces are iso-
morphic as vector spaces since they have the vector bases of the same cardinality,
and each two such spaces are homeomorphic as topological spaces by the theorem
of Kadec-Anderson [2]. However, two such spaces are isomorphic as Banach spaces
only when there exists a linear isomorphism which is also a topological homeomor-
phism. It seems that the basic advantage of using the abstract language of likens
lies in the fact that we can formulate different properties of likens in this lan-
guage and consequently distinguish between them. Roughly speaking, a property
of a liken is such property, which is preserved by isomorphisms of likens. Perhaps
the most important of such properties of likens is that they are generated by their
indecomposable elements (just like natural numbers by prime numbers in the semi-
group N∗), but this property is common for all likens. We will provide non-trivial
examples of a few such properties later in the paper, but for now let us consider
the following (trivial) example. Let L = (x∞n=0) be a liken and let us consider the
property: the element x2 is indecomposable. This property is a property of likens
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which is fulfilled in N∗ since x2 = 3 and 3 is a prime number, but is not true in N,
where x2 = 2 = 1 + 1 and in N only x1 = 1 is indecomposable.

The main result of this paper is Theorem 25 which gives a characterization of
the liken N∗ among all likens. For this, first we will formulate two properties of
likens called concavity, denoted by (C), and Ockham’s razor property denoted by
(OR). Then the main theorem states: if a liken L has the properties (C) and (OR)
then it is isomorphic to N∗.

The paper is organized as follows. In Section 2 we recall some definitions,
notations and theorems proved in [4], which will be used in this paper. In fact the
content of Section 2 is to be found in [4], but because of some small differences in
notations and since the paper [4] is quite long, we collect in Section 2 all we will
need to know about likens in this paper. In Section 3 we formulate a number of
general properties of likens, in particular the mentioned properties (C) and (OR).
All these properties are reformulations in the language of likens of the known
properties of natural numbers. In Section 4 we present the proof of Theorem 25.
The last section contains a number of remarks.

2. Definitions, notations and the main results about likens

In this paper, as in [4], we will use the following notations:

Q+ = [0,∞) ∩Q,

RN = {−→a = (ai)∞1 : ai ∈ R}.

(R+)N = {−→a ∈ RN : ai ≥ 0}.

RN
0 = {−→a ∈ RN : ∃j : i > j ⇒ ai = 0}.

QN = {−→a = (ai)∞1 : ai ∈ Q}.

NN
0 = {−→m ∈ NN : ∃j : i > j ⇒ mi = 0t}. (1)

Moreover, for −→a ∈ RN, and for −→m ∈ NN
0 we set

〈−→a ,−→m〉 = m1a1 +m2a2 + · · · .

Let us note, that although −→a may tend to infinity, the right-hand side sum is
always finite, since the sequence −→m in fact is finite.

The definition of a liken given in [4] is the following

Definition 1
A liken L is a sequence (xn)∞n=0 of real numbers such that:

a) x0 = 0 and for all n ∈ N we have xn < xn+1,
b) for all n,m ∈ N there is k ∈ N such that xn + xm = xk.

As it was observed in [4], a liken L is an increasing sequence of nonnegative
real numbers, which is closed with respect to the addition and tends to infinity. We
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have mentioned in Introduction, that likens are sub-semigroups of the semigroup
R+. Since we put x0 = 0 each liken is a monoid.

Now we recall the notion of the isomorphism of likens.

Definition 2
Let (G,+) be a monoid and let L be a liken. We will say that a map ϕ : G→ L is

a) an algebraic homomorphism, when ϕ(x+ y) = ϕ(x) + ϕ(y),
b) an algebraic monomorphism, when it is an injective homomorphism,
c) an algebraic isomorphism, when it is a surjective monomorphism.

Thus in particular we know now, what it means that two likens L and K are
algebraically isomorphic. It is also clear, that each two likens are isomorphic as
ordered spaces, since they are similar to the (well) ordered space (N,≤). Let us
mention, that the map K 3 xn → yn ∈ L is not (in general) a homomorphism of
likens, and let us mention also, that if ϕ : K→ L is an ordinal isomorphism, then
it is unique. Finally we set

Definition 3
Two likens L and K are isomorphic if the (unique) ordinal isomorphism is also an
algebraic homomorphism.

A very important consequence of the axioms of liken is the existence of inde-
composable elements (called also irreducible elements or prime elements).

Definition 4
Let L be a liken and let u ∈ L. We will say that u > 0 is indecomposable if

(u = v + w, v ∈ L, w ∈ L) =⇒ v = 0 ∨ w = 0.

The following was observed in [4],

Proposition 5
Each liken L = (xn)∞0 has at least one indecomposable element.

Also (see [4]),

Proposition 6
Let L be a liken, and let PL be the set of all indecomposable elements of L. Then
each element of x ∈ L can be written in the form

x = m1 · a1 +m2 · a2 + · · ·+mk · ak,

where m1,m2, . . . ,mk ∈ N, a1, a2, . . . , ak ∈ PL, and k ∈ N.

One may ask now about the uniqueness of the representation from Proposition
6. In general, as it was discussed in [4], such representations are not unique. So the
above Definition 1 of a liken admits likens without uniqueness. This is for example
the case of the so-called numerical semigroups [3] with the associated Apéry sets
(see also Remark 32 in Section 5). However, in this paper we will be interested
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mostly only in likens with uniqueness, so further, in this paper, "liken" means
usually "liken with uniqueness". This implies, and it will be discussed later, that
all infinite dimensional likens with uniqueness are isomorphic algebraically. We
recall below shortly the notions and the properties we need below. The detailed
description is presented widely in [4].

Let NN
0 , as in (1), denote the set of all sequences of natural numbers, with

almost all terms vanishing, i.e.

NN
0 := {−→n = (n1, n2, . . .) : (nj ∈ N) ∧ (∃i ∈ N : k > i =⇒ nk = 0)}.

In the set NN
0 we may consider the operations: "+" – addition and "·" – multipli-

cation by natural numbers, defined as usually in a cartesian product. With these
operations NN

0 is an algebraic structure, which may be called semimodule or a cone
over N.

We set ek = (0, 0, . . . , 0, 1, 0, . . .), i.e. ek is an element of NN
0 , with all terms

equal 0 except the k − th, which is 1. So we have for −→n ∈ NN
0 ,

−→n = (n1, n2, . . .) = n1 · e1 + n2 · e2 + · · · .

Using the terminology from the linear algebra we may say, that (ek)∞1 is a basis
of the cone NN

0 . This means precisely, that each element from NN
0 can be, in

a unique way, written as a linear combination of (ek)k∈N with the coefficient from
N. Clearly NN

0 with addition is not only a semigroup, but it is a monoid.
It is obvious that R+ is a cone over N. A map ϕ : N→ R+ is a homomorphism

of monoids (or of cones), when

ϕ(n1 · e1 + n2 · e2 + · · · ) = n1 · ϕ(e1) + n2 · ϕ(e2) + · · · .

It is evident, that a homomorphism ϕ : NN
0 → R+ cannot be an epimorphism,

since NN
0 is countable, but R+ is uncountable. However, there exist monomor-

phisms ϕ : NN
0 → R+, and the mentioned above space of likens can be considered

as space of all such monomorphisms. We will now give a description of this situa-
tion (for details see [4]). It follows from the above and from the equality

〈−→a ,−→n +−→m〉 = 〈−→a ,−→n 〉+ 〈−→a ,−→m〉,

that

Proposition 7
Each function a : N → R+ can be extended in a unique way to a homomorphism
ã : NN

0 → R+ by linearity, i.e. ã(−→n ) = 〈−→a ,−→n 〉.

Now we will recall the description of the space of infinitely generated likens
which was outlined in [4]. It must be clearly stated here that this description will
be not used in the proof of the main result of this paper and is only intended
to illustrate how large the family of likens in question is. Let −→a = (ai)∞1 be
a sequence of positive real numbers. The liken generated by this sequence will be
denoted by La. Let us make the following observation
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Proposition 8
The liken La is a liken with uniqueness if and only if the sequence −→a = (ai)∞1 is
linearly independent in the vector space (R,Q).

Proof. Suppose that −→a is linearly independent and suppose that two linear com-
binations with natural coefficients are equal

〈−→a ,−→n 〉 = 〈−→a ,−→m〉.

Hence
〈−→a ,−→n −−→m〉 = 0.

But −→n −−→m is in QN thus −→n −−→m = 0, i.e −→n = −→m.
Conversely, suppose that La is a liken with uniqueness and suppose that some

linear combination of −→a with coefficients from QN equals 0, i.e. we have (pi, qi ∈
Z, qi > 0),

p1

q1
a1 + · · ·+ pk

qk
ak = 0.

Let M = q1q2 . . . qk and let mi = M
qi
. It follows from the above, that∑

i

mipiai = 0,

or equivalently ∑
pi>0

mipiai =
∑
pj<0
−mjpjaj .

The uniqueness implies then that for each i we have mipiai = 0 hence p1 = p2 =
. . . = pk = 0 and this ends the proof.

In other words, we have the following

Proposition 9
Let −→a = (ai)∞1 be a sequence from (R+)N, which is linearly independent in the
vector space (R,Q) and tends to infinity. Then ã(NN

0 ) is a liken with uniqueness.

Let us recall also one more theorem from [4]. Suppose, that we have two
sequences −→a = (ak)∞1 and

−→
b = (bk)∞1 , which generate two likens with uniqueness

denoted by La and Lb respectively. We have the following

Theorem 10
In the notations as above the likens La and Lb are isomorphic, if and only if there
exists a positive number λ such that −→a = λ ·

−→
b .

We will analyze now the correspondence −→a → La in more details, to establish
in what sense this correspondence is one to one. As we have observed in Proposition
6, given a set of generators (finite or infinite) −→a = (ak)∞1 , the liken La does not
depend on the sequence (ak)∞1 but depends only on the set of its elements. The
only property we need from (ak)∞1 is to be locally finite. Clearly each finite set is
locally finite, and for infinite sequences −→a = (ak)∞1 of generators, it is evident, that
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such a sequence is locally finite if and only if limk→+∞ ak = +∞. In other words,
for a liken La we can always assume (and we do it in particular in this paper) that
its sequence of generators is strictly increasing. Moreover, it follows from Theorem
10 that if we consider likens only up to isomorphism, we may assume without loss
of generality, that a1 = 1. We can summarize the above considerations as follows.
Let H denote the space of all infinitely generated likens with uniqueness and let R
denote the space of all sequences −→a = (ai)∞1 of positive real numbers, which are
strictly increasing, linearly independent in (R,Q), tends to infinity and a1 = 1.
Then the correspondence

R 3 −→a → La ∈ H

is a bijection. It seems that this observation ends the description of the space H
from a strictly set-theoretic point of view. Some additional information can be
obtained analyzing the space of likens from a topological point of view. As it was
observed in [4], the space R is a subspace of the metric space (RN, d) equipped
with the standard metric of coordinate-wise convergence. The closure R in (RN, d)
is then a complete metric space. A more detailed analysis shows that R is a Gδ
set in R. In consequence the space of all likens H is, with respect to the topology
of coordinate-wise convergence, a Polish space.

3. Some properties of likens

Let L = (xn)∞n=0 be a liken. By a property of likens we will mean, roughly
speaking, all conditions concerning likens and formulated using only the language
(and properties) of the addition and order in R and the addition and order in
N. Clearly, the properties of likens are preserved by isomorphisms of likens. We
present below a few examples of such properties. The method of a construction of
these properties is as follows. We consider a particular liken (for example N∗), and
a particular property of this liken (for example the twin primes conjecture), we
formulate this property in the language of likens, and this way we obtain a property
of a liken.

Property 11
We will say that the dimension of L equals k ∈ N if L has exactly k indecomposable
elements. In other words, dim(L) = k ⇐⇒ card(PL) = k. Such a liken will be
called finitely generated.

Let us mention here, that N is a one dimensional liken and this is a unique
liken with this property (up to isomorphism). In other words, if two likens are
finitely generated and are isomorphic, then they have the same dimension, but
the converse is not necessarily true, see [4] for details. The so-called numerical
semigroups (for definition see [3]) are finite dimensional likens. A numerical semi-
group is a semigroup generated in (N,+) by the complements of finite sets. For
example the set N \ {1, 2} is a numerical semigroup which is a three dimensional
liken and its generators are {3, 4, 5}. This liken is a liken without uniqueness,
since, for example 8 = 3 + 5 = 4 + 4. This way we have
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Property 12
Suppose that −→a = (ak)∞1 is a set of generators (finite or infinite) of the liken L.
As we have mentioned above, the liken L has the uniqueness property if for each
x ∈ L there exists exactly one −→n ∈ NN

0 such that x = 〈−→a ,−→n 〉.

Property 13
Suppose, that P = {1 = p1 < p2 < . . .} is a subset of the set of natural numbers
(finite or infinite). We will say that L has its generators exactly in P when for
each n ∈ N we have: xn ∈ L is indecomposable if and only if n ∈ P.

It is not hard to see, that if P is finite then one always can find a liken which
has the generators exactly in P. When the set P is infinite then the problem of
the existence of a liken which has its generators exactly in P is more complicated.
There is an obvious necessary condition for such a property, namely the set N \ P
must be infinite.

Remark 14
Writing this paper the author did not know if the infinitness condition is also
sufficient. Then, one of the anonymous referees proposed the proof of sufficiency
of this condition. Below we present this proof, written in details and with the
notation changed to match this of the paper.

To show that infinitness condition is sufficient, we have to prove the following
theorem.

Theorem 15
If the set P ⊂ N is such that the set N \ P is infinite then there exists a liken L
which has its generators exactly in P.

Proof. We will start by constructing a sequence (xn)∞0 , which will turn out to be
the wanted liken L. The construction of (xn)∞0 runs inductively. Before describing
this construction, we recall a definition used in the formulation of Ockham razor
property. Namely, if L(x1, x2, . . . , xn) is a liken generated by a sequence x1 <
x2 < . . . < xn then

z(xn) = min{x ∈ L(x1, x2, . . . , xn) : x > xn}.

We set x0 = 0 and x1 = 1. Assuming that x1, x2, . . . , xn have already been
constructed we define xn+1 as follows: if n+ 1 ∈ N \ P then we set xn+1 = z(xn)
and if n+ 1 ∈ P then as xn+1 we take any number in the interval (xn, z(xn)) that
is linearly independent with x1, x2, . . . , xn over Q. We see that this sequence is
strictly increasing, but we do not know if L is a liken. For this we must prove
that L is closed under addition and that it tends to infinity. Both these properties
will be proved together inductively. We will say that a number X is composed if
X = xi + xj for some 1 ≤ i ≤ j < n.

For N = 1, 2 . . ., let TN be as follows.
TN : There exists kN ∈ N such that:

(WN ) : xkN
= N
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and if a number X is composed and X ≤ N then

(VN ) : X ∈ L.

Let us notice that if all theorems TN are true, then L is closed under addition
and L tends to infinity. Clearly T1 is trivially true, so we start by proving T2.
Observe that z(x1) = 2 and that there are no composed numbers in (1, 2). Thus
if an element xj ∈ L is such that 1 < xj < 2 then xj is indecomposable and all
indecomposable elements xj in (1, 2) form a sequence of consecutive indecompos-
able elements. But each such sequence must be finite. Let xk−1 be the biggest
indecomposable element in (1, 2). Then z(xk−1) = z(x1) since each sum of the
form xi + xj where 1 < i, j < k − 1 are bigger then 2 . Hence xk = 2. Thus (W2)
and (V2) are true. Further we will need the following observation.

Observation 16
Let x1, x2, . . . , xr ∈ L. Suppose that u and v are two consecutive elements of the
liken L(x1, x2, . . . , xr) such that xr = u and such that xr = u < v ≤ u+ 1 (hence
v is composed). Then v ∈ L.

Indeed, since u = xr and v are two consecutive elements of L(x1, x2, . . . , xr)
then we have z(xr) = v. Hence if r + 1 ∈ N \ P then v = xr+1 and the Obser-
vation is true. In consequence it is sufficient to consider only the situation when
between xr and v are only indecomposable elements. But in such a case these
indecomposable elements form a sequence of consecutive elements of L which, by
the assumption on P, is finite. Suppose then that xr+1, xr+2, . . . , xr+s are all inde-
composable elements in the interval (xr, v). This implies (because of |xr − v| < 1)
that xr+1, xr+2, . . . , xr+s do not participate in the computation of z(xr+s), or in
other words, z(xr+s) = z(xr) = v. In consequence, v = xr+s+1 and this ends the
proof of Observation.

Now we will prove the induction step. We assume, that TN is true, and we
want to prove TN+1. We know that there exists m = kN ∈ N is such that xm = N
and all sums xi + xj are in L provided that i, j < m and xi + xj ≤ N . Suppose
that v1 < v2 < · · · < vj are all elements of the liken L(x1, x2, . . . , xm) which are
in (N,N + 1). Since they are all bigger than xm then they are all composed. Now
we apply Observation for u = xm and v = v1 and we obtain that there is m1 such
that v1 = xm1 . Next we use Observation for u = xm1 and v = v2 and we obtain
m2 such that v2 = xm2 and finally we find mj such that vj = xmj . To end the
proof we apply Observation for u = xmj

and v = N + 1 and we find kN+1 such
that xkN+1 = N + 1. Let us observe also, that for each sum of the form xp + xq
such that xp < N , xq < N and xp + xq < N + 1 there exists i ≤ j such that
xp + xq = vi = xmi

. Thus TN+1 is true, and Theorem 15 is proved.

Remark 17
In the presented proof we choose the consecutive generators in order to obtain each
time a sequence linearly independent over Q. This assures that the constructed
liken is a liken with uniqueness. If we drop the claiming of the independence
over Q the proof remains valid, but the constructed liken may not be a liken with
uniqueness.
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Let us recall here, that Definition 1 does not assure the uniqueness, and that
in this paper, as it was mentioned above, for simplicity, we mean liken as liken
with uniqueness. If L is a liken with uniqueness then each element x ∈ L of this
liken can be identified with a sequence of its coefficients in the representation

x = 〈−→a ,−→n 〉 = n1a1 + n2a2 + · · · = n1(x)a1 + n2(x)a2 + · · · .

We set supp(x) = {i ∈ N : ni(x) 6= 0} and we call this set the support of x.

Property 18
We will say that a liken L has a disjoint support property if for each n ∈ N we
have supp(xn) ∩ supp(xn+1) = ∅.

Clearly, if a liken L has the disjoint support property, then it is infinitely
dimensional. Indeed, if a liken L is generated be the generators a1, a2, . . . , ak and
xm = a1 + a2 + · · · + ak then the supports of xm and xm+1 are not disjoint. On
the other hand, for example the liken N∗ has this property. If i ∈ supp(x) then we
will say that ai divides x (denoted ai|x).

Property 19
We will say that L has the parity property if for each n ∈ N we have (x1|xn) ⇔
¬(x1|xn+1).

In [4] we studied the sequence of gaps in likens, i.e. the sequence of differences
δL(k) = δk = δ(xk) = xk+1 − xk. By the definition of a liken the sequence δk is
strictly positive and as it was observed in [4], if dim(L) ≥ 2 then limk→∞ δL(k) = 0.
However, in general (e.g. in the case of finite dimensional likens) the sequence δk
is not strictly decreasing. On the other hand there are the likens, for example N∗
such that δL(k) is strictly decreasing. Since the property δk is strictly decreasing is
equivalent to: for each k ∈ N we have δk > δk+1 or equivalently, 2xk+1 > xk+xk+2,
then we formulate the property of concavity as follows.

Property (C)
A liken L is said to be concave if and only if for each k ∈ N the following inequality
holds

2xk+1 > xk + xk+2.

It is not hard to observe, that the liken L is concave if and only if the points
(k, xk) lie on the graph of a concave function f : [0,∞) → R. For example N∗
is a concave liken, since the function x → ln(x) is concave. Given a sequence
(xn)∞n=0, the sequence of its gaps plays a role of the derivative of the given sequence,
thus the condition that the sequence of gaps is strictly decreasing corresponds for
differentiable functions to the claiming, that their second derivative is negative.

It is clear, that the concavity of a liken is preserved by isomorphisms, but one
may give an example of two concave likens K and L which are not isomorphic.
Indeed, let L = N∗ = (xn)∞n=0 and let N∗∗ = (yn)∞n=0 = K = (ln(2n + 1))∞n=0 be
a liken of all odd natural numbers (the product of two odd numbers is odd). These
likens are both concave, but they are not isomorphic. Indeed, x3 is composed
and y3 is indecomposable. The same is true if one considers the likens Kp =
(ln(pn+ 1))∞n=0 for p = 1, 2, . . ..
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Let us look at the liken N∗ and notice that except for one case, of two con-
secutive elements of this liken, at most one is indecomposable. The situation is
different in the liken N∗∗, where every indecomposable twin primes (in N∗) are
consecutive elements of the liken N∗∗. We can therefore formulate the following
property of likens.

Property 20
We will say that in liken L almost all indecomposable elements are separated when
the number of such pairs (xn, xn+1) in which both elements are indecomposable,
is finite.

We may ask if there exist likens without Property 20. The liken N∗∗ is a very
natural, however conditional example, because depending on the twin prime con-
jecture. But in the large space of likens one may find an (unconditional) example
of a liken with an infinite sequence of pairs of non-separated generators. We
present below a sketch of the proof of the existence of such a liken. We start
by choosing an infinitely generated liken L1 = (x0,1, x1,1, . . .) with uniqueness,
where x1,1 = 1 and we choose an arbitrary constant M , for example let us fix
M = 10. Since L1 is infinitely generated then there exists a number k1 such
that xk1,1 is a generator of L1 and xk1,1 > M1 = 10. Now we choose a number
A1 ∈ (xk1,1, xk1+1,1) which is linearly independent with all generators of L1 and
we define a liken L2 = (x0,2, x1,2, . . .) as generated by L1 and a number A1. We
see that in L2 we have at least one pair of non-separated generators. In this new
liken L2 we find a generator xk2,2 such that k2 > k1 and xk2,2 > M2 = 20. Next
we choose A2 ∈ (xk2,2, xk2+1,2) which is linearly independent with all generators
of the liken L2 and we define a liken L3 as generated by L2 and the number A2.
This new liken has at least two pairs of non separated generators. Further we
construct in an analogous way a sequence of likens Ln = (x0,n, x1,n, . . .), where Ln
is generated by Ln−1 and a suitable number An−1. In this liken we have a pair
of non-separated generators (xkn,n, xkn+1,n) where xkn,n > 10(n − 1). Using the
above properties one may check that the sum

L =
∞∑
n=1

Ln

is a liken with uniqueness which has infinitely many pairs of non-separated gener-
ators.

Remark 21
Let us observe, that Property 20 is a direct consequence of Theorem 15. Indeed,
one may take as P any subset of N such that N \ P is infinite and in P there
are infinitely many pairs of the form (m,m + 1) (for example we may take P =
{10k, 10k + 1}, k ∈ N.)

The name of the next property of likens refers to an old philosophical principle.
The so-called Ockham’s razor principle states that entities should not be multiplied
beyond necessity.

Before we formulate this property for likens, let us establish some notations.
Suppose that L = (xm)∞0 is a liken. For n ∈ N we set L(n) = L(x1, x2, . . . , xn),
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i.e. L(n) is a liken generated by all elements not greater than xn, which is clearly
a sub-liken of L. Let us observe that L(n) = L(a1, a2, . . . , ak) where (a1, a2, . . . , ak)
are all indecomposable elements of the liken L such that ai ≤ xn.

Let
z(xn) = zn = min{x : x ∈ L(n), x > xn}. (2)

Property (OR)
We will say that a liken L has the Ockham’s razor property if

supp(xn) ∩ supp(zn) = ∅ =⇒ xn+1 = zn.

For the sake of explaining the name of Ockham’s razor let us consider the
following: suppose we want to construct a liken L with the disjoint support property
and the construction runs recursively. Assume we have constructed xn and want
to construct xn+1. We do the following: we determine the smallest element of the
liken generated by the already constructed among bigger than xn and denote it zn.
If the support of zn is disjoint with the support of xn then we take zn as xn+1. This
is just the considered property. And what happens, when supp(xn)∩supp(zn) 6= ∅?
Because the "necessity" (for us) is the disjoint support property, then we must
"multiply the entities" and set xn+1 = ak+1. Let us notice here, that
Remark 22
In the notations as above, if xn+1 = ak+1 then necessarily xn+2 = zn.

Indeed, we have xn < zn, xn+1 = ak+1, ak+1 /∈ Ln and zn ∈ Ln then xn+1 <
zn. Thus zn+1 = zn and zn has disjoint support with the support of xn+1. In
consequence xn+2 = zn. In other words, if xn+2 was indecomposable we would
have to many "entities".
Property 23
We will say, that a liken L((ak)∞1 ) has the Bertrand property when for each n ∈ N
there exists k ∈ N such that xn ≤ ak ≤ xn + a1.
Property 24
We will say, that a liken L((ak)∞1 ) has the Legendre property when

lim
n→∞

card{k : ak ≤ xn}
n

= 0.

All properties: 12-24, (C) and (OR), are true in the liken N∗, so they are
consistent. On the other hand it is obvious that the conjunctions of some of the
properties on the list above imply other or even all of the others.

In this situation it is natural to ask if there are other likens besides N∗ that
have all of properties listed above, or which of these properties characterize the
liken of natural numbers with multiplication.

Note that both properties (C) and (OR) are fulfilled in N∗ while N∗∗ has
property (C) and does not have the property (OR). Indeed, in this case we have
(in multiplicative model): x1 = 3, x2 = 5, z2 = 9 and x3 = 7. Hence concavity
do not imply the Ockham’s razor property. On the other hand, the property (C)
implies the disjoint support property. Indeed, suppose that xk+1 = xp + ai and
xk = xq + ai. Hence δ(xk) = xk+1 − xk = xp − xq ≥ xq+1 − xq = δ(xq). But this
is impossible, since in concave likens q < k implies δ(xq) > δ(xk).
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4. The main theorem

In this section we are going to prove the main theorem, which gives a charac-
terization of the liken N∗ in the space of all likens. Suppose, that −→a = (ak)∞1 is
a sequence of positive real numbers generating a liken L(−→a ) denoted shortly by
La. (Let us recall, that in this paper, "liken" means "liken with uniqueness"). In
these notations we formulate the main result of this paper as follows:

Theorem 25
If the liken La is concave and has the Ockham’s razor property, then it is isomor-
phic to the liken N∗.

First we will make a number of observations, which will be used in the proof.

4.1. Multiplicative notation

Definition 1 of a liken determines, that a liken L = (x)∞n=0 is an increasing
sequence of non-negative real numbers closed under addition in R. Consider a new
sequence defined by the formula x̂n = exp(xn−1) for n = 1, 2, . . .. This sequence
L̂ = (x̂n)∞1 is a strictly increasing sequence of positive real numbers closed with
respect to the multiplication in R and obviously

x̂p + xq = x̂p · x̂q.

We may say, that L̂ is the same liken as L, but we write "·" instead of "+". The
number 0 is replaced by 1 and indices go from 1 to +∞. In particular, the liken N
is transformed to the multiplicative liken (en−1)∞n=1. Conversely, if we have a liken
L̂ = (x̂n)∞n=1 with the multiplicative notation, than the sequence (xn)∞0 defined
by the formula xn = ln(x̂n+1) for n = 0, 1, . . ., is a liken with additive notation.
In particular, the liken N∗ where x̂1 = 1, x̂2 = 2 etc. is transformed to the liken
x0 = ln(1), x1 = ln(2), x2 = ln(3) . . .. In consequence, if in an additive liken L we
consider the gaps δk = xk+1 − xk then in the multiplicative version we use the
fractions

δ̂k = x̂k+1

x̂k
,

and conversely the quotients are replaced by the differences. Let us agree, that if
there is a "hat" above the symbols referring to the liken L then the formulas refer
to the multiplicative model of L.

4.2. The isomorphism exponent

Let us take into account the set NN
0 , called in the sequel the space of exponents

and let La = (xn)∞0 be a liken. Hence, as we have observed above, the map

ΩL : NN
0 3 −→m → 〈−→a ,−→m〉 ∈ La

is a bijection and an isomorphism of semigroups (monoids).
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The inverse map

Ω−1
L : La 3 xn → Ω−1

L (xn) ∈ NN
0

is also a bijection and is an isomorphism of semigroups (monoids).
When we have another liken Kb = (yn)∞0 , then we can consider an analogous

isomorphisms
ΩK : NN

0 3 −→m → 〈
−→
b ,−→m〉 ∈ Kb,

as well as
Ω−1

K : Kb 3 yn → Ω−1
K (yn) ∈ NN

0 .

The composition
ΨK,L : Kb 3 yn → ΩL(Ω−1

K (yn)) ∈ La
is an algebraic isomorphism of the likens Kb and La, which allows us to say that

Theorem 26
Each two infinitely generated likens (with uniqueness) are algebraically isomorphic.

Let us notice, that in the case when the sequences of generators are strictly
increasing, then the described isomorphism ΨK,L is unique.

Now we take as Kb the particular liken N∗ = (ln(n+ 1))∞0 , denoted as (yn)∞0
and we consider the analogous isomorphisms ΩN∗ and Ω−1

N∗ . We will write simply
Ω, since the lower index is implied by the context.

The composed isomorphism ΨK,L in this special case will be denoted simply
by Ψ. We have then

Ψ: N∗ 3 yn → ΩL(Ω−1
N∗ (yn)) ∈ La = ΩL(Ω−1(yn)) ∈ La.

4.3. The beginning of the inductive proof

As we see, the map Ψ is an algebraic isomorphism of N∗ and La. It remains
to show, that Ψ is also ordinal. This last assertion will be proved by induction.
In fact we want to prove, that for each n ∈ N we have Ψ(yn) = xn. Since
clearly Ψ(y0) = x0 then the induction step is: if Ψ(yk) = xk for k ≤ n then
Ψ(yn+1) = xn+1. Or, in other words, we must prove the implication:

Theorem 27
If for each 0 ≤ i < j ≤ n the inequality xi < xj is equivalent to the inequality
yi < yj, then Ψ(yn+1) = xn+1.

First we shall verify that for small n the function Ψ has the claimed property.
Clearly, for n = 0 we have x0 = 0 (i.e. Ψ(y0) = x0), as in each liken. Although,
from the formal point of view, this is not necessary, we will check in details that
Ψ(yk) = xk for a few initial k ∈ N in order to see how the properties (C) and (OR)
work.

Case n = 1. It must be x1 = a1, since x1 must be indecomposable. Indeed, sup-
pose that x1 = u+ v, where u ∈ L 3 v , u > 0 and v > 0. Hence 0 < u < x1,
but this is impossible, since x1 is next after x0. In other words x1 = a1.
Hence Ψ(y1) = x1. Let us observe, that the equality Ψ(y1) = x1 does not
require any additional assumption (i.e. it is true in all likens).
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Case n = 2. It must be x2 = a2. Indeed, z(x1) = 2a1 (the definition of z(x) is
in (2) and we see, that the supports of z(x1) and x1 = a1 are not disjoint.
Hence, by (OR), x2 = a2. Then, clearly x1 = a1 < a2 = x2 < 2a1.

Case n = 3. We have clearly x2 = a2 < 2a1 < a1 + a2. Hence z(x2) = 2a1 is
disjoint with x2 = a2. In consequence x3 = 2a1. Here we use (OR).

Case n = 4. We see, that x3 = 2a1 is still in L(2). It is also easy to check, that
z(x3) = a1 + a2. Since the support of z(x3) is not disjoint with the support
of x3, then x4 = a3. Here we use once more the (OR) property.

Case n = 5. Clearly x4 ∈ L(3) and z(x4) = a1+a2 (this follows from a1+a2 < 2a3).
We see that z(x4) has the support disjoint with the support of x4 = a3.
Hence, by (OR), x5 = a1 + a2.

Case n = 6. Since 2a2 < 2a3 then z(x5) ∈ L(2). It is clear, that 3a1 < 2a1 + a2 <
a1 + 2a2. Using the property (C) for n = 2 we obtain 3a1 = a1 + 2a1 =
x1+x3 < 2x2 = 2a2. In consequence z(x5) = 3a1 . Since z(x5) is not disjoint
with x5, then x6 = a4. Let us observe that here we use the property (C) for
the first time, since without this property we cannot obtain the inequality
3a1 < 2a2.

Case n = 7. Here, as before, and as we will do later, we may apply a general
remark: if xn < z(xn) and xn and z(xn) are not disjoint, then from (OR)
we have: xn+1 = ak+1 and xn+2 = z(xn). This follows from the inequality
z(xn) < 2ak+1. Thus x7 = 3a1.

Case n = 8. It follows from the considerations for n = 6 and n = 7 that z(x7) =
2a2, hence x8 = 2a2.

Case n = 9. We are now in L(4), and we compute z(x8), which belongs a priori to
L(4). But, we have

a1 + a3 − x8 = a1 + a3 − 2a2 = a1 + 2a3 − 2a2 − a3

= a1 + 2x4 − 2a2 − a3 > a1 + x3 + x5 − 2a2 − a3

= a1 + 2a1 + a1 + a2 − 2a2 − a3 = 4a1 − (a2 + a3)
= 2x3 − (x2 + x4) > 0.

Since a1 +a3 < 2a1 +a2 (because x4 < x5) and clearly a1 +a3 < a1 +a4, then
z(x8) = a1 + a3. Since z(x8) and x8 = 2a2 are disjoint, then x9 = a1 + a3.

Case n = 10. Since x4 < x5 then x9 = a1+a3 < 2a1+a2. Clearly 2a1+a2 < a1+a4
and 2a1 + a2 < a2 + a3. Then z(x9) = 2a1 + a2 and hence, x10 = a5.

We see, that for 0 ≤ n ≤ 10 the map Ψ satisfies the claimed properties on isomor-
phism of likens.
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4.4. The induction step

As we are used to the multiplicative structure of the N∗ semigroup, we will
write the proof of the main Theorem 25 in the multiplicative convention of both
likens L̂a and N∗. Moreover, the role played by even numbers in N∗ suggest some
reformulation of the inductive step. Let us say also, that x̂k is even when x̂2|x̂k.
Let us recall that (Ψ̂ is the multiplicative version of Ψ defined above)

Ψ̂ : N∗ 3 n→ Ψ̂(n) ∈ L̂a

is the (unique) algebraic isomorphism of the considered likens, i.e. for each i, j ∈ N
we have

Ψ̂(i · j) = Ψ̂(i) · Ψ̂(j).

Thus to prove, that Ψ̂ is an isomorphism of likens we must prove that Ψ̂ is an
order isomorphism, which means, as usually for likens, that for each i ∈ N we
have: Ψ̂(i) = x̂i. So to prove Theorem 25 it is sufficient to prove the following
theorem ("even" version of the induction step):

Theorem 28
Suppose, that n ∈ N∗ and that for each 1 ≤ i ≤ 2n we have Ψ̂(i) = x̂i. Then
Ψ̂(2n+ 1) = x̂2n+1 and Ψ̂(2n+ 2) = x̂2n+2.

We will begin by formulating a number of observations.

i) Consider the elements Ψ̂(2j) for 1 ≤ j ≤ 2n. Since Ψ̂ is an algebraic isomor-
phism, then for each j ≤ 2n we have Ψ̂(2j) = Ψ̂(2) · Ψ̂(j) = x̂2 · x̂j . Hence if
j ≤ n then we can write (by induction hypothesis) x̂2 · x̂j = x̂2j . In particular
x̂2 · x̂n = x̂2n, but we cannot write a priori x̂2 · x̂n+1 = x̂2n+2 since this is
just one of the conditions to prove. However, all these elements x̂2 · x̂j are
even and are obviously in the liken L(2n).

ii) Since x̂n < x̂n+1 then x̂2n = x̂2 · x̂n < x̂2 · x̂n+1. But in La we have the
disjoint support property, so we must have

x̂2 · x̂n = x̂2n < x̂2n+1 < x̂2 · x̂n+1.

In other words this means, that between x̂2n and x̂2 · x̂n+1 there are some
elements of the liken La but we do not now how many of these elements are
there, and what they are.

iii) Let us consider the set

D = (x̂2 · x̂n, x̂2 · x̂n+1) ∩ L(2n).

First we will prove that

Lemma 29
If 2n+ 1 is composed, then Ψ̂(2n+ 1) ∈ (x̂2n, x̂2 · x̂n+1).
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Proof. Let us assume then that 2n+ 1 = p · q. Then clearly p ≥ 3 and q ≥ 3
and we have to prove the following inequalities:

x̂2n < Ψ̂(2n+ 1)

and
Ψ̂(2n+ 1) < x̂2 · x̂n+1. (3)

The first inequality follows directly from the inductive assumption. Indeed,
the inductive assumption says, in particular, that

Ψ̂ : {1, 2, . . . , 2n} → {1, x̂2, . . . , x̂2n}

is a bijection. But since 2n+1 /∈ [1, 2, . . . , 2n] then Ψ̂(2n+1) /∈ {1, x̂2, . . . , x̂2n}
and in consequence x̂2n < Ψ̂(2n+ 1).
The proof of the second inequality is more complicated. Clearly, we may
assume that p ≤ q and since p · q is odd then p and q are both odd, and we
have the inequality

3 ≤ p ≤ q < n.

Indeed, suppose q ≥ n. Then we have 2n+ 1 = p · q ≥ 3 · n which is possible
only for n = 1 but in our case n ≥ 1.
Let us denote

A = Ψ̂(2n+ 2)
Ψ̂(2n+ 1)

.

Our aim is to show that A > 1. We have (recall that Ψ̂ is an algebraic
isomorphism on the whole N∗ and recall that the quotients corresponds to
differences in the additive models).

A = Ψ̂(2n+ 2)
Ψ̂(2n+ 1)

= Ψ̂(2(n+ 1))
Ψ̂(p · q)

= x̂2 · x̂n+1

x̂p · x̂q
.

Let us notice here, that in this moment we cannot write x̂p · x̂q = x̂pq since
pq > 2n. But we know, that p is odd, and then p+ 1 is even and p+ 1 ≤ n.
Thus p+ 1 = 2s ≤ n and then we have x̂p+1 = x̂2 · x̂s. So we may also write

A = Ψ̂(2n+ 2)
Ψ̂(2n+ 1)

= Ψ̂(2(n+ 1))
Ψ̂(p · q)

= x̂2 · x̂n+1

x̂p · x̂q
= x̂p+1

x̂p
· x̂2 · x̂n+1

x̂2 · x̂s · x̂q

= x̂p+1

x̂p
· x̂n+1

x̂s · x̂q
.

Here is the time to replace x̂s · x̂q by x̂sq but for this we must bound sq from
above. We have pq = 2n + 1 and sq < pq = 2n + 1, hence sq is a natural
number satisfying sq ≤ 2n. This is sufficient for our purposes (for the use the
induction hypothesis) although a more detailed analysis allows us to prove
that sq ≤ 3n

2 . So, by induction hypothesis, we may write x̂s · x̂q = x̂sq and
in consequence we obtain
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A = x̂p+1

x̂p
· x̂n+1

x̂s · x̂q
= x̂p+1

x̂p
· x̂n+1

x̂sq
.

iv) Here we will need a simple lemma resulting from the concavity property.
Suppose, that L = (xn)∞n=0 is a liken (in additive convention). For fixed j
we can consider the sequence δj(n) = xn+j − xn. It appears, that in concave
likens (for each j) such a sequence is also strictly decreasing. First we have

Lemma 30
Let L = (xn)∞n=0 be a liken satisfying the concavity property and let p and q be
arbitrary positive integers such that 1 ≤ p < q. Then xq−1 − xp−1 > xq − xp.

Let us recall the notation δ(k) = xk+1−xk and recall that in a concave liken
we have δ(k + 1) < δ(k). Hence

xq − xp = xq − xq−1 + xq−1 − xq−2 + · · ·+ xp+1 − xp
= δ(q − 1) + δ(q − 2) + · · ·+ δ(p)
< δ(q − 2) + δ(q − 3) + · · ·+ δ(p− 1)
= xq−1 − xq−2 + xq−2 − xq−3 + · · ·+ xp − xp−1

= xq−1 − xp−1.

From this lemma, by induction, we obtain the following inequality: if 1 ≤
p < q and k ≤ p then xq−k − xp−k > xq − xp.
The same, but in multiplicative notation, may be formulated as follows.

Lemma 31
Let us suppose, that x̂p, x̂q are two elements of a concave liken L = (x̂n)∞n=0
(in multiplicative convention), and 1 ≤ k < p < q. Then

x̂p
x̂q

>
x̂p−k
x̂q−k

.

v) Now we return to the bounding from below of the quantity A. Our aim is to
prove that A > 1. We have proved that

A = x̂p+1

x̂p
· x̂n+1

x̂s · x̂q
= x̂p+1

x̂p
· x̂n+1

x̂sq
.

The inequality A > 1 is evident when n+1 ≥ sq, then assume that n+1 < sq.
By Lemma 31 we have

A = x̂p+1

x̂p
· x̂n+1

x̂sq
>
x̂p+1

x̂p
· x̂n+1−s

x̂sq−s
.

As we have observed above, we have n + 1 − s < 2n and sq − s < 2n and
additionally we will check that

n+ 1− s
sq − s

= p

p+ 1 .
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Indeed, we have the sequence of equivalent equalities

n+ 1− s
sq − s

= p

p+ 1 ⇔ (p+ 1)(n+ 1− s) = p(sq − s)

⇔ 2s(n+ 1− s) = ps(q − 1)

⇔ 2(n+ 1− s) = p(q − 1)

⇔ 2n+ 2− 2s = pq − p

⇔ 2n+ 2− p− 1 = 2n+ 1− p.

The last equivalence is true since we assumed that pq = 2n+1 and p+1 = 2s.
Hence there exists a number t ∈ N such that n+1−s = tp and sq−s = t(p+1).
From the inductive assumption we have

A = x̂p+1

x̂p
· x̂n+1

x̂sq
>
x̂p+1

x̂p
· x̂n+1−s

x̂sq−s
= x̂p+1

x̂p
· x̂tp
x̂t(p+1)

= x̂p+1

x̂p
· x̂t · x̂p
x̂t · x̂p+1

= 1.

This ends the proof of (3) and at the same time proof of Lemma 29.
vi) Consider now the situation, when between x̂2n and x̂2 · x̂n+1 there are no

elements of the liken L(2n), i.e. the set D is empty. In this case z2n = x̂2 ·x̂n+1.
The razor property implies then that x̂2n+1 = ak+1. But in this case 2n+ 1
cannot be composed, since, when 2n + 1 is composed, then Ψ̂(2n+ 1) is in
L(2n), and, as we have proved above

Ψ̂(2n+ 1) ∈ (x̂2n, x̂2 · x̂n+1),

contrary to our assumption. Hence 2n+1 = pk+1 (pk+1 is the (k+1)-th prime
in N∗) and ak+1 = x̂2n+1, and we see that in this case Ψ(2n+ 1) = x̂2n+1.

vii) Summarizing, we have proved, that the element Ψ̂(2n+ 1) is always in the
interval (x̂2n, x̂2 · x̂n+1). Hence to end the proof of the main Theorem 25
it is enough to show, that in the interval (x̂2n, x̂2 · x̂n+1) there are no other
elements of sub-liken L(2n) besides, possibly, Ψ̂(2n+ 1).

viii) Suppose that there exists an element x̂ such that x̂ ∈ L̂(2n) ∩ (x̂2n, x̂2 · x̂n+1)
and x̂ 6= Ψ̂(2n+ 1). Since x̂ ∈ L̂(2n) then there exist two natural numbers r
and s, such that r ≤ 2n, s ≤ 2n, x̂ = x̂r · x̂s and x̂2n < x̂r · x̂s < x̂2 · x̂n+1.
Since x̂ 6= Ψ̂(2n+ 1) then r · s > 2n + 1 and since x̂2n < x̂r · x̂s < x̂2 · x̂n+1
then both r and s are odd. Indeed, if for example r = 2m then x̂r = x̂2 · x̂m
and in consequence x̂n < x̂m · x̂s < x̂n+1, what is impossible. Clearly, we can
assume that r ≤ s and observe, that in fact we have the inequalities

3 ≤ r ≤ s < n.

Indeed, since r > 1 and r is odd, we have r ≥ 3, so we must show that s < n.
Suppose that s ≥ n. But s ≤ 2n and Ψ̂ is increasing in the interval [1, 2n]
(induction), thus x̂s ≥ x̂n and in consequence

x̂2 · x̂n+1 > x̂r · x̂s > x̂3 · x̂n.
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This gives the inequality (in the multiplicative convention)

x̂2 · x̂n+1 > x̂3 · x̂n

and this gives (in additive convention) the inequality

xn+1 − xn > x2 − x1,

what is impossible in concave likens. Since n > r ≥ 3 and r is odd, then r−1
is even and we can put r − 1 = 2t. In consequence we have

x̂2 · x̂t · x̂s = x̂r−1 · x̂s < x̂r · x̂s < x̂2·, x̂n+1

which gives the inequality
x̂t · x̂s < x̂n+1.

Since we are in the interval [1, x̂2, x̂3, . . . , x̂2n], and Ψ̂−1 is increasing then
t · s < n+ 1.

ix) The end of our reasoning is similar as above. We know, that we may set
rs = 2m+ 1 where m ≥ n+ 1. Let us denote

B = Ψ̂(2m+ 1)
Ψ̂(2m)

. (4)

Our aim is to prove that B > 1. We have

B = Ψ̂(2m+ 1)
Ψ̂(2m)

= Ψ̂(r · s)
Ψ̂(2m)

= x̂r · x̂s
x̂2 · x̂m

= x̂r
x̂r−1

· x̂r−1 · x̂s
x̂2 · x̂m

= x̂r
x̂r−1

· x̂2 · x̂t · x̂s
x̂2 · x̂m

= x̂r
x̂r−1

· x̂ts
x̂m

>
x̂r
x̂r−1

· x̂ts−t
x̂m−t

.

By a similar argument as before, we check that ts − t = w(r − 1) and m −
t = wr. Since Ψ̂ is an algebraic isomorphism in the whole N∗, we have
x̂ts−t = x̂w · x̂r−1 and x̂m−t = x̂w · x̂r.
Let us observe some inequalities. Since we have proved that st < n+ 1 then
ts− t ≤ n and hence w · (r − 1) ≤ n and by induction hypothesis, we have

x̂ts−t = x̂w(r−1) = x̂w · x̂r−1.

We must also bound m− t from above. We have rs > 2m. Thus

(r − 1 + 1)s > 2m and (r − 1)s+ s > 2m.

But (r−1) = 2t then 2ts+s > 2m. We have proved that s < n and ts < n+1.
In consequence 2m < 2ts+ s < 2n+ 2 + n = 3n+ 2. Hence m− t < 2n and
we can use the induction hypothesis for m− t = wr. Hence

B = Ψ̂(2m+ 1)
Ψ̂(2m)

>
x̂r
x̂r−1

· x̂ts−t
x̂m−t

= x̂r
x̂r−1

·
x̂w(r−1)

x̂wr
= x̂r
x̂r−1

· x̂w · x̂r−1

x̂w · x̂r
= 1.
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Finally we obtain

x̂2 · x̂n+1 > x̂r · x̂s = Ψ̂(2m+ 1) > Ψ̂(2m) = x̂2 · x̂m.

In consequence, x̂n+1 > x̂m. This means that x̂m ∈ [1, x̂2, . . . , x̂2n], so we
may use the induction hypothesis and we obtain n + 1 > m. But we know,
that m ≥ n + 1 and this contradiction ends the proof of the inductive step,
and at the same time, the proof of the main theorem.

5. Some additional remarks

Remark 32
As we have observed, the space of likens is big, but there are only a few examples
of likens which could be described as "suitable for counting". A natural method
of obtaining such kind of examples is to choose a subset K ⊂ N∗ and consider
the sub-semigroup L(K) generated by K (i.e. the smallest semigroup containing
the set K) which is ordered by the order inherited from N∗. Hence we obtain
a liken, a sub-liken of N∗. In particular we may consider only the likens generated
by the subsets of the set of prime numbers. Even this family, small compared
to the family of all likens, is nevertheless rich, since it contains a continuum of
non-isomorphic likens. Theorem 25 shows, that only one of these likens is concave
and has the razor property.

Remark 33
It is commonly known, that the Cauchy functional equation of the type f(x · y) =
f(x) + f(y) has many "bad" solutions and only one (up to a constant factor)
"good" solution, if we claim f to be continuous (or monotone, or locally bounded
etc.) and this solution is the logarithmic function. It follows from Theorem 25
that the condition of convexity for likens together with the razor property may be
considered as a kind of condition guaranteeing the uniqueness of the logarithmic
function.

Acknowledgement. The author would like to express his gratitude to the knowl-
edgeable referees, whose remarks helped much to improve the presentation of the
paper. Special thanks go to the referee who proposed the proof of Theorem 15.
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