
Ann. Univ. Paedagog. Crac. Stud. Math. 21 (2022), 93-116
DOI: 10.2478/aupcsm-2022-0008

FOLIA 355

Annales Universitatis Paedagogicae Cracoviensis
Studia Mathematica 21 (2022)

Andrzej Walendziak
Deductive systems of pseudo-M algebras

Abstract. The class of pseudo-M algebras contains pseudo-BCK, pseudo-
BCI, pseudo-BCH, pseudo-BE, pseudo-CI algebras and many other algebras
of logic. In this paper, the notion of deductive system in a pseudo-M al-
gebra is introduced and its elementary properties are investigated. Closed
deductive systems are defined and studied. The homomorphic properties of
(closed) deductive systems are provided. The concepts of translation deduc-
tive systems and R-congruences in pseudo-M algebras are introduced and
investigated. It is shown that there is a bijection between closed translation
deductive systems and R-congruences. Finally, the construction of quotient
algebra A/D of a pseudo-M algebra A via a translation deductive system D
of A is given.

1. Introduction

Y. Imai and K. Iséki [11, 15] introduced BCK and BCI algebras as algebras
connected with some logics. Q. P. Hu and X. Li [10] defined BCH algebras, which
are a generalization of BCI algebras (hence also a generalization of BCK algebras).
H. S. Kim and Y. H. Kim introduced in [17] the concept of BE-algebras. It is known
that BCK algebras are contained in the class of BE algebras. In 2009, B. L. Meng
[20] defined CI algebras as a common generalization of BE and BCH algebras.

In 2001, G. Georgescu and A. Iorgulescu [8] defined pseudo-BCK algebras as
a non-commutative extension of BCK algebras. In 2008, W. Dudek and Y. B. Jun
[4] introduced pseudo-BCI algebras as a natural generalization of BCI algebras
and of pseudo-BCK algebras. Next, pseudo-BE algebras were introduced in 2013
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by R. A. Borzooei et al. [2], as a non-commutative extension of BE algebras.
A. Walendziak [28] introduced in 2015 the class of pseudo-BCH algebras. Recently,
A. Rezaei et al. [25] defined pseudo-CI algebras as a common generalization of
pseudo-BE and pseudo-BCH algebras. All of the algebras mentioned above are
contained in the class of pseudo-M algebras introduced by A. Iorgulescu in the
book [14] from 2018.

Deductive systems of algebras of logic are an important algebraic notion. From
the logical point of view, deductive systems correspond to those sets of formulas
which are closed under the inference rule modus ponens. Note that deductive
systems are the same as ideals considered among others in the papers [23, 16]
on BCK algebras, [9, 24] on BCI algebras, and [3, 29] on BCH and pseudo-BCH
algebras (in all these papers, the notation with ∗ and 0 is used). Note also that
in the theory of BE algebras and in the theory of CI algebras, deductive systems
coincide with filters (see for example [21, 27] and [22, 1]).

In this paper, we introduce the notion of deductive system in a pseudo-M
algebra and investigate its elementary properties. We define and study closed
deductive systems. We describe deductive systems of direct products of pseudo-
M algebras and provide the homomorphic property of (closed) deductive systems.
We introduce and investigate the concepts of translation deductive systems and R-
congruences in pseudo-M algebras. We prove that the lattice of closed translation
deductive systems of a pseudo-RM algebra A with the property (pD) is isomorphic
to the lattice of R-congruences on A. Finally, we give the construction of quotient
algebra A/D of a pseudo-RM algebra A via a translation deductive system D of
A and obtain the fundamental homomorphism theorem.

The motivation for this work consists algebraic arguments; namely, the pseudo-
M algebras are a generalization of various pseudo-algebras. As another motivation
of this study we mention the possible applications in the theory of pseudo-BCK,
pseudo-BCI, pseudo-BCH, pseudo-BE and pseudo-CI algebras.

2. On pseudo-M algebras

Let A = (A,→,;, 1) be an algebra of type (2, 2, 0). We say that A is a
pseudo-M algebra (more precisely, left-pseudo-M algebra, see [14]) if it verifies the
axioms:

(IdEq) x→ y = 1⇔ x; y = 1,

(pM) 1→ x = x = 1 ; x.

A natural binary relation ≤ can always be defined on A by: for all x, y ∈ A,

(pEq) x ≤ y ⇔ x→ y = 1 (⇔ x; y = 1).

We consider the following list of properties (cf. [14]) that can be satisfied by
a pseudo-M algebra A:

(An) (Antisymmetry) (x ≤ y and y ≤ x)⇒ x = y,
(pBB) y → z ≤ (z → x) ; (y → x), y ; z ≤ (z ; x)→ (y ; x),
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(pB) y → z ≤ (x→ y)→ (x→ z), y ; z ≤ (x; y) ; (x; z),
(pD) x ≤ (x→ y) ; y, x ≤ (x; y)→ y,
(pEx) (Exchange property) x; (y → z) = y → (x; z),
(pC) x; (y → z) ≤ y → (x; z), x→ (y ; z) ≤ y ; (x→ z),
(L) (Last element) x ≤ 1,

(Re) (Reflexivity) x ≤ x,
(Tr) (Transitivity) (x ≤ y and y ≤ z)⇒ x ≤ z,
(p∗) x ≤ y ⇒ (z → x ≤ z → y and z ; x ≤ z ; y),
(p∗∗) x ≤ y ⇒ (y → z ≤ x→ z and y ; z ≤ x; z).

Proposition 2.1
If an algebra A satisfies (pM) and

(pD’) x; ((x→ y) ; y) = 1, x→ ((x; y)→ y) = 1,

then A also satisfies (IdEq) and (Re).

Proof. Straightforward.

Lemma 2.2 (see Proposition 2.1.8 and Corollary 2.1.11 of [14])
Let A be a pseudo-M algebra. Then the following hold:

(i) (Re) + (pEx) + (p∗)⇒ (pBB),
(ii) (pBB)⇒ (p∗∗)⇒ (Tr),
(iii) (pBB)⇒ (Re), (pC), (pD),
(iv) (Re) + (pEx)⇒ (pD),
(v) (pBB)⇒ (pB)⇒ (p∗),

(vi) (pBB) + (An)⇒ (pEx).

Definition 2.3 (see [14])
An algebra A = (A,→,;, 1) is called:

1. a pseudo-RM algebra if it is a pseudo-M algebra verifying (Re);
2. a pseudo-ML algebra if it is a pseudo-M algebra verifying (L);
3. a pseudo-RML algebra if it is a pseudo-RM algebra verifying (L);
4. a pseudo-CI algebra (or pseudo-RME algebra) if it is a pseudo-RM algebra

verifying (pEx);
5. a pseudo-BE algebra if it is a pseudo-CI algebra verifying (L);
6. a pseudo-BCH algebra if it is a pseudo-CI algebra verifying (An);
7. a pseudo-BCI algebra if it is a pseudo-BCH algebra verifying (p∗);
8. a pseudo-BCK algebra if it is a pseudo-BCI algebra verifying (L).
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Denote by pM, pML, pRM, pRML, pCI, pBE, pBCH, pBCI, pBCK the
classes of pseudo-M, pseudo-ML, pseudo-RM, pseudo-RML, pseudo-CI, pseudo-
BE, pseudo-BCH, pseudo-BCI, pseudo-BCK algebras, respectively.

We say that a pseudo-M algebra A = (A,→,;, 1) is:

9. a pseudo-BB algebra if it verifies (pBB);
10. a pseudo-CI* algebra if it verifies (Re), (pEx) and (p∗) – that is, it is a

pseudo-CI algebra with (p∗);
11. a pseudo-BE* algebra if it verifies (Re), (pEx), (L) and (p∗) – that is, it is

a pseudo-BE algebra with (p∗).

Denote by pBB, pCI*, pBE* the classes of pseudo-BB, pseudo-CI*, pseudo-
BE* algebras, respectively.

From Lemma 2.2 (i) we see that pCI* ⊂ pBB. The interrelationships between
the classes of algebras mentioned before are visualized in Fig. 1. (An arrow
indicates proper inclusion, that is, if X and Y are classes of algebras, then X −→ Y
means X ⊂ Y.)
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A pseudo-M algebra (A,→,;, 1) is called a M algebra if → = ;. More
formally, an algebra (A,→, 1) of type (2, 0) is said to be a M algebra if it satisfies

(M) 1→ x = x.

Similarly, if X ∈ {M, RM, RML, CI, BE, BCH, BCI, BCK}, then a pseudo-X
algebra (A,→,→, 1) is called a X algebra. These algebras and many new general-
izations of BCI or of BCK algebras can be found in [13].

In pseudo-RM, pseudo-RML, pseudo-CI and pseudo-BE algebras, ≤ is a re-
flexive relation; in pseudo-BB, pseudo-CI* and pseudo-BE* algebras, it is reflexive
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and transitive by Lemma 2.2 (i), (ii). In pseudo-BCH algebras, by definition, ≤ is
reflexive and antisymmetric. It is known that ≤ is an order relation in pseudo-BCI
and pseudo-BCK algebras.

Proposition 2.4
The class of pseudo-BB algebras is a variety of algebras of type (2, 2, 0) with the
associated set {→,;, 1} of operation symbols, defined by identities (pM) and

(pBB’) (y → z) ; ((z → x) ; (y → x)) = 1, (y ; z)→ ((z ; x)
→ (y ; x)) = 1.

Proof. Let A = (A,→,;, 1) be an algebra of type (2, 2, 0) satisfying (pM) and
(pBB’). Let x, y, z ∈ A. By (pBB’) and (pM), 1 = (1 → z) ; ((z → x) ;

(1 → x)) = z ; ((z → x) ; x) and 1 = (1 ; z) → ((z ; x) → (1 ; x)) =
z → ((z ; x) → x), that is, (pD’) holds. From Proposition 2.1 we conclude that
(IdEq) also holds. Therefore, A is a pseudo-M algebra satisfying (pBB). Thus A
is a pseudo-BB algebra.

Example 2.5
Let A = {a, b, 1} and consider the following implications:

→1 a b 1
a a 1 a
b 1 1 1
1 a b 1

,

;1 a b 1
a b 1 b
b 1 1 1
1 a b 1

;

→2 a b 1
a a 1 1
b b 1 1
1 a b 1

,

;2 a b 1
a b 1 1
b a 1 1
1 a b 1

.

Then, A1 = (A,→1,;1, 1) is a pseudo-M algebra not verifying (Re) and (L) for
a, (An) for a, b (pD) for a, 1; A2 = (A,→2,;2, 1) is a pseudo-ML algebra not
verifying (Re) for a, (pD) for 1, a (hence not (pBB)).

Example 2.6
Consider the set A = {a, b, 1} and the following tables of implications:

→1 a b 1
a 1 1 1
b b 1 b
1 a b 1

,

;1 a b 1
a 1 1 1
b a 1 a
1 a b 1

;

→2 a b 1
a 1 1 a
b 1 1 b
1 a b 1

,

;2 a b 1
a 1 1 b
b 1 1 b
1 a b 1

.

Let A1 = (A,→1,;1, 1) and A2 = (A,→2,;2, 1). Then, A1 is a pseudo-RM
algebra and A2 is a pseudo-BB algebra. They do not verify (L) for x = b, (pEx)



[98] Andrzej Walendziak

for (x, y, z) = (a, b, a). Moreover, A1 does not verify (pD) for (x, y) = (b, a) and
(pBB) for (x, y, z) = (1, a, b).

Example 2.7
Let A = {a, b, c, 1} and consider the following implications:

→ a b c 1
a 1 1 b 1
b 1 1 c 1
c a b 1 1
1 a b c 1

,

; a b c 1
a 1 1 b 1
b 1 1 c 1
c b c 1 1
1 a b c 1

.

Then, A = (A,→,;, 1) is a pseudo-RML algebra. It does not satisfy (An), (pBB),
(pEx), (pD).

For examples of pseudo-CI, pseudo-CI*, pseudo-BE and pseudo-BE* algebras
we refer to [2, 25], of pseudo-BCH algebras to [28], of pseudo-BCI algebras to [7, 18]
and of pseudo-BCK algebras to [12, 19]. Note that Iorgulescu’s pre-pseudo-BCI
algebras are our pseudo-CI* algebras and Iorgulescu’s pre-pseudo-BCK algebras
are our pseudo-BE* algebras.

3. Deductive systems

In this section, we define the notion of deductive system of a pseudo-M algebra
and give some of its properties.

Let A = (A,→,;, 1) be a pseudo-M algebra. We say that a subset D of A is
a deductive system of A if it satisfies:

(D1) 1 ∈ D,
(D2) for all x, y ∈ A, if x ∈ D and x→ y ∈ D, then y ∈ D,
(D3) for all x, y ∈ A, if x ∈ D and x; y ∈ D, then y ∈ D.

By DS(A) we denote the set of all deductive systems of A. It is obvious that {1},
A ∈ DS(A). The algebras from Example 2.6 have only two deductive systems:
{1}, A.

Remark 3.1
Let A2 be the pseudo-RML algebra from Example 2.7. The set D = {1, c} satisfies
(D2), but it does not satisfy (D3).

Example 3.2
Let A = {a, b, c, d, 1} and →,; be defined by the following tables:

→ a b c d 1
a 1 1 c c c
b 1 1 c c c
c a b 1 1 c
d a b b 1 c
1 a b c d 1

,

; a b c d 1
a 1 1 c c d
b 1 1 c c d
c a b 1 1 d
d a b b 1 d
1 a b c d 1

.
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By routine calculation, A = (A,→,;, 1) is a pseudo-RM algebra, without (pD).
It is easy to see that DS(A) = {{1}, {1, d}, {1, a, b}, {1, c, d}, A}.

Proposition 3.3
Let A be a pseudo-M algebra with the property (pD) and let D be a subset of A
containing 1. Then the following conditions are equivalent:

(a) D is a deductive system of A,
(b) D verifies (D2),
(c) D verifies (D3).

Proof. By definition, (a) implies (b). To prove that (b) implies (a), let D be a
subset of A verifying (D1) and (D2). Suppose that x ; y ∈ D and x ∈ D. By
(pD), x ≤ (x ; y) → y. Then x → ((x ; y) → y) = 1 ∈ D, and we conclude
from (D2) that (x ; y) → y ∈ D, hence that y ∈ D. Therefore, D verifies (D3),
and consequently D is a deductive system. Thus (a) ⇔ (b). The proof of the
equivalence (a) ⇔ (c) is analogous.

Corollary 3.4
If a pseudo-RM algebra A satisfies (pBB) or (pEx), then a subset D of A is a
deductive system of A if and only if it satisfies (D1) and (D2), or equivalently, if
and only if it satisfies (D1) and (D3).

Corollary 3.5
In pseudo-CI algebras (hence also in pseudo-BE, pseudo-BCH, pseudo-BCI, pseudo-
BCK algebras), a subset D is a deductive system if and only if it satisfies (D1)
and (D2), or equivalently, (D1) and (D3).

Proposition 3.6
Let D be a deductive system of a pseudo-M algebra A. Then, for any x, y ∈ A, if
x ≤ y and x ∈ D, then y ∈ D.

Proof. Straightforward.

Theorem 3.7
Let Ai = (Ai,→i,;i, 1i), i ∈ I, be an indexed family of pseudo-RML algebras and
A :=

∏
i∈I Ai be the direct product of these algebras. Then

(i) if Di is a deductive system of Ai for i ∈ I, then
∏
i∈I Di is a deductive

system of A,
(ii) if D is a deductive system of A, then Di := πi(D), where πi is the i-th

projection of A onto Ai, is a deductive system of Ai, and D ⊆
∏
i∈I Di.

Proof. (i) The first part of the assertion is obvious.
(ii) Obviously, 1i ∈ Di. Let xi, yi ∈ Ai and suppose that xi →i yi ∈ Di and

xi ∈ Di. Define x, y ∈ A by

x(j) =
{
xi, if j = i,
1j , if j 6= i
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and

y(j) =
{
yi, if j = i,
1j , if j 6= i

for any j ∈ I. Then x(i) ∈ Di and x(i) →i y(i) ∈ Di. Hence, there exists an
element z ∈ D such that πi(z) = x(i)→i y(i). We have

(x→ y)(j) =
{
z(i), if j = i.
1j , if j 6= i.

Since z(j) ≤ 1j , for j 6= i, and Ai satisfies (Re), we deduce that z ≤ x→ y. As D
is a deductive system and z ∈ D, we conclude that x→ y ∈ D. Let now t ∈ D be
such that πi(t) = xi. Clearly, t ≤ x. Hence x ∈ D, because t ∈ D. Consequently,
y ∈ D, and therefore yi = πi(y) ∈ πi(D) = Di. Thus Di satisfies (D2). Similarly,
Di also satisfies (D3). This means that Di is a deductive system of Ai.

Finally, it is easy to see that D ⊆
∏
i∈I Di.

Definition 3.8
A deductive system D of a pseudo-M algebra A is said to be closed if x→ 1 ∈ D
and x; 1 ∈ D for every x ∈ D.

By definition, we have

Proposition 3.9
In pseudo-RML algebras, hence in pseudo-BE, pseudo-BCK algebras, every deduc-
tive system is closed.

Theorem 3.10
Let A be a pseudo-RM algebra with the property (pBB) or (pEx). Then a deductive
system D of A is closed if and only if D is a subalgebra of A.

Proof. Suppose that D is a closed deductive system of A and let x, y ∈ D. Observe
that

x→ 1 ≤ y ; (x→ y). (3.1)
Indeed, if A satisfies (pBB), then x → 1 ≤ (1 → y) ; (x → y) = y ; (x → y).
If (pEx) holds, then x → 1 = x → (y ; y) = y ; (x → y). Therefore, A
satisfies (3.1). Since D is closed, x → 1 ∈ D. We conclude from (3.1) that
y ; (x→ y) ∈ D, hence that x→ y ∈ D. Similarly, x; y ∈ D. Conversely, if D
is a subalgebra of A, then x ∈ D and 1 ∈ D imply x→ 1 ∈ D.

Corollary 3.11
Let A be a pseudo-CI algebra. Then every closed deductive system of A is a sub-
algebra.

Remark 3.12
From Corollary 3.11 we have Proposition 3.5 of [22] and Theorem 4.16 of [28].

Remark 3.13
Let A be the pseudo-M algebra from Example 3.2. Then {1, c, d} is a closed
deductive system of A but it is not a subalgebra.
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For any x, y ∈ A and n ∈ N0, we define x→n y inductively as follows:

x→0 y = y and x→n+1 y = x→ (x→n y) for n ∈ N0,

We define x;n y in the same way.
In [28], it is proved that every deductive system of a finite pseudo-BCH algebra

is closed. Similarly, we obtain

Proposition 3.14
Every deductive system of a finite pseudo-BB algebra is closed.

Remark 3.15
From Proposition 3.14 we get Theorem 4.13 [5] for pseudo-BCI algebras.

Remark 3.16
A pseudo-BB algebra in which every deductive system is closed does not have to
be finite; for example, we take any infinite pseudo-BCK algebra. Observe also that
the assumption of finiteness in Proposition 3.14 cannot be dropped, see example
below.

Example 3.17
Let M be the set of all matrices of the form

[
x y
0 1

]
, where x and y are rational

numbers such that x > 0. We define the binary operations → and ; on M by

X → Y = Y X−1 and X ; Y = X−1Y

for all X,Y ∈ M . Then M = (M,→,;, E), where E =
[

1 0
0 1

]
, is a pseudo-BB

algebra. Let C =
[

2 0
0 1

]
. It is easy to see that the set D = {Cn : n ∈ N∪{0}} is a

deductive system of M. Observe that D is not closed. Indeed, C → E = EC−1 =
C−1 /∈ D.

For any pseudo-M algebra A, we set

K(A) = {x ∈ A : x ≤ 1}.

Proposition 3.18
If a pseudo-M algebra A satisfies (p∗∗), then K(A) is a closed deductive system
of A.

Proof. Obviously, 1 ∈ K(A). Let x, x → y ∈ K(A). Then x ≤ 1 and x → y ≤ 1.
From (pM) and (p∗∗) we obtain y = 1 → y ≤ x → y ≤ 1. Hence y ≤ 1 (A
satisfies (Tr) by Lemma 2.2 (ii)), that is, y ∈ K(A). Similarly we prove that if x,
x; y ∈ K(A), then y ∈ K(A). Thus K(A) is a deductive system of A. It is clear
that if x ∈ K(A), then x→ 1 ∈ K(A). Therefore, K(A) is closed.

Remark 3.19
From Lemma 2.2 we conclude that Proposition 3.18 holds for pseudo-BB, pseudo-
CI*, pseudo-BE*, pseudo-BCI, pseudo-BCK algebras.
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Remark 3.20
Example 3.21 shows that the converse of Proposition 3.18 does not hold in general.

Example 3.21
Let A = {a, b, c, 1} and consider the following implications:

→ a b c 1
a a b c a
b a b c b
c a b c 1
1 a b c 1

,

; a b c 1
a a c b a
b a b c b
c a b c 1
1 a b c 1

.

Then, A = (A,→,;, 1) is a pseudo-M algebra. We have K(A) = {1, c}. It is clear
that K(A) is a closed deductive system of A, whereas A does not satisfy (p∗∗),
since c ≤ 1, but 1→ b = b � b = c→ b.

Proposition 3.22
Let A1 and A2 be pseudo-M algebras. Then:

(i) K(A1 ×A2) = K(A1)×K(A2),
(ii) if A1 and A2 satisfy (Re) and (L), then DS(A1×A2) = DS(A1)×DS(A2).

Proof. (i) This is immediate from definitions.
(ii) Let A = A1 × A2 and D ∈ DS(A). From Theorem 3.7 (ii) it follows

that D ⊆ D1 × D2, where D1 = π1(D), D2 = π2(D). Let a ∈ D1 and b ∈ D2.
There are c ∈ A2 and d ∈ A1 such that (a, c), (d, b) ∈ D. Since (a, c) ≤ (a, 1)
and (d, b) ≤ (1, b), we conclude that (a, 1), (1, b) ∈ D. Observe that (a, b) ∈ D.
Indeed, we have (a, 1)→ (a, b) = (1, b) and (a, 1), (1, b) ∈ D. From this (a, b) ∈ D.
Therefore D = D1 ×D2 ∈ DS(A1)×DS(A2).

Conversely, let D = D1 × D2, where D1 ∈ DS(A1) and D2 ∈ DS(A2). By
Theorem 3.7 (i), D is a deductive system of A.

The following two propositions give the homomorphic properties of deductive
systems.

Proposition 3.23
Let A and B be pseudo-M algebras. If ϕ : A → B is a homomorphism and D is a
(closed) deductive system of B , then the inverse image ϕ−1(D) of D is a (closed)
deductive system of A.

Proof. Straightforward.

Proposition 3.24
Let A = (A,→,;, 1A) and B = (B,→,;, 1B) be pseudo-RM algebras and ϕ : A →
B be a surjective homomorphism. If D is a (closed) deductive system of A con-
taining kerϕ := ϕ−1({1B}), then ϕ(D) is a (closed) deductive system of B.

Proof. Since 1A ∈ D, we have 1B = ϕ(1A) ∈ ϕ(D). Let x, y ∈ B and suppose
that x, x → y ∈ ϕ(D). Then there are a, b ∈ D and c ∈ A such that x = ϕ(a),
x→ y = ϕ(b) and y = ϕ(c). We get x→ y = ϕ(a)→ ϕ(c) = ϕ(b), so ϕ(a→ c) =
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ϕ(b). Hence b → (a → c) ∈ kerϕ, and consequently b → (a → c) ∈ D. By the
definition of deductive system, c ∈ D. Therefore, y = ϕ(c) ∈ ϕ(D). Similarly, if
x, x ; y ∈ ϕ(D), then y ∈ ϕ(D). This means that ϕ(D) is a deductive system of
B. Moreover, if D is closed, then ϕ(D) is also closed.

Remark 3.25
Propositions 3.23 and 3.24 imply Propositions 4.13 and 4.14 of [28] on ideals of
pseudo-BCH algebras, Theorem 14 of [2] on filters of pseudo-BE algebras.

The set DS(A) of all deductive systems of a pseudo-M algebra A (partially
ordered by set-inclusion) is a complete lattice where infima coincide with set-
theoretical intersections. Hence, for any X ⊆ A there exists the least deductive
system containingX. Denote it byD(X) and call it the deductive system generated
by X.

Proposition 3.26
Let A be a pseudo-BB algebra and let ∅ 6= X ⊆ A and

Y = {x ∈ A : a1 → (· · · → (an → x) · · · ) = 1 for some a1, . . . , an ∈ X, n ∈ N}
= {x ∈ A : a1 ; (· · ·; (an ; x) · · · ) = 1 for some a1, . . . , an ∈ X, n ∈ N}.

Then D(X) = Y ∪ {1} and D(∅) = {1}.

Proof. By (pC) and (p∗), we get

a1 → (· · · → (an → x) · · · ) = 1⇔ an ; (· · ·; (a1 ; x) · · · ) = 1

for any x, a1, . . . , an ∈ A and n ∈ N. Then, it suffices to prove that Y ∪ {1} is
the least deductive system containing X. Obviously, 1 ∈ Y ∪ {1}. Suppose that
x, x → y ∈ Y ∪ {1}. If x = 1, then y = 1 → y ∈ Y ∪ {1}. Let x ∈ Y . By the
definition of Y , there exist a1, . . . , an ∈ X such that

a1 ; (· · ·; (an ; x) · · · ) = 1. (3.2)

We shall consider two cases:

Case 1. x→ y = 1. Then x ≤ y. SinceA satisfies (p∗), we have an ; x ≤ an ; y.
Repeating this way n− 1 times and noticing (3.2) we obtain

1 = a1 ; (· · ·; (an ; x) · · · ) ≤ a1 ; (· · ·; (an ; y) · · · ),

that is, a1 ; (· · ·; (an ; y) · · · ) = 1. Hence y ∈ Y ⊆ Y ∪ {1}.

Case 2. x→ y ∈ Y . Therefore, there are b1, . . . , bm ∈ X (m ∈ N) such that

b1 ; (· · ·; (bm ; (x→ y)) · · · ) = 1. (3.3)

Applying (pC) we get

bm ; (x→ y) ≤ x→ (bm ; y).
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Repeating this, by (p∗), (pC) and (Tr), we obtain

b1 ; (· · ·; (bm ; (x→ y)) · · · ) ≤ x→ (b1 ; (· · ·; (bm ; y) · · · )).

Hence, using (3.3), we have 1 = x → (b1 ; (· · · ; (bm ; y) · · · )), and
consequently, x ≤ b1 ; (· · ·; (bm ; y) · · · ). Then, by (p∗),

1 = a1 ; (· · ·; (an ; x) · · · )
≤ a1 ; (· · ·; (an ; (b1 ; (· · ·; (bm ; y) · · · ))) · · · ).

Thus y ∈ Y ⊆ Y ∪ {1}. Therefore, Y ∪ {1} ∈ DS(A). It is obvious that
X ⊆ Y ⊆ Y ∪ {1}.

To prove that Y ∪ {1} is the least deductive system containing X, let D ∈ DS(A)
and D ⊇ X. For any x ∈ Y ∪ {1}, if x = 1, then x ∈ D; otherwise, there are
a1, . . . , an ∈ X such that (3.2) holds. Since X ⊆ D, we have a1, . . . , an ∈ D.
By the definition of a deductive system, from (3.2) we see that x ∈ D. Hence
Y ∪ {1} ⊆ D. Thus D(X) = Y ∪ {1}.

Moreover, it is easily seen that D(∅) = {1}.

Remark 3.27
In particular, from Theorem 3.26 we obtain Lemma 2.1.4 of [19], Corollary 5.7 of
[20], Proposition 5.23 of [25], Proposition 3.7 of [6].

By Proposition 3.26, the mapping X → D(X) is an algebraic closure operator
on the power set of A, that is, for every X ⊆ A,

D(X) =
⋃
{D(X0) : X0 is a finite subset of X}.

Hence we obtain

Theorem 3.28
For any pseudo-BB algebra A, DS(A) forms an algebraic lattice whose compact
elements are precisely the finitely generated deductive systems.

Remark 3.29
Theorem 3.28 was proved for deductive systems of pseudo-BCK algebras by J. Kühr
[19] and of pseudo-BCI algebras by G. Dymek [6].

4. Translation deductive systems and congruences

In this section we first study the notion of compatibility of deductive systems
and then we introduce translation deductive systems and R-congruences. We say
that a deductive system D of a pseudo-M algebra is compatible if, for all x, y ∈ A,

x→ y ∈ D ⇔ x; y ∈ D.

We use DScom(A) to denote the set of all compatible deductive systems of a pseudo-
M algebra A. It is easy to see that {1}, A ∈ DScom(A).
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Example 4.1
Let A be the pseudo-M algebra from Example 3.2. The deductive system D1 =
{1, c, d} is compatible, while D2 = {1, d} is not compatible.

Proposition 4.2
Let A = (A,→,;, 1A) and B = (B,→,;, 1B) be pseudo-M algebras and ϕ : A →
B be a homomorphism from A into B. Then kerϕ = ϕ−1({1B}) is a closed com-
patible deductive system of A.

Proof. Straightforward.

We have the following characterization of compatibility of deductive systems.

Theorem 4.3
Let A be a pseudo-M algebra satisfying (pD) and (p∗∗). Let D ∈ DS(A). The
following statements are equivalent:

(a) D is compatible,
(b) (d→ x)→ x ∈ D and (d; x) ; x ∈ D, for all d ∈ D and x ∈ A.

Proof. (a) ⇒ (b): Let d ∈ D and x ∈ A. From (pD) it follows that d ≤ (d →
x) ; x and d ≤ (d ; x) → x. By Proposition 3.6, (d → x) ; x ∈ D and
(d ; x) → x ∈ D. Since D is compatible, we conclude that (d → x) → x ∈ D
and (d; x) ; x ∈ D.

(b) ⇒ (a): Let x → y ∈ D. By assumption, ((x → y) ; y) ; y ∈ D.
Applying (pD), we get x ≤ (x → y) ; y, and hence, by (p∗∗), ((x → y) ; y) ;

y ≤ x ; y. Consequently, x ; y ∈ D. Similarly, x ; y ∈ D yields x → y ∈ D.
Thus D is compatible.

Proposition 4.4
Let A be a pseudo-RM algebra with (pD) and (p∗∗). Then K(A) is a closed com-
patible deductive system.

Proof. By Proposition 3.18, K(A) is a closed deductive system of A. Let d ∈ K(A)
and x ∈ A. Then d ≤ 1. Applying (p∗∗), we have 1 → x ≤ d → x. Hence (d →
x) → x ≤ (1 → x) → x = 1, and consequently (d → x) → x ∈ K(A). Similarly,
(d; x) ; x ∈ K(A). From Theorem 4.3 we conclude that K(A) ∈ DScom(A).

Proposition 4.5
Let A = (A,→,;, 1A) and B = (B,→,;, 1B) be pseudo-RM algebras and ϕ : A →
B be a surjective homomorphism. If D is a compatible deductive system of A
containing kerϕ, then ϕ(D) is a compatible deductive system of B.

Proof. Let D ∈ DS(A) and D ⊇ kerϕ. By Proposition 3.24, ϕ(D) is a deductive
system of B. Suppose that D is compatible. To prove that ϕ(D)is compatible,
let x, y ∈ B and x → y ∈ ϕ(D). Then there are a, b ∈ A and d ∈ D such that
x = ϕ(a), y = ϕ(b) and x→ y = ϕ(d). Hence ϕ(a→ b) = ϕ(d), and consequently
d→ (a→ b) ∈ kerϕ ⊆ D. Therefore a→ b ∈ D and using the compatibility of D,
we have a ; b ∈ D. Then x ; y = ϕ(a ; b) ∈ ϕ(D). Similarly, x ; y ∈ ϕ(D)
yields x→ y ∈ ϕ(D). Thus ϕ(D) is a compatible deductive system.
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In [26], E. H. Roch et al. introduced the notion of translation ideal in BCH al-
gebras. In [29, 30], we defined translation ideals and translation deductive systems
in pseudo-BCH and RM algebras, respectively. Similarly, we have

Definition 4.6
A compatible deductive system D of a pseudo-M algebra A is said to be a trans-
lation deductive system (t-deductive system, for short) if it satisfies the following
condition: for all x, y, z ∈ A,

x→ y, y → x ∈ D ⇒ (x � z)→ (y � z), (z � x)→ (z � y) ∈ D, (4.1)

where � ∈ {→,;}.

Denote by T(A), Tcl(A) the set of all t-deductive systems and closed t-
deductive systems of A. Obviously, A ∈ Tcl(A). But {1} is not a translation
deductive system, in general (see examples below).

Example 4.7
Consider the pseudo-RM algebra A1 from Example 2.5. We have a →1 b, b →1
a ∈ {1}, but (a →1 1) →1 (b →1 1) = a →1 1 = a /∈ {1}. Therefore, {1} is not a
translation deductive system of A1.

Example 4.8
Let A = {a, b, c, d, 1}. Define binary operations → and ; on A by the following
tables:

→ a b c d 1
a 1 1 a a a
b 1 1 b b b
c a b c d 1
d a b c 1 c
1 a b c d 1

,

; a b c d 1
a 1 1 a a a
b 1 1 b b b
c a b d d 1
d a b c 1 c
1 a b c d 1

.

Then A = (A,→,;, 1) is a pseudo-M algebra (not verifying (An), (Re), (L), (pD),
(pBB), (pEx)). It is evident that DS(A) = {{1}, {1, c}, {1, d}, {1, c, d}, A}. The
set {1} is not a translation deductive system, because d → d = 1 ∈ {1} but
(d → c) → (d → c) = c → c = c /∈ {1}. The deductive systems {1, c} and {1, d}
are not compatible, since c → c = c but c ; c = d. We have T(A) = Tcl(A) =
{{1, c, d}, A}.

Proposition 4.9
Let A be a pseudo-RM algebra satisfying (An). Then {1} ∈ T(A).

Proof. Straightforward.

Theorem 4.10
If A is a pseudo-BB algebra, then DScom(A) = T(A).

Proof. By Lemma 2.2 (v), A satisfies (pB). Let D be a compatible deductive
system of A and let x, y, z ∈ A. Suppose that x → y, y → x ∈ D. Using the
compatibility of D, we get x ; y, y ; x ∈ D. By (pBB), y → x ≤ (x → z) ;

(y → z) and y ; x ≤ (x ; z) → (y ; z). Since y → x ∈ D and y ; x ∈ D,



Deductive systems of pseudo-M algebras [107]

we see that (x → z) → (y → z) ∈ D and (x ; z) → (y ; z) ∈ D. From (pB) it
follows that x → y ≤ (z → x) → (z → y) and x ; y ≤ (z ; x) ; (z ; y). We
have (z → x) → (z → y), (z ; x) ; (z ; y) ∈ D, because x → y, x ; y ∈ D.
Thus D is a translation deductive system of A.

Corollary 4.11
In pseudo-CI*, pseudo-BE*, pseudo-BCI, pseudo-BCK algebras we have

DScom(A) = T(A).

Proposition 4.12
If ϕ : A → B is a homomorphism of pseudo-M algebras and D ∈ T(B), then
ϕ−1(D) ∈ T(A).

Proof. Straightforward.

Proposition 4.13
Let A = (A;→,;, 1A)and B = (B;→,;, 1B) be pseudo-RM algebras and let
ϕ : A → B be a surjective homomorphism. If D is a translation deductive system
of A containing kerϕ, then ϕ(D) is a translation deductive system of B.

Proof. By Proposition 4.5, ϕ(D) is a compatible deductive system of B. Let
x, y, z ∈ B. Since ϕ is onto, there exist a, b, c ∈ A such that x = ϕ(a), y = ϕ(b)
and z = ϕ(c). To prove that ϕ(D) ∈ T(B), let x → y, y → x ∈ ϕ(D). Then
ϕ(a → b) = ϕ(a) → ϕ(b) = x → y ∈ ϕ(D), and similarly, ϕ(b → a) ∈ ϕ(D).
Hence ϕ(a → b) = ϕ(d1) and ϕ(b → a) = ϕ(d2) for some d1, d2 ∈ D. Therefore,
ϕ(d1 → (a→ b)) = ϕ(d2 → (b→ a)) = 1B , and consequently

d1 → (a→ b), d2 → (b→ a) ∈ kerϕ ⊆ D.

It follows that d1 → (a→ b), d2 → (b→ a) ∈ D. By definition, a→ b, b→ a ∈ D.
Since D is a translation deductive system,

(a � c)→ (b � c), (c � a)→ (c � b) ∈ D,

where � ∈ {→,;}. This forces

(x � z)→ (y � z) = (ϕ(a) � ϕ(c))→ (ϕ(b) � ϕ(c)) ∈ ϕ(D),

and similarly, (z � x)→ (z � y) ∈ ϕ(D). Thus ϕ(D) ∈ T(B).

Proposition 4.14
Let A = (A,→,;, 1A) and B = (B →,;, 1B) be pseudo-RM algebras and let
ϕ : A → B be a homomorphism. If B satisfies (An), then kerϕ is a closed t-
deductive system of A.

Proof. By Proposition 4.2, kerϕ is a closed compatible deductive system of A.
Let B satisfy (An). Then {1B} is a t-deductive system of B by Proposition 4.9.
From Proposition 4.12 we conclude that kerϕ ∈ T(A). Finally, kerϕ is a closed
t-deductive system of A.
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Let A be a pseudo-M algebra and θ be an equivalence relation on A. We say
that θ is a congruence on A if x1θy1 and x2θy2 imply x1 → x2θy1 → y2 and
x1 ; x2θy1 ; y2 for all x1, x2, y1, y2 ∈ A. Let us denote by ConA the set of all
congruences on A. For θ ∈ ConA and x ∈ A, we write x/θ for the congruence
class containing x, that is, x/θ = {y ∈ A : yθx}. Denote A/θ = {x/θ : x ∈ A}.
Set x/θ →′ y/θ = x → y/θ and x/θ ;′ y/θ = x ; y/θ. The operations →′ and
;′ are well-defined, since θ is a congruence on A.

Lemma 4.15
Let A be a pseudo-M algebra and θ ∈ ConA. Then 1/θ is a closed deductive
system.

Proof. Straightforward.

Lemma 4.16
If A is a pseudo-M algebra with (pD) and θ ∈ ConA, then θ satisfies the following
condition

x→ yθ1⇔ x; yθ1 (4.2)

for all x, y ∈ A.

Proof. Straightforward.

Proposition 4.17
If A is a pseudo-M algebra satisfying (pD) and θ ∈ ConA, then:

(i) 1/θ is a closed compatible deductive system of A,

(ii) A/θ = (A/θ,→′,;′, 1/θ) is a pseudo-M algebra with (pD).

Proof. (i) By Lemma 4.15, 1/θ is a closed deductive system. From Lemma 4.16 it
follows that θ satisfies (4.2). Then 1/θ is compatible.

(ii) By (4.2), A/θ verifies (IdEq) and, obviously, (pM) and (pD). Therefore,
A/θ is a pseudo-M algebra with (pD).

Example 4.18
Consider the set A = {a, b, c, d, 1} with the following tables of implications:

→ a b c d 1
a 1 b b d 1
b a 1 c d 1
c 1 1 1 d 1
d d d d 1 1
1 a b c d 1

,

; a b c d 1
a 1 b c d 1
b a 1 a d 1
c 1 1 1 d 1
d d d d 1 1
1 a b c d 1

.

Then A = (A,→,;, 1) is a pseudo-BE algebra (see [25]). By Lemma 2.2 (iv), it
also satisfies (pD). Let θ = {a, b, c, 1}2 ∪ {(d, d)}. Obviously, θ ∈ ConA. We have
1/θ = {a, b, c, 1}. It is easy to check that 1/θ is a closed compatible deductive
system.
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Corollary 4.19
If A is a pseudo-BB algebra and θ ∈ ConA, then 1/θ is a closed t-deductive
system.

Proof. By Lemma 2.2 (iii), A satisfies (pD). From Proposition 4.17 (i) and Theo-
rem 4.10 we deduce that 1/θ is a closed t-deductive system.

We say that θ ∈ ConA is an R-congruence on a pseudo-M algebra A if it
satisfies the following conditions: for all x, y ∈ A,

(R1) x→ yθ1 and y → xθ1 imply xθy,
(R2) x; yθ1 and y ; xθ1 imply xθy.

Proposition 4.20
If A satisfies (pD), then (R1)⇔(R2).

Proof. Let (R1) hold. Suppose that x ; yθ1 and y ; xθ1. Hence x → ((x ;

y)→ y)θx→ y, and so x→ yθ1. Similarly, y → xθ1. By (R1), xθy. Thus (R2) is
satisfied. Analogously, (R2) implies (R1).

We will denote by ConR(A) the set of all R-congruences on A.

Example 4.21
Let A = {a, b, c, 1} and →,;be defined by the following tables:

→ a b c 1
a 1 1 c a
b 1 1 c 1
c a b c 1
1 a b c 1

,

; a b c 1
a 1 1 c b
b 1 1 c 1
c a b c 1
1 a b c 1

.

Then, A = (A,→,;, 1) is a pseudo-M algebra. Let θ = ∆ ∪ {(a, 1), (1, a), (b, 1),
(1, b), (a, b), (b, a)}, where ∆ = {(a, a), (b, b), (c, c), (1, 1)} is the diagonal relation.
It is clear that ∆, θ ∈ ConA. Moreover, θ is an R-congruence on A, while ∆ /∈
ConR(A).

Proposition 4.22
Let A be a pseudo-M algebra satisfying (pD) and θ ∈ ConR(A). Then 1/θ is
a closed t-deductive system of A.

Proof. By Proposition 4.17 (i), 1/θ is a closed compatible deductive system of A.
Let x → y ∈ 1/θ and y → x ∈ 1/θ. Then x → yθ1 and y → xθ1. Since θ
satisfies (R1), we have xθy. Therefore, x → zθy → z and hence (x → z) → (y →
z)θ1. Thus (x → z) → (y → z) ∈ 1/θ. Similarly, (z → x) → (z → y) ∈ 1/θ.
Consequently, 1/θ satisfies (4.1) for � = →. Analogously, it satisfies (4.1) for � =
;. Thus 1/θ is a closed t-deductive system of A.

Proposition 4.23
Let A be a pseudo-M algebra satisfying (pD) and let θ ∈ ConA. Then the following
are equivalent:
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(a) θ is an R-congruence on A,
(b) A/θ satisfies (An).

Proof. (a) ⇒ (b): Let θ be an R-congruence on A and x, y ∈ A. Suppose that
x/θ → y/θ = 1/θ = y/θ → x/θ. Then x→ y/θ = 1/θ = y → x/θ. Hence x→ yθ1
and y → xθ1. Since θ satisfies (R1), we have xθy. Therefore, x/θ = y/θ, and
consequently, (An) holds in A/θ.

(b) ⇒ (a): Let x, y ∈ A. Assume that x → yθ1 and y → xθ1. Hence
x/θ → y/θ = 1/θ = y/θ → x/θ. Since A/θ satisfies (An), we get x/θ = y/θ, that
is, xθy. Thus θ is an R-congruence on A.

We will show that R-congruences are characterized by translation deductive
systems. For D ∈ T(A), we define

x ∼D y ⇔ x→ y ∈ D and y → x ∈ D.

Theorem 4.24
Let A be a pseudo-RM algebra with (pD) and D be a translation deductive system
of A. Then:

(i) ∼D is an R-congruence on A,
(ii) 1 /∼D ⊆ D is a closed t-deductive system of A,

(iii) 1 /∼D = D if and only if D is closed,
(iv) if θ ∈ ConR(A), then θ =∼1/θ.

Proof. (i) By (Re), x → x = 1 ∈ D, that is, x ∼D x for any x ∈ A. This
means that ∼D is reflexive. From definition, ∼D is symmetric. To prove that ∼D
is transitive, let x ∼D y and y ∼D z. Then x → y, y → x ∈ D and y → z,
z → y ∈ D. Since D is a t-deductive system, (y → z) → (x → z) ∈ D and
(z → y) → (z → x) ∈ D. Hence, by the definition of deductive system, we get
x→ z ∈ D and z → x ∈ D. Consequently, x ∼D z, and so ∼D is transitive. Thus
∼D is an equivalence relation on A.

Let x, y, z ∈ A and suppose that x ∼D y. Then x → y ∈ D and y → x ∈ D.
Since D is a t-deductive system, (x � z) → (y � z), (y � z) → (x � z) ∈ D, where
� ∈ {→,;}. Thus

x � z ∼D y � z. (4.3)

Moreover, (z � x)→ (z � y) ∈ D and (z � y)→ (z � x) ∈ D. Therefore

z � x ∼D z � y. (4.4)

Let now x ∼D y and u ∼D v. From (4.3) it follows that x � u ∼D y � u. By (4.4),
y � u ∼D y � v. Since ∼D is transitive, we have x � u ∼D y � v. Consequently, ∼D
is an congruence on A.

Observe that ∼D satisfies (R1) (hence also (R2)). Let x → y ∼D 1 and
y → x ∼D 1. Then x → y = 1 → (x → y) ∈ D and y → x = 1 → (y → x) ∈ D.
Consequently, x ∼D y. Thus ∼D ∈ ConR(A).
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(ii) From Proposition 4.22 we see that 1 /∼D ⊆ D is a closed t-deductive
system of A.

(iii) If 1 /∼D = D, then it is obvious that D is closed. Conversely, assume
that D is closed. It is sufficient to show that D ⊆ 1 /∼D . Let x ∈ D. Then
1→ x = x ∈ D and x→ 1 ∈ D, that is, x ∈ 1 /∼D . Therefore, 1 /∼D = D.

(iv) For an R-congruence θ on A, we have x ∼1/θ y ⇔ x→ y, y → x ∈ 1/θ ⇔
xθy. Thus θ =∼1/θ.

As usual, a deductive system D of a pseudo-M algebra A is called the kernel
of the congruence θ on A if D = 1/θ.

Theorem 4.25
Every closed translation deductive system of a pseudo-RM algebra A satisfying
(pD) is the kernel of some R-congruence on A.

Proof. Let D ∈ Tcl(A). By Proposition 4.24 (i), ∼D ∈ ConR(A). Moreover, we
have

x ∈ 1 /∼D ⇔ x ∼D 1⇔ x→ 1, x = 1→ x ∈ D ⇔ x ∈ D.
Therefore, D = 1 /∼D .

The sets Tcl(A) and ConR(A) partially ordered by set-inclusion are obviously
lattices. Moreover, we get

Theorem 4.26
For any pseudo-RM algebra A with (pD), the lattices Tcl(A) and ConR(A) are
isomorphic.

Proof. We consider the function

ϕ : θ → 1/θ for all θ ∈ ConR(A).

By Proposition 4.22, ϕ maps ConR(A) into Tcl(A). Since any closed t-deductive
system of A is the kernel of some R-congruence on A, we conclude that ϕ is onto
Tcl(A). Observe that

θ1 ⊆ θ2 ⇔ ϕ(θ1) ⊆ ϕ(θ2) (4.5)
for all θ1, θ2 ∈ ConR(A). If θ1 ⊆ θ2, then clearly 1/θ1 ⊆ 1/θ2, that is, ϕ(θ1) ⊆
ϕ(θ2). Conversely, assume 1/θ1 ⊆ 1/θ2. Let xθ1y. Then x → yθ11 and hence
x → yθ21. Similarly, y → xθ21. Since θ2 satisfies (R1), we have xθ2y. Thus
θ1 ⊆ θ2. Consequently, ϕmaps ConR(A) onto Tcl(A) and satisfies (4.5). Therefore
ConR(A) is isomorphic to Tcl(A).

Example 4.27
Consider the set A = {a, b, c, d, e, 1} with the following tables of implications:

→ a b c d e 1
a 1 1 c d e 1
b a 1 c d e 1
c c a 1 d e 1
d a b c 1 1 d
e a b c 1 1 e
1 a b c d e 1

,

; a b c d e 1
a 1 1 c d e 1
b a 1 c d e 1
c c b 1 d e 1
d a b c 1 1 d
e a b c 1 1 e
1 a b c d e 1

.
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Then, A = (A,→,;, 1) is a pseudo-RM algebra verifying (pD). It is easy to check
that D1 = {1}, D2 = {1, b}, D3 = {1, a, b}, D4 = {1, a, b, c}, D5 = {1, d, e},
D6 = {1, b, d, e}, D7 = {1, a, b, d, e}, D8 = A are deductive systems of A. Observe
that D2 is not compatible. Indeed, c; b = b ∈ D2 but c→ b = a /∈ D2. Similarly,
D6 is not compatible. D3 does not satisfy (4.1), since a → b, b → a ∈ D3, but
(c → a) → (c → b) = c → a = c /∈ D3. Analogously, D7 is not a t-deductive
system. We have Tcl(A) = {D1, D4, D5, D8}. From Theorem 4.26 we conclude
that the lattice ConR(A) is isomorphic to the lattice of Fig. 2, that is, it is the
four-element Boolean algebra.
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Fig. 2

Let D be a t-deductive system of a pseudo-RM algebra A satisfying (pD). For
x ∈ A, we write x/D = {y ∈ A : x ∼D y}. We note that x ∼D y if and only if
x/D = y/D, that is,

x/D = y/D ⇔ x→ y, y → x ∈ D.

In particular,
x/D = 1/D ⇔ x = 1→ x, x→ 1 ∈ D.

Denote A/D = {x/D : x ∈ A}. Set x/D →′ y/D = x→ y/D and x/D ;′ y/D =
x ; y/D. The operations →′ and ;′ are well-defined, since ∼D is a congruence
on A.

Proposition 4.28
Let A be a pseudo-RM algebra with (pD) and D be a closed t-deductive system of
A. Then A/D := (A/D;→′,;′, D) is a pseudo-RM algebra satisfying (An) and
(pD).

Proof. Theorem 4.24 (i) yields θ := ∼D ∈ ConR(A). We have x/θ = x /∼D =
x/D, for all x ∈ A, and 1/θ = D, since D is closed. Then A/θ = A/D and, by
Propositions 4.17 (ii) and 4.23 (b), A/D is a pseudo-RM algebra satisfying (An)
and (pD).

The algebra A/D is called the quotient pseudo-RM algebra of A modulo D.

Corollary 4.29
If A is a pseudo-BB algebra and D is a closed compatible deductive system of A,
then A/D is a pseudo-BCI algebra.
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Proof. By Theorem 4.10, D ∈ Tcl(A). From Proposition 4.28 we deduce that
A/D is a pseudo-RM algebra with (An). Clearly, A/D satisfies (pBB) and hence,
by Lemma 2.2 (v), (vi), it also satisfies (pEx), (p∗). Thus, A/D is a pseudo-BCI
algebra.

Example 4.30
Let A = {a, b, c, d, 1} and consider implications: →,; from Example 4.18 and the
following implication:

� a b c d 1
a 1 a a b b
b b 1 1 a a
c c 1 1 a a
d a b c 1 1
1 a b c d 1

.

It can check that A1 = (A,�,�, 1) and A2 = (A,→,;, 1) verify (Re), (pM)
and (pBB). Then A = A1 × A2 is a pseudo-BB algebra. It does not verify (An)
for x = (b, c), y = (c, b), (L) for x = (a, a), and (pEx) for x = (a, a), y = (c, a),
z = (b, a). Let D = {1, d}×{1, b, c}. It is easy to see that D is a closed compatible
deductive system of A. We have

a := (b, 1)/D = {(b, 1), (b, b), (b, c), (c, 1), (c, c), (c, b)},
b := (1, a)/D = {(1, a), (1, d), (d, a), (d, d)},
c := (b, a)/D = {(b, a), (b, d), (c, a), (c, d)},
d := (a, b)/D = {(a, b), (a, c), (a, 1)},
e := (a, a)/D = {(a, a), (a, d)},
1 := (1, 1)/D = D.

Set A/D = {a,b, c,d, e,1} and (x1, y1)/D →′ (x2, y2)/D = (x1 � x2, y1 →
y2)/D, (x1, y1)/D ;′ (x2, y2)/D = (x1 � x2, y1 ; y2)/D. We get a →′ a =
(b, 1)/D →′ (b, 1)/D = (b � b, 1 → 1)/D = (1, 1)/D = 1 = a ;′ a. Analogously,
a →′ b = (b, 1)/D →′ (1, a)/D = (a, a)/D = e = a ;′ b. Finally, we conclude
that →′=;′ and obtain the following table:

→′ a b c d e 1
a 1 e b a c d
b a 1 a d d 1
c 1 d 1 a a d
d d c e 1 b a
e d a d 1 1 a
1 a b c d e 1

.

Thus, by Corollary 4.29, A/D := (A/D,→′,→′, D) is a (pseudo-) BCI algebra.

Theorem 4.31
Let A and B be pseudo-RM algebras and ϕ : A → B be a homomorphism from A
onto B. If A satisfies (pD) and B satisfies (An), then A/kerϕ is isomorphic to B.
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Proof. By Proposition 4.14, D := kerϕ is a closed t-deductive system of A. Define
a function ψ : A/D → B by ψ(x/D) = ϕ(x) for all x ∈ A. We have

x/D = y/D ⇔ x→ y, y → x ∈ D
⇔ ϕ(x)→ ϕ(y) = 1 = ϕ(y)→ ϕ(x)
⇔ ϕ(x) = ϕ(y).

This means that ψ is well defined and one-to-one. It is easy to see that ψ is
a homomorphism from A/D onto B. Thus ψ is an isomorphism from A/D onto
B.

Corollary 4.32
If A is a pseudo-BB algebra, then K(A) is a closed t-deductive system of A and
A/K(A) is a pseudo-BCI algebra.

Proof. Since A satisfies (pD) and (p∗∗), by Proposition 4.4, K(A) is a closed
compatible deductive system of A. From Theorem 4.10 and Corollary 4.29 it
follows that K(A) ∈ Tcl(A) and A/K(A) is a pseudo-BCI algebra.

5. Conclusions

Pseudo-M algebras are a common generalization of pseudo-BCK, pseudo-BCI,
pseudo-BCH, pseudo-BE and pseudo-CI algebras. In this paper, the notion of
deductive system in a pseudo-M algebra is introduced and its elementary properties
are investigated. Closed deductive systems are defined and studied. Deductive
systems of direct products of pseudo-M algebras are described. The homomorphic
properties of (closed) deductive systems are provided. The concepts of translation
deductive systems and R-congruences in pseudo-M algebras are introduced and
studied. It is shown that there is a bijection between translation deductive systems
and R-congruences. Finally, the construction of quotient algebra A/D of a pseudo-
M algebra A via a translation deductive system D of A is given.

As a direction of research, one could define various deductive systems in
a pseudo-M algebra, and investigate the relationships between these. It will also
be possible to study the pseudo-M algebras verifying the commutative property or
verifying the implicative property. Another topic of research could be to introduce
and investigate the notion of fuzzy pseudo-M algebra.
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