Error recognition in the Cantor cube

Authors

  • Paweł Pasteczka Department of Mathematics, Pedagogical University of Krakow

Keywords:

thin sets, xor-sets, Banach-Mazur game, capturing strategy, decomposition of Cantor cube

Abstract

Based on the notion of thin sets introduced recently by T. Banakh, Sz. Głąb, E. Jabłonska and J. Swaczyna we deliver a study of the infinite single-message transmission protocols. Such protocols are associated with a set of admissible messages (i.e. subsets of the Cantor cube Zω 2). Using Banach-Mazur games we prove that all protocols detecting errors are Baire spaces and generic (in particular maximal) ones are not neither Borel nor meager. We also show that the Cantor cube can be decomposed to two thin sets which can be considered as the infinite counterpart of the parity bit. This result is related to so-called xor-sets defined by D. Niwiński and E. Kopczyński in 2014.

References

Adámek, Jiri. Foundations of Coding: Theory and Applications of Error-Correcting Codes with an Introduction to Cryptography and Information Theory. Chichester-New York-Brisbane-Toronto-Singapore: John Wiley & Sons, Inc, 1991.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Banach, Stefan. Théorie des opérations linéaires. Vol. 1 of Monografie Matematyczne. Warsaw: Panstwowe Wydawnictwo Naukowe, 1932.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Banakh, Taras, Szymon Głab, Eliza Jabłonska, and Jarosław Swaczyna. "Haar-I sets: looking at small sets in polish groups through compact glasses." Dissertationes Math. 564 (2021): 105 pp.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Berwanger, Dietmar, Erich Grädel, and Stephan Kreutzer. Once upon a time in the west. In: Vol. 2850 of Lecture Notes in Computer Science, 229-243. Berlin, Heidelberg: Springer, 2003.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Cormen, Thomas H., Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. Cambridge, London: The MIT Press, 2009.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Hamming, Richard Wesley. "Error detecting and error correcting codes." Bell System Tech. J. 29 (1950): 147-160.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Krom, Melven Robert. "Infinite games and special Baire space extensions." Pacific J. Math. 55 (1974): 483-487.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Kopczynski, Eryk, and Damian Niwinski. "A simple indeterminate infinite game." In: Vol. 4 of Ontos Math. Log., 205-212. Berlin: De Gruyter, 2014.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Oxtoby, John Corning. "The Banach-Mazur game and Banach category theorem." In: Vol. 3 of Contributions to the theory of games, Vol. 39 of Annals of Mathematics Studies, 159-163. Princeton, N. J., Princeton University Press: 1957.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Telgársky, Rastislav. "Topological games: on the 50th anniversary of the Banach-Mazur game." Rocky Mountain J. Math. 17, no. 2 (1987): 227-276.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Downloads

Published

2023-06-30

How to Cite

Pasteczka, P. (2023). Error recognition in the Cantor cube. Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 22, 75–86. Retrieved from https://studmath.uken.krakow.pl/article/view/10382

Issue

Section

Published