Some theoretical results on fractional-order continuous information measures

Authors

  • Slimane Benmahmoud Faculty of Technology. Department of Electronic Engineering, University of M’sila

Keywords:

fractional differential entropy, fractional joint/conditional differential entropy, fractional relative entropy, fractional mutual information, Riemann-Liouville fractional integral/derivative

Abstract

By rewriting the differential entropy in a form of a differ-integral function's limit, and deforming the ordinary derivative to a fractional-order one, we derive in this paper a novel generalized fractional-order differential entropy along with its related information measures. When the order of fractional differentiation α → 1 , the ordinary Shannon's differential entropy is recovered, which corresponds to the results from first-order ordinary differentiation.

References

Boltzmann, Ludwig. "Lectures on the Principles of Mechanics." In Theoretical Physics and Philosophical Problems editeg by B. McGuinness. Dordrecht: Springer, 1974.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Clausius, Rudolf and Thomas Archer Hirst. The Mechanical Theory of Heat: With its Applications to the Steam-Engine and to the Physical Properties of Bodies. London: J. Van Voorst, 1867.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Cover, Thomas M., and Joy A. Thomas. Elements of Information Theory. New- York: John Wiley & Sons, INC., 1991.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Hilfer, Rudolf. Applications Of Fractional Calculus In Physics. Universität Mainz & Universität Stuttgart, 2000.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Jumarie, Guy. Relative Information: Theories and Applications. Vol. 47 of Springer Series in Synergetics. Heidelberg: Springer Berlin, 2011.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Kilbas, Anatoly A., and Hari Mohan Srivastava, and Juan J. Trujillo. Theory and Applications of Fractional Differential Equations. Oxford: Elsevier LTD, 2006.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Leibniz G.W. "Letter from Hanover; Germany; to G.F.A. L’Hopital, September 30; 1695." In: Mathematische Schriften, 301-302. Hidesheim: Olms Verlag, 1962.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Liouville, Joseph. Mémoire sur le calcul des différentielles à indices quelconques. 1832.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Olver, Frank W.J. et al. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Riemann, Bernhard. "Versuch Einer Allgemeinen Auffassung Der Integration Und Differentiation. (1847.)." In Bernard Riemann’s Gesammelte Mathematische
##plugins.generic.googleScholarLinks.settings.viewInGS##

Werke Und Wissenschaftlicher Nachlass, edited by Richard Dedekind and Heinrich Martin Weber, 331-344. Cambridge: Cambridge University Press, 2013.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Ubriaco, Marcelo R. "Entropies based on fractional calculus." Physics Letters A 373 (2009): 2516-2519.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Shannon, Claude E. "A mathematical theory of communication." Bell Syst. Tech. J. 27 (1948): 379-423.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Downloads

Published

2024-01-24

How to Cite

Benmahmoud, S. (2024). Some theoretical results on fractional-order continuous information measures. Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 23, 5–12. Retrieved from https://studmath.uken.krakow.pl/article/view/10815

Issue

Section

Published