A general Hardy-Hilbert-type integral inequality theorem
Keywords:
multivariate integral inequalities, Laplace transform, incomplete lower gamma function, gamma functionAbstract
This article presents a unified framework that extends the scope of two existing theorems on multivariate Hardy-Hilbert-type integral inequalities. Key to this extension is the use of two additional adjustable parameters that increase flexibility and generality. The framework also has the originality of including the incomplete lower gamma function in the integral definitions governed by a parameter. Detailed proofs are given, mainly based on the Laplace transform, the generalized Young inequality, the generalized Hölder integral inequality and changes of variables. This article thus provides a new comprehensive foundation for future research in generalized multivariate integral inequalities.
References
Adiyasuren, V., T. Batbold, and M. Krnić. "Hilbert-type inequalities involving differential operators, the best constants and applications." Math. Inequal. Appl. 18 (2015): 111-124.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Batbold, T., and Y. Sawano. "Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces." Math. Inequal. Appl. 20 (2017): 263-283.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Benaissa, B., and M.Z. Sarikaya. "On the refinements of some important inequalities with a finite set of positive numbers." Math. Meth. Appl. Sci. 47 (2024): 9589-9599.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Bényi, A., and C.T. Oh. "Best constant for certain multilinear integral operator." J. Inequal. Appl. 2006 (2006): Article ID 28582.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Chesneau, C. "Some four-parameter trigonometric generalizations of the Hilbert integral inequality." Asia Mathematika 8, no. 2 (2024): 45-59.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Hardy, G.H., J.E. Littlewood, and G. Polya. Inequalities. Cambridge: Cambridge University Press, 1934.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Hong, Y. "On multiple Hardy-Hilbert integral inequalities with some parameters." J. Inequal. Appl. 2006 (2006): Article ID 94960.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Huang, Z., and B.C. Yang. "A multidimensional Hilbert-type integral inequality." J. Inequal. Appl. 2015 (2015): Article ID 151.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Jian, S.W., and F.Z. Yang. "All-sided generalization about Hardy-Hilbert integral inequalities." Acta Mathematica Sinica (China) 44, no. 4 (2001): 619-626.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Li, Y., Y. Qian, and B. He. "On further analogs of Hilbert’s inequality." Int. J. Math. Math. Sci. 2007 (2007): 1-6.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sun, B. "A multiple Hilbert-type integral inequality with the best constant factor." J. Inequal. Appl. 2007 (2007): Article ID 071049.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sulaiman, W.T. "A different type of Hardy-Hilbert’s integral inequality." AIP Conf. Proc. 1046 (2008): 135-141.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sulaiman, W.T. "General new forms of Hardy-Hilbert’s integral inequality via new ideas." Int. J. Contemp. Math. Sci. 3, no. 22 (2008): 1059-1067.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sulaiman, W.T. "New types of Hardy-Hilbert’s integral inequality." Gen. Math. Notes 2, no. 2 (2011): 111-118.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sulaiman, W.T. "On Hardy-Hilbert’s integral inequality." J. Inequal. Pure Appl. Math. 5, no. 2 (2004): 1-9.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Tian, J.F. "Properties of generalized Hölder’s inequalities." J. Math. Inequal. 9 (2015): 473-480.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ullrich, D.C. "A simple elementary proof of Hilbert’s inequality." Amer. Math. Monthly 120 (2013): 161-164.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Widder, D.V. The Laplace Transform. Princeton Mathematical Series. Princeton: Princeton University Press, 1941.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Xie, Z.T., Z. Zeng, and Y.F. Sun. "A new Hilbert-type inequality with the homogeneous kernel of degree -2." Adv. Appl. Math. Sci. 12, no. 7 (2013): 391-401.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Xin, D.M. "A Hilbert-type integral inequality with the homogeneous kernel of zero degree." Math. Theory Appl. 30, no. 2 (2010): 70-74.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Xu, J.S. "Hardy-Hilbert’s inequalities with two parameters." Adv. Math. 36, no. 2 (2007): 63-76.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. "On Hilbert’s integral inequality." J. Math. Anal. Appl. 220, no. 2 (1998): 778-785.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities. Beijing: Science Press, 2009.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. Hilbert-Type Integral Inequalities. The United Arab Emirates: Bentham Science Publishers, 2009.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. "On the norm of an integral operator and applications." J. Math. Anal. Appl. 321, no. 1 (2006): 182-192.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. "On the norm of a Hilbert’s type linear operator and applications." J. Math. Anal. Appl. 325 (2007): 529-541.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. "Hilbert-type integral inequality with non-homogeneous kernel." J. Shanghai Univ. 17 (2011): 603-605.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C., and M. Krnić. "On the norm of a multi-dimensional Hilbert-type operator." Sarajevo J. Math. 7(20) (2011): 223-243.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, B.C. "A multiple Hardy-Hilbert integral inequality." Chinese Annals of Mathematics. Series A 24, no. 6 (2003): 743-750.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Zhong, W.Y., and B.C. Yang. "On a multiple Hilbert-type integral inequality with the symmetric kernel." J. Inequal. Appl. 2007 (2007): Article ID 27962.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wydawnictwo Naukowe Uniwersytetu Komisji Edukacji Narodowej

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.