Some application of Grunsky coefficients in the theory of univalent functions
Keywords:
Sunivalent functions, Grunsky coefficients, third logarithmic coefficient, coefficient difference, generalised Zalcman conjecture, second Hankel determinant, third Hankel determinantAbstract
Let function f be normalized, analytic and univalent in the unit disk D={z: |z|<1} and f(z)=z+∑∞n=2 an zn. Using a method based on Grusky coefficients we study several problems over that class of univalent functions: upper bounds of the special case of the generalized Zalcman conjecture |a2a3-a4|, of the third logarithmic coefficient, and of the second Hankel determinant for the logarithmic coefficients.
References
Cho, N. E., et al. "On the third logarithmic coefficient in some subclasses of closeto-convex functions." Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 114 (2020): Article Id. 52.
##plugins.generic.googleScholarLinks.settings.viewInGS##
De Branges, Louis. "A proof of the Bieberbach conjecture." Acta Math. 154, no. 1-2 (1985): 137-152.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Duren, P. L. Univalent Functions. New York: Springer-Verlag, 1983.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Hayman, W. K. "On the second Hankel determinant of mean univalent functions." Proc. London Math. Soc. Series 3, 18 (1968): 77-94.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Janteng, A., S. A. Halim, and M. Darus. "Coefficient inequality for a function whose derivative has a positive real part." J. Inequal. Pure Appl. Math. 7, no. 2 (2006): Article Id. 50.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Janteng, A., S. A. Halim, and M. Darus. "Hankel determinant for starlike and convex functions." Int. J. Math. Anal. (Ruse) 1, no. 13-16 (2007): 619-625.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Kowalczyk, B., and A. Lecko. "Second Hankel determinant of logarithmic coefficients of convex and starlike functions." Bull. Aust. Math. Soc. 105, no. 3 (2022):
##plugins.generic.googleScholarLinks.settings.viewInGS##
-467.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Kowalczyk, B., and A. Lecko. "The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions." Revista de la Real
##plugins.generic.googleScholarLinks.settings.viewInGS##
Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 117 (2023): art. no. 91.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Lebedev, N. A. Area Principle in the Theory of Univalent Functions. Moscow: Nauka (in Russian), 1975.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Obradović, M., and N. Tuneski. "The third logarithmic coefficient for the class S." Turkish Journal of Mathematics 44 (2020): 1950-1954.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Obradović, M., and N. Tuneski. "Zalcman and generalized Zalcman conjecture for a subclass of univalent functions." Novi Sad J. Math. 52, no. 1 (2022): 185-190.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ravichandran, V., and S. Verma. "Generalized Zalcman conjecture for some classes of analytic functions." J. Math. Anal. Appl. 450, no. 1 (2017): 592-605.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Thomas, D. K., N. Tuneski, and A. Vasudevarao. Univalent Functions: A Primer. De Gruyter Studies in Mathematics 69. Berlin,Boston: De Gruyter, 2018.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wydawnictwo Naukowe Uniwersytetu Komisji Edukacji Narodowej

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.