Geometry of ℓp-direct sums of normed linear spaces
Keywords:
Smooth points, Support functionals, Approximate smoothness, Birkhoff-James orthogonality, Left-symmetric points, Right-symmetric point, Semi inner productAbstract
We consider ℓp-direct sums (1 ≤ p<∞) and c0-direct sums of countably many normed spaces and find the dual of these spaces. We characterize the support functionals of arbitrary elements in these spaces to characterize smoothness and approximate smoothness, both locally and globally. These results let us answer the Chmieliński, Khurana, and Sain question raised in [4] on the existence of a non-approximately smooth normed space whose every element is smooth. We also characterize Birkhoff-James orthogonality and its pointwise symmetry in these spaces.
References
Birkhoff, Garrett. "Orthogonality in linear metric spaces." Duke Math. J. 1, no. 2 (1935): 169-172.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Bose, Babhrubahan, Saikat Roy, and Debmalya Sain. "Birkhoff-James orthogonality and its local symmetry in some sequence spaces." Revista de la Real Academia de Ciencias Exactas, Físicas y naturales. Serie A. Matemáticas 117, no. 3 (2023): Article Id. 93.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Chattopadhyay, A., D. Sain, and T. Senapati. "Characterization of symmetric points in ln p -spaces." Linear and Multilinear Algebra 69, no. 16 (2021): 2998-3009.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Chmieliński, J., D. Khurana, and D. Sain. "Approximate smoothness in normed linear spaces." Banach Journal of Mathematical Analysis 17, no. 3 (2023): Article Id. 41.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ghosh, P., D. Sain, and K. Paul. "On symmetry of Birkhoff-James orthogonality of linear operators." Advances in Operator Theory 2 (2017): 428-434. Cited on 33.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ghosh, P., K. Paul, and D. Sain. "Symmetric properties of orthogonality of linear operators on (Rn, ∥ · ∥1)." Novi Sad Journal of Mathematics 47 (2017): 41-46.
##plugins.generic.googleScholarLinks.settings.viewInGS##
James, R.C. "Inner product in normed linear spaces." Bulletin of the American Mathematical Society 53 (1947): 559-566.
##plugins.generic.googleScholarLinks.settings.viewInGS##
James, R.C. "Orthogonality and linear functionals in normed linear spaces." Transactions of the American Mathematical Society 61 (1947): 265-292.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Lumer, G. "Semi-inner-product spaces." Transactions of the American Mathematical Society 100 (1961): 29-43.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Komuro, N., K.-S. Saito, and R. Tanaka. "Left symmetric points for Birkhoff orthogonality in the preduals of von Neumann algebras." Bulletin of the Australian Mathematical Society 98 (2018): 494-501.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Komuro, N., K.-S. Saito, and R. Tanaka. "Symmetric points for (strong) Birkhoff orthogonality in von Neumann algebras with applications to preserver problems." J. Math. Anal. Appl. 463 (2018): 109-1131.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Komuro, N., K.-S. Saito, and R. Tanaka. "On symmetry of Birkhoff orthogonality in the positive cones of C∗-algebras with applications." J. Math. Anal. Appl. 474 (2019): 1488-1497.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Paul, K., A. Mal, and P. Wójcik. "Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces." Linear Algebra and Its Applications 563 (2019): 142-153.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Rudin, Walter. Functional Analysis. 2nd ed. New York: McGraw-Hill, 1991.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sain, D., P. Ghosh, and K. Paul. "On symmetry of Birkhoff-James orthogonality of linear operators on finite-dimensional real Banach spaces." Operators & Matrices 11 (2017): 1087-1095.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sain, D., et al. "A complete characterization of smoothness in the space of bounded linear operators." Linear and Multilinear Algebra 68, no. 12 (2019): 2484-2494 .
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sain, D., et al. "A study of symmetric points in Banach spaces." Linear and Multilinear Algebra 70, no. 5 (2020): 888-898.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sain, D. "Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces." J. Math. Anal. Appl. 447, no. 2 (2017): 860-866.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sain, D. "On the norm attainment set of a bounded linear operator." J. Math. Anal. Appl. 457, no. 1 (2018): 67-76.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Turnšek, A. "A remark on orthogonality and symmetry of operators in B(H)." Linear Algebra and Its Applications 535 (2017): 141-150.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Turnšek, A. "On operators preserving James’ orthogonality." Linear Algebra and Its Applications 407 (2005): 189-195.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Weaver, N. Measure Theory and Functional Analysis. Singapore: World Scientific Publishing Company, 2013.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wydawnictwo Naukowe Uniwersytetu Komisji Edukacji Narodowej

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.