Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated s-preinvex in the second sense
Keywords:
integral inequality, co-ordinated preinvex, co-ordinated s-preinvex, Hölder inequality, power mean inequalityAbstract
In this paper we establish a new fractional identity involving a function oftwo independent variables, and then we derive some fractionalHermite-Hadamard type integral inequalities for functions whose modulus ofthe mixed derivatives are co-ordinated s-preinvex in the second sense.
References
Alomari, M. and M. Darus. "The Hadamard’s inequality for s-convex function." Int. J. Math. Anal. (Ruse) 2, no. 13-16 (2008): 639-646.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ben-Israel, A. and B. Mond. "What is invexity?" J. Austral. Math. Soc. Ser. B 28, no. 1 (1986): 1-9.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Dragomir, S.S. "On the Hadamard’s inequality for convex functions on the coordinates in a rectangle from the plane." Taiwanese J. Math. 5, no. 4 (2001): 775-788.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Hanson, Morgan A. "On sufficiency of the Kuhn-Tucker conditions." J. Math. Anal. Appl. 80, no. 2 (1981): 545-550.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Kilbas, Anatoly A., Hari M. Srivastava and Juan J. Trujillo. Theory and applications of fractional differential equations. Vol. 204 of North-Holland Mathematics Studies. Amsterdam: Elsevier Science B.V., 2006.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Latif, M.A. and M. Alomari. "Hadamard-type inequalities for product two convex functions on the co-ordinates." Int. Math. Forum 4, no. 45-48 (2009): 2327-2338.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Latif, M. A. and M. Alomari. "New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals." J. Fract. Calc. Appl. 2, no. 9 (2012): 1-15.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Latif, M.A. and S.S. Dragomir. "Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the coordinates." Facta Univ. Ser. Math. Inform. 28, no. 3 (2013): 257-270.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Matłoka, Marian. "On some Hadamard-type inequalities for (h1, h2)-preinvex functions on the co-ordinates." J. Inequal. Appl. 2013, (2013): art id. 227.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Meftah, B., K. Boukerrioua and T. Chiheb. "New Hadamard’s inequality for (s1, s2)-preinvex functions on co-ordinates." Kragujevac J. Math. 39, no. 2 (2015): 231-254.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Meftah, B. "Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex." Punjab Univ. J. Math. (Lahore) 51, no. 2 (2019): 21-37.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Noor, M. A. (1994). Variational-like inequalities. Optimization 30 (4), 323–330.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Noor, M.A. "Invex equilibrium problems." J. Math. Anal. Appl. 302, no. 2 (2005): 463-475.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Pecaric, Josip E., Frank Proschan and Y.L. Tong. Convex functions, partial orderings, and statistical applications. Vol. 187 of Mathematics in Science and Engineering. Academic Boston, MA: Press, Inc., 1992.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Pini, Rita. "Invexity and generalized convexity." Optimization 22, no. 4 (1991): 513-525.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sarikaya, M.Z. "On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals." Integral Transforms Spec. Funct. 25, no. 2, (2014): 134-147.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Sarikaya, M.Z. et all. "New some Hadamard’s type inequalities for co-ordinated convex functions." Tamsui Oxf. J. Inf. Math. Sci. 28, no. 2 (2012): 137-152.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Weir, T. and B. Mond. "Pre-invex functions in multiple objective optimization." J. Math. Anal. Appl. 136, no. 1 (1988): 29-38.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Yang, Xin Min and Duan Li. "On properties of preinvex functions." J. Math. Anal. Appl. 256, no. 1 (2001): 229-241.
##plugins.generic.googleScholarLinks.settings.viewInGS##