Binomial sequences

Authors

  • Andrzej Nowicki Nicolaus Copernicus University, Faculty of Mathematics and Computer Science

Keywords:

binomial sequence, lower factorial, upper factorial, linear operator of type zero, binomial convolution, principal sequence

Abstract

We present a description of all binomial sequences of polynomials in one variable over a field of characteristic zero.

References

Aceto, Lidia and Isabel Cação. "A matrix approach to Sheffer polynomials." J. Math. Anal. Appl. 446, no. 1 (2017): 87-100.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Berthelot, Pierre Cohomologie cristalline des schémas de caractéristique p > 0. Vol. 407 of Lecture Notes in Mathematics. Berlin-New York: Springer-Verlag, 1974.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Brand, Louis. "Binomial expansions in factorial powers." Amer. Math. Monthly 67 (1960): 953-957.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Brown, J.W. "On zero type sets of Laguerre polynomials." Duke Math. J. 35 (1968): 821-823.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Di Bucchianico, A. Probabilistic and analytical aspects of the umbral calculus. Vol. 119 CWI Tract. Amsterdam: Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, 1997
##plugins.generic.googleScholarLinks.settings.viewInGS##

Carlitz, L. "Some generating functions for Laguerre polynomials." Duke Math. J. 35 (1968), 825-827.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Comtet, Louis. Advanced combinatorics. The art of finite and infinite expansions. Dordrecht: D. Reidel Publishing Co., 1974.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Ekhad, Shalosh B. and John E. Majewicz. "A short WZ-style proof of Abel’s identity." Electron. J. Combin. 3, no. 2 (1996): Research Paper 16, approx. 1 p.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Foata, Dominique. "Enumerating k-trees." Discrete Math. 1, no. 2 (1971/72): 181-186.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Graham, Ronald L., Donald E. Knuth and Oren Patashnik. Concrete mathematics. A foundation for computer science. Reading, MA: Addison-Wesley Publishing Company, 1989.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Huang, Fengying and Bolian Liu. "The Abel-type polynomial identities." Electron. J. Combin. 17, no. 1, (2010): Research Paper 10, 7 pp.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Kisil, Vladimir V. "Polynomial sequences of binomial type and path integrals." Ann. Comb. 6, no. 1, (2002): 45-56.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Krall, H.L. "Polynomials with the binomial property." Amer. Math. Monthly 64 (1957): 342-343.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Lipnowski, M. "A solution of Problem 310." Vol. 5 of Olymon – Mathematical Olympiads’ Correspondence Program. Canada: Canadian Mathematical Society, 2004.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Mihoubi, Miloud. "Bell polynomials and binomial type sequences." Discrete Math. 308, no. 12 (2008): 2450-2459.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Młotkowski, Wojciech and Romanowicz, Anna. "A family of sequences of binomial type." Probab. Math. Statist. 33, no. 2 (2013): 401-408.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Nowicki, Andrzej. Arithmetic functions Vol.5 of Podróze po Imperium Liczb. Torun, Olsztyn: Wydawnictwo OWSIiZ, 2012.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Nowicki, Andrzej. Factorials and binomial coefficiens, Vol. 11 of Podróze po Imperium Liczb. Torun, Olsztyn: Wydawnictwo OWSIiZ, 2013.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Petrullo, Pasquale. "Outcomes of the Abel identity." Mediterr. J. Math. 10, no. 3 (2013): 1141-1150.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Roman, Steven M. and Gian-Carlo Rota. "The umbral calculus." Advances in Math. 27, no. 2 (1978): 95-188.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Rota, Gian-Carlo, D. Kahaner and A. Odlyzko, "On the foundations of combinatorial theory. VIII. Finite operator calculus." J. Math. Anal. Appl. 42 (1973): 84-760.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Rota, Gian-Carlo, Jianhong Shen and Brian D. Taylor. "All polynomials of binomial type are represented by Abel polynomials." Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, no. 3-4 (1997): 731-738.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Schneider, Jonathan. "Polynomial sequences of binomial-type arising in graph theory." Electron. J. Combin. 21, no. 1 (2014): Paper 1.43, 17 pp.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Sheffer, I.M. "Some properties of polynomial sets of type zero." Duke Math. J. 5 (1939): 590-622.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Shukla, A.K. and S.J. Rapeli. "An extension of Sheffer polynomials." Proyecciones 30, no. 2 (2011): 265-275.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Sykora, S. "An Abel’s identity and its corollaries." Preprint, 2014.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Zheng, G. "A solution of Problem 310." Vol. 5 of Olymon – Mathematical Olympiads’ Correspondence Program. Canada: Canadian Mathematical Society, 2004.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Downloads

Published

2019-07-11

How to Cite

Nowicki, A. (2019). Binomial sequences. Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 18, 93–122. Retrieved from https://studmath.uken.krakow.pl/article/view/7947

Issue

Section

Published