Metrizable space of multivalued maps
Keywords:
Diagram, pseudometric, dist-morphism, multivalued map determined by the dist-morphism, D-metric, metrizable space of multivalued mapsAbstract
In this article we define a metrizable space of multivalued maps. We show that the metric defined in this space is closely related to the homotopy of multivalued maps. Moreover, we study properties of this space and give a few practical applications of the new metric.
References
Górniewicz, Lech. Topological methods in fixed point theory of multivalued mappings. Dordrecht: Springer, 2006.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Górniewicz, Lech. "Homological methods in fixed point theory of multi-valued maps." Dissertationes Math. 129 (1976): 1-66.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Górniewicz, Lech. "Topological degree and its applications to differential inclusions." Raccolta di Seminari del Dipartimento di Matematica dell’Universita degli Studi della Calabria, March-April 1983.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Górniewicz, Lech, and Andrzej Granas. "Topology of morphisms and fixed point problems for set-valued maps." Fixed point theory and applications (Marseille, 1989), 173–191. Vol. 252 of Pitman Res. Notes Math. Ser. Harlow: Longman Sci. Tech., 1991.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Górniewicz, Lech, and Andrzej Granas. "Some general theorems in coincidence theory." I. J. Math. Pures Appl. (9) 60, no. 4 (1981): 361-373.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Kryszewski, Wojciech. Homotopy properties of set-valued mappings. Torun: The Nicolaus Copernicus University, 1997.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Kryszewski, Wojciech. "Topological and approximation methods of degree theory of set-valued maps." Dissertationes Math. (Rozprawy Mat.) 336 (1994): 101 pp.
##plugins.generic.googleScholarLinks.settings.viewInGS##
Ślosarski, Mirosław. "The multi-morphisms and their properties and applications." Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015): 5-25.
##plugins.generic.googleScholarLinks.settings.viewInGS##