γμH-compactness in GTS

Authors

  • Takashi Noiri
  • Bishwambhar Roy Department of Mathematics, Women’s Christian College

Keywords:

μ-open set, operation, Hereditary class, γμH-compact

Abstract

Using the notion of operations on a generalized topological space (X, μ) and a hereditary class we have introduced the notion of γμ-compactness modulo a hereditary class H termed as γμH-compactness. We have studied γμH-compact spaces and γμH-compact sets relative to μ.

References

Carpintero, Carlos, et al. "μ-compactness with respect to a hereditary class." Bol. Soc. Parana. Mat. (3) 34, no. 2 (2016): 231-236.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Császár, Ákos. "γ-compact spaces." Acta Math. Hungar. 87, no. 1-2 (2000): 99-107.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Császár, Ákos. "Generalized topology, generalized continuity." Acta Math. Hungar. 96, no. 4 (2002): 351-357.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Császár, Ákos. "Generalized open sets in generalized topologies." Acta Math. Hungar. 106, no. 1-2 (2005): 53-66.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Császár, Ákos. "Modification of generalized topologies via hereditary classes." Acta Math. Hungar. 115, no. 1-2 (2007): 29-36.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Janković, Dragan S. "On functions with α-closed graphs." Glasnik Mat. 18(38) (1983): 141-148.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Kasahara, Shouro. "Operation-compact spaces." Math. Japon. 24, no. 1 (1979/80): 97-105.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Krishnan, Sai Sundara G., and Maximilian Ganster, and Krishnan Balachandran. "Operation approaches on semi-open sets and applications." Kochi J. Math. 2 (2007): 21-33.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Newcomb, Robert Lewis, Jr Topologies which are compact modulo an ideal. Ph.D. Thesis. Santa Barbara: University of California, 1968.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Ogata, Hayao. "Operations on topological spaces and associated topology." Math. Japon. 36, no. 1 (1991): 175-184.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Qahis, Abdo, and Takashi Noiri. "Functions and weakly μH-compact spaces (invited paper)." Eur. J. Pure Appl. Math. 10, no. 3 (2017): 410-418.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Qahis, Abdo, and Heyam Hussain AlJarrah, and Takashi Noiri. "Weakly μ- compact via a hereditary class." Bol. Soc. Parana. Mat. (3) 39, no. 3 (2021):
##plugins.generic.googleScholarLinks.settings.viewInGS##

-135.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Roy, Bishwambhar. "On a type of generalized open sets." Appl. Gen. Top. 12, no. 2 (2011): 163-173.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Roy, Bishwambhar, and Saeid Jafari. "On covering properties via generalized open sets." Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 55 (2012): 57-65.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Roy, Bishwambhar. "Applications of operations on minimal generalized open sets." Afr. Mat. 29, no. 7-8 (2018): 1097-1104.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Roy, Bishwambhar, and Takashi Noiri. "Applications on operations on weakly compact generalized topological spaces." Carpathian Math. Publ. 12, no. 2 (2020): 461-467.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Sarsak, Mohammad S. "Weakly μ-compact spaces." Demonstratio Math. 45, no. 4 (2012): 929-938.
##plugins.generic.googleScholarLinks.settings.viewInGS##

An, Tran Van, and Dang Xuan Cuong, and Haruo Maki. "On operation-preopen sets in topological spaces." Sci. Math. Jpn. e-2008, 241-260.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Zahran, Ahmed M., and Kamal El-Saady, and A. Ghareeb. "Modification of weak structures via hereditary classes." Appl. Math. Lett. 25, no. 5 (2012): 869-872.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Cited on 33.
##plugins.generic.googleScholarLinks.settings.viewInGS##

Downloads

Published

2022-09-05

How to Cite

Noiri, T., & Roy, B. (2022). γμH-compactness in GTS. Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 21, 33–42. Retrieved from https://studmath.uken.krakow.pl/article/view/9498

Issue

Section

Published